The retina of Rana pipiens, the leopard frog or grass frog, is shown to be an extremely sensitive detector of x-rays. Its sensitivity to x-rays equals in some respects its sensitivity to visible light. The energy required for the response to visible light is so low that the reaction has long been known as one of the most sensitive in biological systems. An exact comparison is made of the amount of energy required in the stimulus to elicit an electroretinogram (ERG) in response to x-rays and in response to light. ERG's from threshold responses to maximal responses obtainable with x-rays and with light are reproduced. The rods of the retina are shown to be responsible for the production of the ERG. The actual amount of energy absorbed in the rhodopsin from x-ray and from light stimulation over a wide range of intensities and durations has been determined and has been related to the amplitude of the ERG. To the question whether light or x-rays are more efficient in eliciting an ERG, no simple or unequivocal answer can be given. The three dimensional relationship of amplitude of response, intensity of stimulus, and duration of stimulus shows rather unexpectedly that in certain regions light is more efficient while in other regions x-rays are more efficient.

This content is only available as a PDF.