Experiments were carried out on a collodion membrane in order to study the factors that determine direction and magnitude of net flow of water across a membrane permeable to the solvent and to some of the solutes present. The solutes used were all non-ionic. When only one solute was present and there was no difference of hydrostatic pressure across the membrane, water flowed toward the side where its vapor pressure was lower, but the rate of transfer depended upon the nature of the solute: for a given difference in osmolality across the membrane, the rate increased with the molecular volume of the solute and reached its maximum with the solute to which the membrane was impermeable. These results led to the experimental demonstration that in the presence of two or more solutes of different molecular volumes, of which one at least can diffuse through the barrier, the net transfer of water can take place against its vapor pressure gradient. Some of the physicochemical and physiological implications of the data are discussed.

This content is only available as a PDF.