The inhibitory influences exerted mutually among the receptor units (ommatidia) of the lateral eye of Limulus are additive. If two groups of receptors are illuminated together the total inhibition they exert on a "test receptor" near them (decrease in the frequency of its nerve impulse discharge in response to light) depends on the combined inhibitory influences exerted by the two groups. If the two groups are widely separated in the eye, their total inhibitory effect on the test receptor equals the sum of the inhibitory effects they each produce separately. If they are close enough together to interact, their effect when acting together is usually less than the sum of their separate effects, since each group inhibits the activity of the other and hence reduces its inhibitory influence. However, the test receptor, or a small group illuminated with it, may interact with the two groups and affect the net inhibitory action. A variety of quantitative effects have been observed for different configurations of three such groups of receptors. The activity of a population of n interacting elements is described by a set of n simultaneous equations, linear in the frequencies of the receptor elements involved. Applied to three interacting receptors or receptor groups equations are derived that account quantitatively for the variety of effects observed in the various experimental configurations of retinal illumination used.

This content is only available as a PDF.