When cells of Halicystis are impaled on a capillary so that space is provided into which the sap can migrate, the rate of entrance of water and of electrolyte is increased about 10-fold. In impaled Valonia cells the rate is increased about 15-fold.

After a relatively rapid non-linear rate of increase of sap volume immediately after impalement (which may possibly represent the partial dissipation of the difference of the osmotic energy between intact and impaled cells) the volume increases at a linear rate, apparently indefinitely.

Since the halide concentration of the sap at the end of the experiment is (within the limits of natural variation) the same as in the intact cell, we conclude that electrolyte also enters the sap about 10 times as fast as in the intact cell.

As in the case of Valonia we conclude that there is a mechanism whereby in the intact cell the osmotic concentration of the sap is prevented from greatly exceeding that of the sea water. This may be associated with the state of hydration of the non-aqueous protoplasmic surfaces.

This content is only available as a PDF.