Skip to Main Content
Skip Nav Destination

The effects of organic quaternary amines, tetraethylammonium (TEA) chloride and benzyltriethylammonium (BTEA) chloride, on Na,K pump current were examined in rat cardiac myocytes superfused in extracellular Na+-free solutions and whole-cell voltage-clamped with patch electrodes containing a high Na+-salt solution. Extracellular application of these quaternary amines competitively inhibited extracellular K+ (K+o) activation of Na,K pump current; however, the concentration for half maximal inhibition of Na,K pump current at 0 mV (K0Q) by BTEA, 4.0 ± 0.3 mM, was much lower than the K0Q for TEA, 26.6 ± 0.7 mM. Even so, the fraction of the membrane electric field dissipated during K+o activation of Na,K pump current (λK), 39 ± 1%, was similar to λK determined in the presence of TEA (37 ± 2%) and BTEA (35 ± 2%), an indication that the membrane potential (VM) dependence for K+o activation of the Na,K pump current was unaffected by TEA and BTEA. TEA was found to inhibit the Na,K pump current in a VM-independent manner, i.e., inhibition of current dissipated 4 ± 2% of the membrane electric field. In contrast, BTEA dissipated 40 ± 5% of the membrane electric field during inhibition of Na,K pump current. Thus, BTEA inhibition of the Na,K-ATPase is VM-dependent. The competitive nature of inhibition as well as the similar fractions of the membrane electric field dissipated during K+o-dependent activation and BTEA-dependent inhibition of Na,K pump current suggest that BTEA inhibits the Na,K-ATPase at or very near the enzyme's K+o binding site(s) located in the membrane electric field. Given previous findings that organic quaternary amines are not occluded by the Na,K-ATPase, these data clearly demonstrate that an ion channel–like structure provides access to K+o binding sites in the enzyme.

You do not currently have access to this content.
Don't already have an account? Register

or Create an Account

Close Modal
Close Modal