The properties of the tail current associated with the delayed rectifier K+ current (IK) in isolated rat pulmonary artery smooth muscle cells were examined using the whole cell patch clamp technique. The tail currents observed upon repolarization to -60 mV after brief (e.g., 20 ms) or small (i.e. to potentials negative of 0 mV) depolarizations were outwardly directed, as expected given the calculated K+ reversal potential of -83 mV. The tail currents seen upon repolarization after longer (e.g., 500 ms) and larger (e.g., to +60 mV) depolarizations tended to be inwardly directed. Depolarizations of intermediate strength and/or duration were followed by biphasic tail currents, which were inwardly directed immediately upon repolarization, but changed direction and became outwardly directed before deactivation was complete. When cells were depolarized to +60 mV for 500 ms both IK and the subsequent inward tail current at -60 mV were similarly blocked by phencyclidine. Both IK and the inward tail current were also blocked by 4-aminopyridine. Application of progressively more depolarized 30 s preconditioning potentials inactivated IK, and reduced the inward tail current amplitude with a similar potential dependency. These results indicated that the inward tail current was mediated by IK. The reversal potential of the tail current became progressively more positive with longer depolarizations to +60 mV, shifting from -76.1 +/- 2.2 mV (n = 10) after a 20-ms step to -57.7 +/- 3.5 mV (n = 9) after a 500-ms step. Similar effects occurred when extracellular K+ and Na+ were replaced by choline. When extracellular K+ was raised to 50 mM, the tail current was always inwardly directed at -60 mV, but showed little change in amplitude as the duration of depolarization was increased. These observations are best explained if the dependencies of tail current direction and kinetics upon the duration of the preceding depolarization result from an accumulation of K+ at the external face of the membrane, possibly in membrane invaginations. A mathematical model which simulates the reversal potential shift and the biphasic kinetics of the tail current on this basis is presented.

This content is only available as a PDF.