Odors are transduced by processes that modulate the membrane conductance of olfactory receptor neurons. Olfactory neurons from the aquatic salamander, Necturus maculosus, were acutely isolated without enzymes and studied with a resistive whole-cell method to minimize loss of soluble intracellular constituents. 55 of 224 neurons responded to the test compound taurine at concentrations between 10 nM and 100 microM. Four different conductance changes were elicited by taurine: an increased Cl- conductance (33%), an increased nonselective cation conductance (15%), a decreased Cl- conductance (15%), and a decreased K+ conductance (15%); in addition, responses too small to be characterized were elicited in some neurons. In most cases, taurine appeared to modulate only a single conductance in any particular cell. Modulation of each conductance was dose dependent, and each response ran down quickly in the normal whole-cell mode, presumably due to washout of a diffusible component in the transduction pathway. Modulation of taurine-sensitive conductances caused either inhibitory or excitatory responses. A similar diversity of responses in vivo would produce a complex pattern of electrical activity that could encode the identity and characteristics of an odor.

This content is only available as a PDF.