The electrical and spectral properties of depolarizing (proximal) and hyperpolarizing (distal) photoreceptors in the eye of the scallop, Pecten irradians, were examined. Both depolarizing and hyperpolarizing responses are associated with an increase in membrane conductance; in addition, the depolarizing response is characterized by a secondary decrease in conductance at light intensities which inactivate the response. Both responses can be reversed in polarity by applied current across the cell membrane. The depolarizing response has a reversal potential of approximately +10 mv, whereas the estimated reversal potential for the hyperpolarizing response is near -70 mv. The two responses have the same spectral sensitivity function, which agrees with a Dartnall nomogram for a rhodospin with a λmax at 500 nm. It is suggested that the photochemical reactions produce different end products which give responses of opposite polarity in proximal and distal cells, or alternatively, that the reactions of the respective cell membranes to the same end product are different.

This content is only available as a PDF.