The site 3 toxin, Anthopleurin-A (Ap-A), was used to modify inactivation of sodium channels in voltage-clamped single canine cardiac Purkinje cells at approximately 12 degrees C. Although Ap-A toxin markedly prolonged decay of sodium current (INa) in response to step depolarizations, there was only a minor hyperpolarizing shift by 2.5 +/- 1.7 mV (n = 13) of the half-point of the peak conductance-voltage relationship with a slight steepening of the relationship from -8.2 +/- 0.8 mV to -7.2 +/- 0.8 mV (n = 13). Increases in Gmax were dependent on the choice of cation used as a Na substitute intracellularly and ranged between 26 +/- 15% (Cs, n = 5) to 77 +/- 19% (TMA, n = 8). Associated with Ap-A toxin modification time to peak INa occurred later, but analysis of the time course INa at multiple potentials showed that the largest effects were on inactivation with only a small effect on activation. Consistent with little change in Na channel activation by Ap-A toxin, INa tail current relaxations at very negative potentials, where the dominant process of current relaxation is deactivation, were similar in control and after toxin modification. The time course of the development of inactivation after Ap-A toxin modification was dramatically prolonged at positive potentials where Na channels open. However, it was not prolonged after Ap-A toxin at negative potentials, where channels predominately inactivate directly from closed states. Steady state voltage-dependent availability (h infinity or steady state inactivation), which predominately reflects the voltage dependence of closed-closed transitions equilibrating with closed-inactivated transitions was shifted in the depolarizing direction by only 1.9 +/- 0.8 mV (n = 8) after toxin modification. The slope factor changed from 7.2 +/- 0.8 to 9.9 +/- 0.9 mV (n = 8), consistent with a prolongation of inactivation from the open state of Ap-A toxin modified channels at more depolarized potentials. We conclude that Ap-A selectively modifies Na channel inactivation from the open state with little effect on channel activation or on inactivation from closed state(s).

This content is only available as a PDF.