We have proposed that the gap junctions between amphibian blastomeres are comprised of voltage-sensitive channels. The kinetic properties of the junctional conductance are here studied under voltage clamp. When the transjunctional voltage is stepped to a new voltage of the same polarity, the junctional conductance changes as a single exponential to a steady-state level. The time constant of the conductance change is determined by the existing transjunctional voltage and is independent of the previous voltage. For each voltage polarity, the relations between voltage, time constant, and steady-state conductance are well modeled by a reversible two-state reaction scheme in which the calculated rate constants for the transitions between the states are exponential functions of voltage. The calculated rate constant for the transition to the low-conductance state is approximately twice as voltage dependent as that for the transition to the high-conductance state. When the transjunctional voltage polarity is reversed, the junctional conductance undergoes a transient recovery. The polarity reversal data are well modeled by a reaction scheme in which the junctional channel has two gates, each with opposite voltage sensitivity, and in which an open gate may close only if the gate in series with it is open. A simple explanation for this contingent gating is a mechanism in which each gate senses only the local voltage drop within the channel.
Skip Nav Destination
Article navigation
1 January 1981
Article|
January 01 1981
Kinetic properties of a voltage-dependent junctional conductance.
A L Harris
,
D C Spray
,
M V Bennett
Online ISSN: 1540-7748
Print ISSN: 0022-1295
J Gen Physiol (1981) 77 (1): 95–117.
Citation
A L Harris, D C Spray, M V Bennett; Kinetic properties of a voltage-dependent junctional conductance.. J Gen Physiol 1 January 1981; 77 (1): 95–117. doi: https://doi.org/10.1085/jgp.77.1.95
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Sign in via your Institution
Sign in via your InstitutionSuggested Content
Equilibrium properties of a voltage-dependent junctional conductance.
J Gen Physiol (January,1981)
Stoichiometry of Transjunctional Voltage–Gating Polarity Reversal by a Negative Charge Substitution in the Amino Terminus of a Connexin32 Chimera
J Gen Physiol (July,2000)
Effect of Membrane Tension on Gap Junctional Conductance of Supporting Cells in Corti's Organ
J Gen Physiol (October,1998)
Email alerts
Advertisement