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abstract

 

Rectification of macroscopic current through inward-rectifier K

 

�

 

 (Kir) channels reflects strong volt-
age dependence of channel block by intracellular cations such as polyamines. The voltage dependence results pri-
marily from the movement of K

 

�

 

 ions across the transmembrane electric field, which accompanies the binding–
unbinding of a blocker. Residues D172, E224, and E299 in IRK1 are critical for high-affinity binding of blockers.
D172 appears to be located somewhat internal to the narrow K

 

�

 

 selectivity filter, whereas E224 and E299 form a
ring at a more intracellular site. Using a series of alkyl-bis-amines of varying length as calibration, we investigated
how the acidic residues in IRK1 interact with amine groups in the natural polyamines (putrescine, spermidine,
and spermine) that cause rectification in cells. To block the pore, the leading amine of bis-amines of increasing
length penetrates ever deeper into the pore toward D172, while the trailing amine in every bis-amine binds near a
more intracellular site and interacts with E224 and E299. The leading amine in nonamethylene-bis-amine (bis-C9)
makes the closest approach to D172, displacing the maximal number of K

 

�

 

 ions and exhibiting the strongest volt-
age dependence. Cells do not synthesize bis-amines longer than putrescine (bis-C4) but generate the polyamines
spermidine and spermine by attaching an amino-propyl group to one or both ends of putrescine. Voltage depen-
dence of channel block by the tetra-amine spermine is comparable to that of block by the bis-amines bis-C9
(shorter) or bis-C12 (equally long), but spermine binds to IRK1 with much higher affinity than either bis-amine
does. Thus, counterintuitively, the multiple amines in spermine primarily confer the high affinity but not the
strong voltage dependence of channel block. Tetravalent spermine achieves a stronger interaction with the pore
by effectively behaving like a pair of tethered divalent cations, two amine groups in its leading half interacting pri-
marily with D172, whereas the other two in the trailing half interact primarily with E224 and E299. Thus, nature
has optimized not only the blocker but also, in a complementary manner, the channel for producing rapid, high-
affinity, and strongly voltage-dependent channel block, giving rise to exceedingly sharp rectification.
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I N T R O D U C T I O N

 

Inward-rectifier K

 

�

 

 (Kir) channels conduct much larger

 

inward K

 

�

 

 currents at membrane voltages (V

 

m

 

)
negative to the K

 

�

 

 equilibrium potential (E

 

K

 

) than out-
ward currents at V

 

m

 

 positive to E

 

K

 

, even when K

 

�

 

 con-
centrations on both sides of the membrane are made
equal (Katz, 1949; Hodgkin and Horowicz, 1959; No-
ble, 1962, 1965; Hagiwara and Takahashi, 1974; Hagi-
wara et al., 1976). This unusual conduction property,
referred to as anomalous or inward rectification, un-
derlies the ability of Kir to accomplish many important
biological tasks.

The first clue to the functions of inwardly rectifying
K

 

�

 

 currents came from the studies by Noble (1962,
1965) of cardiac Purkinje fibers, where he hypoth-
esized that potassium conductance decreases upon
membrane depolarization and thus helps produce the
long plateau phase in the action potential, and then in-

creases during membrane repolarization, accelerating
the descending phase. On the other hand, the first clue
to a possible mechanism came from the work of Arm-
strong and Binstock (1965), who showed that intracel-
lular TEA blocks voltage-activated K

 

�

 

 channels of squid
axon in a voltage-dependent manner, rendering them
inwardly rectifying.

Two decades later, Mg

 

2

 

�

 

 was identified as an endoge-
nous voltage-dependent channel blocker causing inward
rectification (Matsuda et al., 1987; Vandenberg, 1987).
However, voltage dependence of Mg

 

2

 

�

 

 (or TEA) block is
too weak to account for the sharp inward rectification
observed in many cell types. Moreover, significant in-
ward rectification persisted in the nominal absence of
Mg

 

2

 

�

 

. Therefore, the possibility remained that inward
rectification results from intrinsic channel gating (e.g.,
Kurachi, 1985; Ishihara et al., 1989; Silver and DeCour-
sey, 1990; Stanfield et al., 1994a). There was little
progress in the search for additional causes of recti-
fication until the intracellular polyamines putrescine
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(PUT), spermidine (SPD), and spermine (SPM) (see
Fig. 18 A for structures) were found to block the chan-
nels in a strongly voltage-dependent manner (Ficker et
al., 1994; Lopatin et al., 1994; Fakler et al., 1995). The
apparent valences of steady-state channel block by sper-
midine and spermine are approximately five (Guo and
Lu, 2000b,c), sufficiently large to account for the sharp
rectification observed in cells. Lowering the concentra-
tion of intracellular polyamines reduces the extent of
rectification (Bianchi et al., 1996; Shyng et al., 1996; Lo-
patin et al., 2000). Furthermore, in the absence of intra-
cellular blockers, the steady-state macroscopic I-V curve
of wild-type IRK1 channels is practically linear (Guo and
Lu, 2000c, 2002). Together, these findings indicate that
inward rectification in IRK1 channels indeed reflects the
strong voltage dependence of channel block.

Cloning of Kir channels enabled their molecular
characterization (Ho et al., 1993; Kubo et al., 1993).
For high-affinity binding of cationic blockers, an acidic
residue (e.g., D172 in IRK1) within the second trans-
membrane (M2) segment of Kir channels is crucial (Lu
and MacKinnon, 1994; Stanfield et al., 1994b; Wible et
al., 1994). In ROMK1 (Kir1.1), an acidic residue substi-
tuted at the corresponding position (171) in M2 con-
fers a much higher affinity for blocking ions, while a ba-
sic residue renders the channel essentially insensitive.
On the basis of these findings, it was proposed that
residue 171 affects the binding of blocking ions
through an electrostatic mechanism (Lu and MacKin-
non, 1994), a proposal further supported by the fact
that the presence of Asp at any of a number of sites in
M2 enhances rectification (Guo et al., 2003). Addition-

Figure 1. Effects of single
mutations within M2 or the
COOH terminus on current
inhibition by polyamines.
Shown are currents of wild-
type and mutant channels
containing a single mutation,
D172N, E224G, or E299S, re-
corded from various patches
in the absence (control) or
presence of PUT, SPD, or
SPM at concentrations indi-
cated, and with the voltage
protocol shown at the top.
Dashed lines identify zero
current levels.
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ally, substituting a neutral residue for certain acidic res-
idues (E224 and E299) in the COOH terminus of IRK1
(Kir2.1) has been shown to affect channel block by in-
tracellular blockers (Taglialatela et al., 1994, 1995; Yang
et al., 1995; Kubo and Murata, 2001), which suggests
that the COOH terminus extends the pore intracellu-
larly beyond what is formed by M2.

Determination of atomic structures of various K

 

�

 

channels dramatically advanced our understanding of
their structure-function relationship. Studies on the
KcsA pore show how the K

 

�

 

 selectivity filter (

 

�

 

12 Å
long) is formed by the signature sequence within the re-
gion between M1 and M2, while the remaining, internal
part of the pore (

 

�

 

20 Å) is lined by M2, and also how
the structure gives rise to K

 

�

 

 conduction (Doyle et al.,
1998; Morais-Cabral et al., 2001; Zhou et al., 2001). Stud-
ies on the cytoplasmic termini of GIRK1 (Kir3.1) show
how they form a structure extending the pore intracel-
lularly by at least another 

 

�

 

30 Å beyond what is formed
by M2 (Nishida and MacKinnon, 2002). The middle
part of the pore extension is wide while both ends are
relatively narrow, ranging from 7 to 15 Å. This inner
pore extension is thus sufficiently wide to accommo-
date hydrated K

 

�

 

 ions, although their presence there,
or that of any blocking ions, remains to be demon-
strated. Furthermore, the structure of a bacterial Kir
(KirBac1.1) shows that the length of the entire channel
pore is 

 

�

 

90 Å, and reveals how the two parts of the in-
ner pore, formed by M2 and the COOH terminus, are
connected (Kuo et al., 2003). The residue correspond-
ing to D172 in IRK1 is located somewhat internal to the
K

 

�

 

 selectivity filter, while those corresponding to E224

and E299 in IRK1 form a ring in the inner pore exten-
sion (Nishida and MacKinnon, 2002; Kuo et al., 2003).
Based on the structure of KirBac1.1, the distance be-
tween the acidic residues in M2 and those in the
COOH terminus of IRK1 is 

 

�

 

35 Å (Kuo et al., 2003),
significantly greater than the length of a natural
polyamine molecule (

 

�

 

20 Å).
A systematic functional study of the interaction energy

between a series of alkyl-bis-amines (bis-amines) of vary-
ing length and D172 in M2 or E224 and E299 in the
COOH terminus of IRK1 shows that, while the leading
amine group extends further outward toward D172 as
alkyl chain length is increased, the trailing amine group
in all bis-amines binds near the same intracellular site in-
dependent of chain length (Guo et al., 2003). The lead-
ing amine group in nonamethylene-bis-amine (bis-C9)
comes closest to D172, with 

 

�

 

2 kcal/mol interaction
energy. On the other hand, the interaction energy is
more modest (

 

�

 

1 kcal/mol) between the trailing amine
group and E224/E299 located more intracellularly,
consistent with the latter interaction occurring over a
greater distance. The apparent voltage dependence of
channel block reflects primarily the movement of K

 

�

 

ions, not of blockers, across the transmembrane electric
field, because the degree of voltage dependence corre-
lates not with the number of positive charges carried by
amine blockers but with their length. That is, the appar-
ent valence of channel block by alkyl-mono-amines
(mono-amines) or bis-amines that carry maximally one
or two charges increases to four to five with increasing
blocker length. These studies form a basis for addressing
the critical issue of how the acidic residues in the chan-

Figure 2. Polyamine inhibi-
tion of currents of IRK1 with
a double mutation in the
COOH terminus. Shown are
currents of mutant channels
containing the double muta-
tion E224G�E299S recorded
from various patches in the
absence (control) or pres-
ence of 0.3 mM PUT, SPD, or
SPM. Dashed lines identify
zero current levels.
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nel interact with the individual amine groups in the
three natural polyamines PUT, SPD, and SPM.

 

M A T E R I A L S  A N D  M E T H O D S

 

Molecular Biology and Oocyte Preparation

 

The cDNA of IRK1 (Kubo et al., 1993) was subcloned in pGEM-
HESS plasmid (Liman et al., 1992). All mutant cDNAs were ob-
tained through PCR-based mutagenesis and confirmed by DNA se-
quencing. The cRNAs were synthesized with T7 polymerase
(Promega Corp.) using linearized cDNAs as templates. Oocytes
harvested from 

 

Xenopus laevis

 

 (

 

Xenopus

 

 One) were incubated in a
solution containing NaCl, 82.5 mM; KCl, 2.5 mM; MgCl

 

2

 

, 1.0 mM;
HEPES (pH 7.6), 5.0 mM; and collagenase, 2–4 mg/ml. The oo-
cyte preparation was agitated at 80 rpm for 60–90 min. It was then
rinsed thoroughly and stored in a solution containing NaCl, 96
mM; KCl, 2.5 mM; CaCl

 

2

 

, 1.8 mM; MgCl

 

2

 

, 1.0 mM; HEPES (pH
7.6), 5 mM and gentamicin, 50 

 

�

 

g/ml. Defolliculated oocytes were
selected and injected with RNA at least 2 and 16 h, respectively, af-
ter collagenase treatment. All oocytes were stored at 18

 

�

 

C.

 

Recordings and Solutions

 

Macroscopic currents were recorded from inside-out membrane
patches of 

 

Xenopus

 

 oocytes heterologously expressing either wild-

 

type or mutant IRK1 channels using an Axopatch 200B amplifier
(Axon Instruments, Inc.), filtered at 5 kHz, and sampled at 25 kHz
using an analogue-to-digital converter (Digidata 1322A; Axon In-
struments, Inc.) interfaced with a personal computer. pClamp8
software was used to control the amplifier and acquire the data.
During current recording, the voltage across the membrane patch
was first hyperpolarized from the 0 mV holding potential to 

 

�

 

100
mV, and then stepped to various test voltages between 

 

�

 

100 and
100 mV and back to 0 mV. Background leak current correction was
performed as previously described (Lu and MacKinnon, 1994;
Guo and Lu, 2000c). The intracellular solution contained (mM): 5
K

 

2

 

EDTA, 10 “K

 

2

 

HPO

 

4

 

 

 

�

 

 KH

 

2

 

PO

 

4

 

” in a ratio yielding pH 8.0, and
sufficient KCl to bring total K

 

�

 

 concentration to 100 mM, whereas
in the extracellular solution 5 mM EDTA was replaced by 0.3 mM
CaCl

 

2

 

 and 1 mM MgCl

 

2

 

 (Guo and Lu, 2000c, 2002). All chemicals
were purchased from Fluka Chemical Corp.

 

R E S U L T S

 

Steady-state Block of Wild-type and Mutant Channels by 
Natural Polyamines

 

As discussed in 

 

introduction

 

, substitution of a neu-
tral residue for D172 in M2 and E224 or E299 in the
COOH terminus has been shown to affect channel

Figure 3. Effects of single mutations within M2 or the COOH terminus on the voltage-dependent block of IRK1 current by polyamines.
The fraction of wild-type and mutant channel currents (mean � SEM; n 	 4–6) not blocked by PUT, SPD, or SPM (at the concentrations
indicated) is plotted against membrane voltage. The curves fitted to the data are described in results.
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block by the polyamines PUT, SPD, and SPM. Here
we examine how the various amine groups in each
polyamine species interact with those acidic residues in
the channel pore. Fig. 1 shows current traces of wild-
type and three mutant IRK1 channels recorded in the
absence and presence of PUT, SPD, and SPM (for struc-
tures see Fig. 18 A). To a different extent, the three mu-
tations reduce channel affinity for polymines, but only
mutations E224G and E299S, not D172N, dramatically
reduce the rate of current inhibition. Current records
of channels with double mutation E224G

 

�

 

E299S are
shown in Fig. 2. Channels containing the double muta-
tion exhibit lower affinity for polyamines and a much
slower inhibition rate. Note that replacing either E224
or E299, or both, with neutral residues renders chan-
nels inwardly rectifying in the nominal absence of any
blockers (Figs. 1 and 2).

The fraction of current not blocked (I/I

 

o

 

) in wild-
type and mutant channels is plotted against membrane
voltage (V

 

m

 

) in Figs. 3 and 4 for three appropriately
chosen concentrations of each amine blocker. Since
PUT not only blocks the pore but also permeates with
finite probability, to determine the dissociation con-
stant (K

 

d

 

) and valence (Z) of PUT we fitted the block-
ing curve with Eq. 1 (rewritten from Eq. 2 of Guo and
Lu, 2000b),

(1)

where P is the probability of a bound blocker permeat-
ing the pore versus returning to the intracellular solu-
tion. Quantities F, R, and T have their usual meaning.
As to the blocking curves for SPD or SPM, they exhibit
two descending phases with an intervening hump. The
two blocking phases reflect channel block by fully
and partially protonated SPD or SPM (Guo and Lu,
2000a,b). In the present study, we mainly focus on ex-
amining quantitatively the behaviors of fully proto-
nated species. To determine both K

 

d

 

 and Z we fitted
the blocking curves for SPD and SPM with Eq. 2 (re-
written from Eq. 6 of Guo and Lu, 2000b),

(2)

where all quantities are as defined for Eq. 1; “*” identi-
fies those for the partially protonated state.

Fig. 5 summarizes K

 

d

 

 (0 mV) values for each poly-
amine in wild-type and various mutant channels and

I
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1
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RT
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ZpFVm
RT
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+
 
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I
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--- 1
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Kde
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+

--------------------------------------------------------------------------------------------------------------------------------------------------=

 

the associated valences (Z) obtained from the fits. Mu-
tation D172N reduces the channel affinity for PUT,
SPD, and SPM by 

 

�

 

2-, 45-, and 350-fold, respectively.
On the other hand, either E224G or E299S reduces the
channel affinity by about twofold for PUT and SPD but

 

�

 

20-fold for SPM. Generally, effects of the two COOH-
terminal mutations on amine block are comparable.
Substituting a neutral residue for the acidic residues
also reduces the apparent valence of channel block by
SPD and SPM (but not by PUT; see below). Double mu-

Figure 4. Effects of a double mutation (E224G�E299S) in the
COOH terminus on the voltage-dependent block of IRK1 current
by polyamines. The fraction of mutant channel currents (mean �
SEM; n 	 4–6) not blocked by PUT, SPD, or SPM (at the concen-
trations indicated) is plotted against membrane voltage. The
curves fitted to the data are described in results.
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tation E224G

 

�E299S lowers both the affinity and the
valence more than either single mutation alone, and
triple mutation D172N�E224G�E299S reduces them
further (data analysis for channels with the triple muta-
tion was as those with the double mutation).

Kinetics of Wild-type and Mutant Channel Block by Polyamines

Figs. 6–8 show a series of analyses through which we de-
termined the rate constants of channel block by SPD
and SPM summarized later in Fig. 9. Polyamines block
wild-type and mutant channels with different affinity,

voltage dependence, and kinetics. Consequently, to ob-
tain resolvable current transients we had to acquire the
data using voltage pulses of varying length and various
(appropriate) concentrations of blockers. These fac-
tors should be kept in mind when comparing the data
in Figs. 6 and 7 (also Figs. 13 and 14). For illustration,
we show single-exponential fits of current transients of
wild-type and three mutant channels elicited by mem-
brane depolarization from 0 to 70 mV in the presence
of SPM at three concentrations (Fig. 6; similar data and
fits were obtained with SPD, also from E224G�E299S

Figure 5. Summary of dissociation
constants and valences for channel
block by polyamines. Shown are values
of Kd(0 mV) (A) and Z (B) (mean �
SEM; n 	 4–6; determined from the fits
as shown in Figs. 3 and 4) for block of
wild-type and various mutant channels
by PUT, SPD, or SPM.

Figure 6. Kinetics of voltage jump–
induced current relaxations in the pres-
ence of spermine. Current traces of
wild-type and three mutant channels,
each at three appropriate concentra-
tions of SPM, elicited by stepping mem-
brane voltage from 0 to 70 mV. The
curves superimposed on the data are
single-exponential fits. Dashed lines
identify zero current levels.
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double mutant channels). The reciprocal of the time
constants from these fits is plotted in Fig. 7 against the
concentration of SPD or SPM. The slope of a linear fit
to the plots of Fig. 7 gives the rate constant of forma-
tion (kon) of the (first) blocked state; its natural loga-
rithm is plotted against membrane voltage in Fig. 8.
The lines through the plots in Fig. 8 are fits of Boltz-
mann functions, yielding kon(0 mV) and the associated
valence (zon), which, in turn, are summarized in Fig. 9.
The channels containing mutations E224G and/or
E299S display a dramatically reduced blocking rate
constant for both blockers. The values of zon for all
cases are �0.5. As discussed later, there most probably
exists more than one blocked state, and thus the inter-

pretation of the Y-intercept in Fig. 7 is not straightfor-
ward since it may not simply reflect the unblocking rate
constant. Extensive kinetic studies to determine the un-
blocking rate constant and any additional rate con-
stants for transitions between blocked states, and their
voltage dependence, are beyond the scope of this study.

Steady-state Block of Wild-type and Mutant Channels by a 
Series of Bis-alkyl-amines

We used a series of bis-amines of varying length to help
characterize the interactions between the acidic resi-

Figure 7. Polyamine concentration dependence of the time con-
stant of current transients induced by voltage steps. Reciprocals of
the time constants of current transients (mean � SEM; n 	 4–6;
obtained from fits such as those shown in Fig. 6) are plotted
against the concentration of SPD or SPM for wild-type and several
mutant channels. The lines through the data are linear fits. The
individual slopes reflect, in ascending order, the kinetics of cur-
rent transients elicited by stepping membrane voltage from 0 mV
to 70, 80, 90, or 100 mV.

Figure 8. Dependence of the rate constant of channel block on
membrane voltage. Natural logarithm of the rate constant for for-
mation of the (first) blocked state (kon; mean � SEM; n 	 4–6; de-
termined from the slopes of fits in Fig. 7) is plotted against mem-
brane voltage for wild-type and several mutant channels. The lines
through the data represent Boltzmann functions.
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dues in the channel and the amine groups in each nat-
ural polyamine species. To that end, we need to know
how bis-amines interact with not only D172 (Guo et al.,
2003), but also E224 and E299 individually, which for
the latter has not been available. For illustration, we
show current traces of wild-type and three mutant
channels recorded in the absence or presence of bis-C8
(Fig. 10). The fraction of current not blocked by bis-C8
at three appropriate concentrations is plotted against
membrane voltage (Fig. 11). The curves through the
data are fits performed as described above for the case
of PUT (bis-C4; see Fig. 3), which yield Kd(0 mV) and
Z. These two fitted parameters are summarized in Fig.
12, not only for bis-C8 but also for the other bis-amines
determined in a similar way. The effect of mutation
D172N on Kd varies with alkyl chain length, being larg-
est at an intermediate length corresponding to bis-C9,
whereas mutations E244G and E299S have compara-
tively modest, and comparable, effects on bis-amine af-
finity, independent of their length. As to the valence of
channel block, it increases with alkyl chain length in
both wild-type and all three single mutant channels in
increments of �1, although the mutations evidently de-
crease the maximal valence at long chain length. The
mutation-induced valence reduction most probably re-
flects lower occupancy of the inner pore by K� ions, al-
though occupancy of the innermost part of the pore
may be unaffected since the valence of shorter amines
is practically unchanged. However, the effect of multi-
ple mutations appears more far-reaching, as shown
with bis-C4 (PUT) in Fig. 5 B.

Kinetics of Wild-type and Mutant Channel Block
by Bis-alkyl-amines

Fig. 13 shows current transients in wild-type and three
mutant channels elicited by membrane depolarization

from 0 to 70 mV in the presence of bis-C8 at three ap-
propriate concentrations. The curves superimposed on
the traces are single-exponential fits. The reciprocal of
the time constants from these fits is plotted in Fig. 14
against the concentration of bis-C8. The slope of a lin-
ear fit to the plots of Fig. 14 gives kon; its natural loga-
rithm is plotted against membrane voltage in Fig. 15.
The lines through the plots in Fig. 15 are fits of Boltz-
mann functions, yielding kon(0 mV) and the associated
valence (zon). Similar data and fits were obtained with
additional four bis-amines of varying lengths whose
blocking kinetics, over practical ranges of membrane
voltage and blocker concentration, is sufficiently slow
to permit quantitative analysis. Values of kon(0 mV) and
zon for all five bis-amines are summarized in Fig. 16. As
in the case of polyamine block, mutations E224G and
E299S, unlike D172, dramatically lower kon(0 mV) of
bis-amines, while zon is generally �0.5 for block by bis-
amines of both the wild-type and the three mutant
channels.

Thermodynamic Cycle Analysis

We examined interaction energetics of each of three
natural polyamines (PUT, SPD, and SPM) with each of
the three acidic residues (D172, E224, and E299) in the
channel, with respect to each of the eight bis-amines of
varying length described above. To do so, we computed
the energetic coupling coefficient, 
 (Hidalgo and
MacKinnon, 1995), using Kds (0 mV) of the wild-type
and a mutant channel for a polyamine (PM) and for
a given bis-amine (Cn) [
 	 (wtKd

PM � mtKd
bis-Cn)/

(mtKd
PM � wtKd

bis-Cn)]. The results are presented in terms
of “RT ln 
”, i.e., the free energy difference between the
interaction of a given natural amine blocker with a par-
ticular channel residue and the interaction of a given
bis-amine with that same residue. For presentation pur-

Figure 9. Summary of rate
constants and valences of
channel block by spermidine
and spermine. A and B show,
respectively, values of kon(0
mV) and zon (mean � SEM;
n 	 4–6; determined from fits
such as those shown in Fig. 8)
for block of wild-type and sev-
eral mutant channels.
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poses, we will refer to quantity “RT ln 
” as the interac-
tion energy, whose value is negative, zero, or positive,
depending on whether the natural amine interacts with
a given residue more, equally, or less strongly than the
comparison bis-amine. Fig. 17 A shows the interaction
energy for PUT relative to the eight bis-amines. When
tested against D172N, the energy value rises from near
zero to 1.5 kcal/mol at bis-C9 and then falls with fur-
ther lengthening bis-amine chain. Its generally positive
values indicate that PUT interacts less strongly with
D172 than longer bis-amines. In contrast, when tested
against E224G or E299S, the energy value is near zero
relative to all bis-amines, which indicates that PUT and
all bis-amines behave almost equally in their interac-
tion with either residue. As to the interaction energy of
SPD relative to bis-amines, when tested against D172N,
the energy value increases with increasing alkyl chain
length from negative to near zero for bis-C9, and then

decreases again at greater lengths (Fig. 17 B). This re-
sult indicates that SPD and bis-C9 have comparable en-
ergetic interactions with D172. As expected, when
tested against E224G or E299S, the energy value is
around zero independent of alkyl chain length, sug-
gesting that SPD and the tested bis-amines have compa-
rable energetic interactions with E224 or S299. Finally,
we computed the interaction energy for SPM relative to
bis-amines (Fig. 17 C). When tested against D172N, all
energy values are negative, indicating that SPM inter-
acts more strongly with D172 than any of the tested bis-
amines does. The value relative to bis-C4 is �2.8 kcal/
mol, giving a lower limit for the interaction energy be-
tween D172 and SPM (considering there is finite inter-
action energy between D172 and bis-C4). On the other
hand, the peak value (�1.3 kcal/mole) at bis-C9 repre-
sents the difference in interaction energy between
D172 with SPM and D172 with bis-C9 whose leading

Figure 10. Effects of mutations on
current inhibition by octamethylene-
bis-amine. Shown are currents of wild-
type and mutant channels containing a
single mutation D172N, E224G, or
E299S recorded in the absence (con-
trol) or presence of bis-C8 at the con-
centrations indicated. Dashed lines
identify zero current levels.
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amine is closest to D172. Surprisingly, when tested
against E224G or E299S, the values are also negative,
instead of around zero, with respect to all bis-amines,
indicating that SPM also interacts more strongly with
E224 or E299 than any of the bis-amines.

D I S C U S S I O N

As in other K� channels, the external, narrow, and K�-
selective part of the ion conduction pore in Kir is
formed by the signature sequence between M1 and M2,
and a wider part immediately internal to it is lined by
M2, which is further extended intracellularly by a struc-
ture formed by the COOH terminus (Nishida and
MacKinnon, 2002; Kuo et al., 2003). Exposing the intra-

cellular end of the pore to long organic amines causes
channel block. In the case of block by alkyl-bis-amines,
the trailing amine group of the blocker binds at a more
internal site, while the leading one penetrates deeper
into the pore toward the ion selectivity filter. This con-
clusion is based on how interaction energy between cer-
tain acidic residues in IRK1 and bis-amine blockers var-
ies with the latter’s length (Guo et al., 2003). The inter-
action energy between D172 and bis-amines of varying
length remains minimal for chain lengths up to C6, but
rises with further lengthening to a peak at bis-C9, fol-
lowed by a decrease. These findings are consistent with
the view that the leading amine of bis-C9 approaches
D172 most closely, while that of bis-C8 or bis-C10 falls
slightly short of, or possibly overshoots, D172 (addition-

Figure 11. Effects of mutations on
voltage-dependent block of IRK1 cur-
rent by octomethylene-bis-amine. The
fraction of wild-type and mutant chan-
nel currents (mean � SEM; n 	 4–6)
not blocked by bis-C8 (at the concentra-
tions indicated) is plotted against mem-
brane voltage. The curves superim-
posed on the data are fits as described
for the case of PUT in results.

Figure 12. Summary of dissociation
constants and valences for steady-
state channel block by alkyl-bis-amines.
Shown in A and B are values of Kd(0
mV) and Z, respectively (mean � SEM;
n 	 4–6; determined from fits as shown
in Fig. 11), for block of wild-type and
three single mutant channels by a series
of bis-amines of varying chain length.
Bis-C11 is not available commercially.
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ally or alternatively, the drop-off in the “RT ln 
” value
may reflect buckling of the alkyl chain). Thus, with in-
creasing chain length, the leading amine of bis-amines
reaches further in the outward direction and encoun-
ters an increasing electrostatic potential from D172,
whereas the trailing amine remains near the same more
internal site and encounters little potential from D172.
Supporting the latter conclusion, short and long bis-
amines interact equally with the more internally located
E224 and E299 residues.

The distance between the residues in the closed-state

structure of KirBac1.1 that correspond to D172 and
E224/E299 in IRK1, is �35 Å (Kuo et al., 2003), far
greater than the length of bis-C9. If this distance per-
sists in the open state of IRK1, the trailing amine must
interact with E224 and E299 over a significant distance,
since the leading amine group in bis-C9 is located near
the plane of D172. Consistent with this, replacing both
residues with neutral ones has only a modest energetic
effect on the binding of bis-amines (�0.7 kcal/mol at 0
mV), whereas it dramatically reduces the rate constant
of channel block and renders the I-V curve inwardly

Figure 13. Kinetics of voltage jump–
induced current relaxations in the pres-
ence of octamethylene-bis-amine. Cur-
rent traces of wild-type and three mu-
tant channels at three concentrations of
bis-C8 elicited by stepping membrane
voltage from 0 to 70 mV. The curves su-
perimposed on the data are single-
exponential fits. Dashed lines identify
zero current levels.

Figure 14. Octamethylene-bis-amine
concentration dependence of the time
constant of current transients induced
by voltage steps. Reciprocals of the
time constants of current transients
(mean � SEM; n 	 4–6; obtained from
fits such as those shown in Fig. 13) are
plotted against the concentration of
bis-C8 for wild-type and three mutant
channels. The lines through the data
are linear fits. The individual slopes re-
flect, in ascending order, the kinetics of
current transients elicited by stepping
membrane voltage from 0 to 70, 80, 90,
or 100 mV.
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rectifying even in the absence of blockers (Guo et al.,
2003). In contrast, the electrostatic effect of D172 on
the binding of cationic blockers appears more localized
(Guo et al., 2003). First, although an acidic residue sub-
stituted at various sites in M2 is effective, the substitu-
tion must be made within a small region. Second, sub-
stituting a neutral residue for D172 neither reduces the
apparent rate constant of channel block nor renders
the I-V curve inwardly rectifying in the absence of
blockers (Guo and Lu, 2002). Third, the interaction
energy between D172 and the leading amine group in
bis-amines increases steeply (�1.5 kcal/mole) when
the alkyl chain is lengthened by only three additional

methylene groups (see also Fig. 17). The extent of elec-
trostatic energy change with distance is consistent with
the case where the dielectric constant for the region
around D172 is lower than that for the bulk solution.

The apparent voltage dependence of steady-state
block of Kir channels primarily results from the blocker
displacement of K� ions across the transmembrane
electric field along the pore (Spassova and Lu, 1998,
1999; Guo et al., 2003). With increasing chain length,
more K� ions are displaced, producing stronger voltage
dependence of the apparent affinity with a valence up
to approximately five (Guo et al., 2003; Figs. 5 B and 12
B). However, the valence associated with the rate con-

Figure 15. Dependence of the rate
constant of channel block by octameth-
ylene-bis-amine on membrane voltage.
Natural logarithm of the rate constant
for formation of the (first) blocked
state (kon; mean � SEM; n 	 4–6; deter-
mined from the slopes of fits in Fig. 14)
is plotted against membrane voltage for
wild-type and three mutant channels.
The lines through the data represent
Boltzmann functions.

Figure 16. Summary of rate constants
and valences of channel block by alkyl-
bis-amines. Values of kon(0 mV) and zon

(mean � SEM; n 	 4–6; determined
from fits such as those shown for bis-C8
in Fig. 15) for block of wild-type and
three mutant channels are plotted in A
and B, respectively.
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stant of current inhibition is �1 for all examined
amine blockers in both wild-type and mutant channels
(Guo et al., 2003; Figs. 9 B and 16 B). These observa-
tions indicate that the ion conduction pore becomes
nonconductive (i.e., is “blocked’) as soon as an amine
blocker approaches the innermost K� ion, before
reaching its final destination. Thus, there must be two
(or more) blocked states (Fig. 18 C).

Knowing how bis-amines interact energetically with
the channel helps in understanding the interaction
mechanism in the case of natural polyamines. The
comparison is in fact directly applicable to PUT, which
itself is bis-C4. Since the leading amine group of PUT is
energetically less coupled to D172 than that of longer
bis-amines, the interaction energy between D172 and
PUT (relative to the other bis-amines) is �0. With in-
creasing length of the comparison bis-amine, the en-
ergy increases from near zero to a peak of �1.5 kcal/
mol at bis-C9 and then decreases with further lengthen-
ing. In contrast, since the trailing amine group in all
amine blockers binds near the same internal site, the
energy for interacting with the more internally located
E224 and E299 residues is uniformly near zero, inde-
pendent of the comparison bis-amine’s length.

To acquire stronger voltage dependence by displac-
ing more K� ions, a blocker needs to be lengthened to
at least the size of bis-C8. Cells evidently do not synthe-
size bis-C8 simply by extending PUT’s methylene chain,
but instead generate SPD by attaching an amino-propyl
group to PUT. SPD has essentially the same length as
bis-C8, but carries an extra amine group in the middle,
with noticeable energetic consequences. Since SPD
interacts more strongly with D172 than shorter bis-
amines, the interaction energy between D172 and
SPD (relative to bis-amines) increases with alkyl chain

length from negative to near zero at bis-C9, and then
decreases as chain length is increased further (Fig. 17
B). The fact that the energy value reaches zero at bis-
C9, which is longer, and not at bis-C8, which has the
same length as SPD, suggests that besides the leading
amine, the middle amine also interacts with D172. This
additional interaction raises the total interaction en-
ergy of SPD with D172 to that of bis-C9, even though
the leading amine in SPD may not approach D172
quite as closely as that in Bis-C9 (Fig. 18 B). The trail-
ing amine in SPD still appears located near the same
site as those in bis-amines, since the interaction energy
between E224 or E299 and SPD (relative to bis-amines)
remains near zero. One reason why the middle amine
exhibits significant interactions with D172, but not with
E224 or E299 may be that the latter are further away
from the middle amine group, and possibly located in a
higher dielectric environment more similar to that of
the bulk solution.

The pKa of one of the amine groups in SPD is re-
duced from �11 to �8, due to electrostatic repulsion
between positively charged amine groups (Palmer and
Powell, 1974). The perturbation most probably occurs
at the middle amine. Previously, we found that deproto-
nation of the low-pKa amine group reduces the affinity
of SPD (Guo and Lu, 2000b). A plot of wild-type chan-
nel current not blocked versus membrane voltage in
the presence of a mixture of fully and partially proto-
nated SPD exhibits two descending phases with an in-
tervening hump (Fig. 3). Since the middle amine in
SPD interacts with D172 in the channel, mutation
D172N that disrupts this interaction should make chan-
nel block by fully and partially protonated SPD indistin-
guishable, i.e., it should eliminate the multiple phases
in the blocking curve. Furthermore, the blocking curve

Figure 17. Thermodynamic
cycle analyses. The four cor-
ners are Kds (0 mV) of the
wild-type and a mutant chan-
nel for a polyamine (PM)
and for a bis-amine (bis-Cn).

 	 (wtKd

PM � mtKd
bis-Cn)/

(mtKd
PM � wtKd

bis-Cn), where
Kds (all at 0 mV) are taken
from Figs. 5 A and 12 A. The
results are plotted as “RT ln

”. Shown in A, B, or C are
“RT ln 
” values computed
for PUT, SPD, or SPM, with
respect to a series of bis-
amines of varying length.
Each panel shows values com-
puted for each of the three
mutant channels (D172N,
E224G, and E229S).
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for bis-C8, which lacks a middle amine group, should
not be multiphasic. Both expectations are verified
(Figs. 3 and 11).

SPD, as well as bis-C8 and bis-C9, while sufficiently
long to displace the maximal number of K� ions and
hence exhibit maximal voltage dependence, all bind
to the pore with significantly lower affinity than the
longer bis-C12 (Figs. 5 A and 12 A). Bis-C12’s leading
amine may extend outwardly beyond D172, and thus
interact electrostatically with it less strongly than that of
shorter C9. Despite this, extra hydrophobic interac-
tions between the three additional methylene groups
in bis-C12 and the pore overcompensate the reduced
electrostatic interactions, resulting in even higher af-
finity. Cells, again, do not synthesize bis-C12 but, in-
stead, generate SPM by attaching another amino-propyl
group to SPD. SPM has essentially the same length as
bis-C12, but carries two extra amine groups in the mid-
dle. It blocks the channel with even higher affinity than
bis-C12. SPM appears to accomplish this in the follow-
ing way: Two amine groups in one half of the molecule
interact primarily with D172, whereas the two in the
other half interact primarily with E224 and E299. This
binding scheme predicts the following. Interactions of
SPM with D172, or with E224 and E229, should be
much stronger than those of any bis-amine. Indeed, the
electrostatic interaction energy between D172 and the
charges in the leading part of SPM amounts to �3.5
kcal/mol (Fig. 5 A), or 60% more than the �2.2 kcal/
mol between D172 and the leading amine group in bis-
C9 (Fig. 12 A) (interaction energy in these and the fol-

lowing two cases was calculated directly from relevant
mutation-caused reductions in Kd). Similarly, the elec-
trostatic interaction energy between E224 and E299
and the charges in the trailing part of SPM is �2.7
kcal/mol (Fig. 5 A) versus �0.7 kcal/mol for the inter-
action of E224 and E299 with the trailing amine group
in bis-amines (Guo et al., 2003). Effectively, each half of
a SPM molecule acts as a pseudo-divalent cation, en-
hancing the electrostatic interaction and thus the total
interaction energy. Therefore, counterintuitively, mul-
tiple amines in spermine serve to primarily increase not
the voltage dependence, but the affinity of channel
block.

As to the channel side, IRK1 offers a set of four possi-
ble D172, one from each of the four subunits, to inter-
act electrostatically with the two amine groups in the
leading half of a SPM molecule. The amine groups in
the trailing half interact with the acidic residues in the
COOH terminus over a greater distance and possibly in
a higher dielectric environment, and the interactions
are therefore not as strong. However, the presence of
dual sets of COOH-terminal acidic residues, E224 and
E299, apparently help compensate for those attenuat-
ing factors. The two sets of COOH-terminal residues,
whose counterparts in GIRK1 and KirBac1.1 channels
form a ring (Nishida and MacKinnon, 2002; Kuo et al.,
2003), interact with the blocker in an energetically
comparable manner (Fig. 5 A). Besides their energetic
effects, E224 and E299 also help maximize the rate con-
stant of channel block by polyamines (Figs. 9 A and 16
A). Additionally, replacement of the acidic residues by

Figure 18. Blocker struc-
tures, models for blocker-
bound channels, and block-
ing reaction scheme. (A)
Chemical structures of bis-Cn,
PUT (bis-C4), SPD, and SPM.
(B) Models for channel block
by bis- and polyamines. K�

ions present in the blocked
inner pores are not drawn.
(C) A kinetic model of chan-
nel block with one open (O)
and n blocked states (B1...Bn).
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neutral ones reduces the apparent valence of channel
block (Figs. 5 B and 12 B). This finding strongly implies
that their presence enhances K� occupancy of the in-
ner pore and therefore the number of moving charges
coupled to the binding-unbinding of a long blocker,
producing the observed strong voltage dependence.
Without the three sets of acidic residues, an IRK1 pore
loses its most characteristic property that distinguishes
it from other types of K� channels, i.e., the exceedingly
high affinity and strong voltage dependence of its
block by intracellular long polyamines (Figs. 5 and 12).
Evidently, through evolution, nature has optimized
both IRK1 and SPM to practical perfection for produc-
ing rapid, high-affinity, and strongly voltage-dependent
block, manifested as remarkably sharp rectification,
which allows the generation of the plateau phase and
helps accelerate the descending phase in the cardiac
action potential (Noble, 1962, 1965; Zaritsky et al.,
2001).
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