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abstract

 

Polyamines block the retinal cyclic nucleotide-gated channel from both the intracellular and extra-
cellular sides. The voltage-dependent mechanism by which intracellular polyamines inhibit the channel current is
complex: as membrane voltage is increased in the presence of polyamines, current inhibition is not monotonic,
but exhibits a pronounced damped undulation. To understand the blocking mechanism of intracellular
polyamines, we systematically studied the endogenous polyamines as well as a series of derivatives. The complex
channel-blocking behavior of polyamines can be accounted for by a minimal model whereby a given polyamine
species (e.g., spermine) causes multiple blocked channel states. Each blocked state represents a channel occupied
by a polyamine molecule with characteristic affinity and probability of traversing the pore, and exhibits a charac-
teristic dependence on membrane voltage and cGMP concentration.
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I N T R O D U C T I O N

 

Cyclic nucleotide–gated (CNG)

 

1

 

 channels are a class of
nonselective cation channels present in many tissue
types. CNG channels open when cAMP and/or cGMP
binds to a cyclic nucleotide–binding motif formed by
part of the COOH-terminal segment of the channel
polypeptide chain (Kaupp et al., 1989; Goulding et al.,
1994; Varnum et al., 1995; Sunderman and Zagotta,
1999). Since the channel is almost equally permeable

 

to Na

 

1

 

 and K

 

1

 

, the current through the channel re-
verses near zero membrane potential under physiologi-
cal ionic conditions (Werblin, 1975; Bader et al., 1979;
Yau et al., 1981; Bastian and Fein, 1982; Woodruff et
al., 1982; Capovilla et al., 1983; Hodgkin et al., 1984,
1985; Yau and Nakatini, 1984; Bododia and Detwiler,
1985; Baylor and Nunn, 1986). Consequently, opening

 

of the CNG channel depolarizes the cell membrane,
whereas closure hyperpolarizes the membrane. In mam-
malian rod-type photoreceptors, the CNG channel me-
diates visual signal transduction by opening or closing
in response to the binding or unbinding of intracellu-
lar cGMP, whose concentration is elevated in darkness
and lowered by light. The CNG channel in rods nor-
mally is largely blocked by cations. Block of the chan-
nel dramatically reduces the contribution of time-aver-
aged current through individual channels to the over-
all changes in membrane potential. Consequently, the
noise of membrane potential in rods is very low, per-

mitting them to detect a change in the level of illumi-
nation with extraordinarily high sensitivity (Yau and
Baylor, 1989).

 

For more than a decade, the CNG channel has been

 

known to be blocked by divalent cations such as Ca

 

2

 

1

 

and Mg

 

2

 

1

 

 (Haynes et al., 1986; Stern et al., 1987; Cola-
martino et al., 1991; Zimmerman and Baylor, 1992;
Root and MacKinnon, 1993; Eismann et al., 1994; Park
and MacKinnon, 1995). Both Ca

 

2

 

1

 

 and Mg

 

2

 

1

 

 are per-
meant blockers: they traverse the channel but at a
much slower rate than Na

 

1

 

 and K

 

1

 

 ions (Capovilla et
al., 1983; Hodgkin et al., 1985; Torre et al., 1987; Naka-
tani and Yau, 1988). Recently, the channel was also
shown to be blocked by the polycationic polyamines
putrescine, spermidine, and spermine, from both the
extracellular and intracellular sides of the membrane
(Lu and Ding, 1999). Thus far, four types of ion chan-
nel (inward-rectifier K

 

1

 

, glutamate-gated, acetylcholine
(ACh)-receptor, and CNG channels) have been shown
to be blocked by (intracellular and/or extracellular)
polyamines. The following picture emerges: a channel
that can be blocked by Ca

 

2

 

1

 

 and Mg

 

2

 

1

 

 is also blocked
by polyamines (Ault et al., 1980; Mayer et al., 1984;
Nowak et al., 1984; Horie et al., 1987; Matsuda et al.,
1987; Vandenberg, 1987; Mathie et al., 1990; Ifune and
Steinback, 1991; Sands and Barish, 1992; Araneda et
al., 1993; Benveniste and Mayer, 1993; Ficker et al.,
1994; Lopatin et al., 1994; Bowie and Mayer, 1995;
Donevan and Rogawski, 1995; Fakler et al., 1995; Isa et
al., 1995; Kamboj et al., 1995; Koh et al., 1995; Igarashi
and Williams, 1995; Rock and Macdonald, 1992a,b;
Bähring et al., 1997; Chao et al., 1997; Williams, 1997;
Bowie et al., 1998; Cu et al., 1998; Haghighi and Cooper,
1998; Lu and Ding, 1999). Polyamines block glutamate-
gated channels and ACh-receptor channels in a per-
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meant manner. Although polyamines were not previ-
ously viewed as permeant blockers for the inward-recti-
fier K

 

1

 

 channels, they may also traverse that channel,
but to a much lesser extent (Guo and Lu, 2000).

Extracellular polyamine block of CNG channels is
very similar to intracellular polyamine block of glu-
tamate-gated and ACh-receptor channels (e.g., com-
pare Bähring et al., 1997, and Haghighi and Cooper,
1998, with Lu and Ding, 1999). That is, the extent of
channel block is a bell-shaped function of membrane
voltage, which is the hallmark of a permeant ionic
pore blocker. In contrast, intracellular polyamine
block of CNG channels is much more complex (Lu and
Ding, 1999). In the present study, we examine the
mechanism of intracellular polyamine block of the
CNG channel.

 

M E T H O D S

 

Molecular Biology and Oocyte Preparation

 

The cDNA of the bovine rod cGMP-gated channel 

 

a

 

 subunit
cloned into pGEM-HE plasmid was kindly provided by Dr. Steven
A. Siegelbaum (Kaupp et al., 1989; Liman et al., 1992; Goulding
et al., 1992, 1993), and the E363G mutant cDNA clone was kindly
provided by Dr. Roderick MacKinnon (Root and MacKinnon,
1993). RNA was synthesized using T7 polymerase (Promega)
from Nhe1-linearized cDNA. Oocytes harvested from 

 

Xenopus lae-
vis

 

 (Xenopus One) were incubated in a solution containing
(mM): 82.5 NaCl, 2.5 KCl, 1.0 MgCl

 

2

 

, 5.0 HEPES, pH 7.6, and 2–4
mg/ml collagenase. The oocyte preparation was agitated using
a platform shaker (80 rpm) for 60–90 min. It was then rinsed
thoroughly with and stored in a solution containing (mM): 96
NaCl, 2.5 KCl, 1.8 CaCl

 

2

 

, 1.0 MgCl

 

2

 

, 5 HEPES, pH 7.6, and 50

 

m

 

g/ml gentamicin. Defolliculated oocytes were selected and in-
jected with RNA at least 2 and 16 h, respectively, after collagenase
treatment. All oocytes were stored in an incubator at 18

 

8

 

C.

 

Patch Recording and Data Analysis

 

The CNG channel currents were recorded in the inside-out con-
figuration from the membrane of 

 

Xenopus 

 

oocytes

 

 

 

(injected with
the CNG channel cRNA) with an Axopatch 200B amplifier
(Axon Instruments, Inc.). The recorded signal was filtered at 1
kHz and sampled at 5 kHz using an analogue-to-digital converter
(DigiData 1200; Axon Instruments, Inc.) interfaced with a per-
sonal computer. pClamp6 software (Axon Instruments, Inc.) was
used to control the amplifier and acquire the data. Macroscopic
current–voltage curves were recorded as membrane voltage was
linearly ramped (25 mV/s). The currents obtained in the ab-
sence of cGMP were used as templates for subsequent off-line
background current corrections. All curve fittings were carried
out using Origin software version 5 (Microcal Software, Inc.).

 

Recording Solutions

 

Both the intracellular and extracellular solutions contained
(mM) 130 NaCl, 0.5 EDTA, and 10 HEPES, pH 7.6 or 8.6, as spec-
ified. Unless specified otherwise, to activate the channel, 1 mM
cGMP was included in the intracellular solution. The intracellu-
lar solutions containing diamines, polyamines, and philantho-
toxin-343 (PhTx) were prepared daily.

 

R E S U L T S

 

Effect of a Pore Mutation on CNG Channel Block by Spermine

 

Fig. 1 A shows the macroscopic current–voltage rela-
tionship of the wild-type retinal CNG channel in the ab-
sence and presence of various concentrations of intra-
cellular spermine. The data were recorded in the inside-
out configuration by ramping the membrane voltage
from 

 

2

 

80 to 

 

1

 

80 mV. In the absence of blocking ions,
the I-V curve is nearly linear. Spermine in the intracel-
lular solution inhibits the current in a voltage-depen-
dent manner.

Fig. 1 B shows the I-V curves of the E363G mutant
channel in the absence and presence of various con-
centrations of spermine. As previously reported, gly-
cine substitution for residue E363 dramatically reduces
the inward current (Root and MacKinnon, 1993; Eis-
mann et al., 1994). Besides its effect on monovalent cat-
ion conduction, residue E363 forms the binding site
for extracellular divalent cations and also influences
channel block by intracellular divalent cations (Root
and MacKinnon, 1993; Eismann et al., 1994; Park and
MacKinnon, 1995). Furthermore, protonation of a glu-
tamate residue (pKa 

 

5 

 

7.6) in the olfactory CNG channel,
equivalent to E363 in the retinal CNG channel, reduces
the single-channel current by producing subconduc-
tance states (Root and MacKinnon, 1994; see also Gould-
ing et al., 1992). As shown in Fig. 1 B, inhibition of the
E363G mutant channel by intracellular spermine, like
that of the wild-type channel, depends on membrane
voltage.

Fig. 1, C and D, shows the fractions of unblocked wild-
type and mutant CNG currents as a function of voltage,
in the presence of various concentrations of spermine.
Wild-type channel block by intracellular polyamine var-
ies with membrane voltage in a complex manner: it in-
creases when the membrane voltage is increased from

 

2

 

80 to 

 

2

 

20 mV, and then decreases as the voltage ap-
proaches 

 

1

 

25 mV, and increases again when the voltage
is further increased. Consequently, the blocking curves
shown in Fig. 1 C display a minimum followed by a max-
imum. Fig. 1 D shows that E363G mutation merely shifts
the spermine-blocking curves by approximately 

 

1

 

40
mV without altering their general multiphasic appear-
ance, as if residue E363 (located at the external end of
the ion conduction pore) affects spermine block by a
through-space electrostatic effect. This observation sup-
ports the idea that intracellular spermine inhibits the
CNG channel by acting as a pore blocker.

 

Comparison of CNG Channel Block by Intracellular 
Spermine and Putrescine

 

Fig. 2, A and C, compares the effects of spermine and
putrescine on the I-V curve of the wild-type CNG chan-
nel. Fig. 2, B and D, plots the corresponding fractions
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of unblocked current as a function of membrane volt-
age between 

 

2

 

80 and 

 

1

 

80 mV. As discussed above, the
spermine-blocking curve in Fig. 2 B has a minimum fol-
lowed by a maximum. In contrast, the putrescine-block-
ing curve has only a minimum, although it appears to
reach a plateau at 

 

1

 

80 mV (Fig. 2 D; Lu and Ding,
1999). This difference may result from fundamental
differences in the structure of the blockers or merely
reflect the fact that putrescine has only two rather than
four amine groups. In the latter case, putrescine should
exhibit a spermine-like behavior if the membrane volt-
age range were extended twofold to compensate for
the twofold difference in charged groups between pu-
trescine and spermine. To test these possibilities, we ex-
amined channel block by putrescine over a much wider
range of membrane voltage. Fig. 2 E shows the I-V
curves of the channel between 

 

2

 

160 and 

 

1

 

160 mV in
the absence and presence of putrescine. Even in the ab-
sence of putrescine, the I-V curve exhibited a slight
downward curvature above 

 

1

 

140 mV, likely resulting
from channel block by traces of endogenous (or con-
taminating) blockers. In Fig. 2 F, we plotted the frac-
tion of unblocked current in the presence of pu-
trescine as a function of membrane voltage. The pu-
trescine-blocking curve between 

 

2

 

160 and 

 

1

 

160 mV is
qualitatively similar (a minimum followed by a maxi-
mum) to that of spermine over a narrower voltage
range, as if a twofold reduction in the number of amine
groups is roughly compensated by a twofold wider volt-
age range. Still, despite a twofold compensation in

 

membrane voltage, the putrescine-blocking curve dif-
fers somewhat from that of spermine, undoubtedly be-
cause of the two additional segments in spermine.

 

Block of the CNG Channel by a Series of Diamines

 

To learn how methylene groups affect the blocking be-
havior of polyamines, we examined CNG channel block
by a series of putrescine analogues—diamines with me-
thylene (CH

 

2

 

) chains of varying length between the two
amine groups. To obtain a more complete picture of
their blocking behaviors, we further increased the volt-
age range to between 

 

2

 

180 and 

 

1

 

180 mV—the widest
range within which we could collect sufficient data be-
fore the oocyte membrane ruptured. Fig. 3 shows the
I-V curves of the CNG channels in the absence and pres-
ence of several concentrations of nine diamines, de-
noted DM

 

C2

 

 through DM

 

C10

 

, that contain from 2 to 10
methylene groups. With the exception of DM

 

C2

 

, the in-
hibitory potency of diamines increases with each addi-
tional methylene group. All the diamines blocked the
channel in a voltage-dependent manner. The voltage
dependence of channel block by various diamines is
more clearly shown in Fig. 4, in which we plotted the
fraction of unblocked current in the presence of each
diamine as a function of membrane voltage. The block-
ing curves corresponding to various diamines are quite
different. Those for DM

 

C2

 

, DM

 

C3

 

,

 

 

 

DM

 

C6

 

, and DM

 

C7

 

 have
mainly two phases: a descending phase followed by an
ascending phase. As discussed earlier, the curve for

Figure 1. Effects of mutation
at E363 on CNG channel block
by spermine. (A and B) Macro-
scopic I-V curves of wild-type and
mutant E363G channels, respec-
tively, in the absence and pres-
ence of various concentrations of
intracellular spermine. (C and
D) The fractions of unblocked
currents of wild-type and mutant
channels in the presence of vari-
ous concentrations of spermine
are plotted as a function of mem-
brane voltage.
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DM

 

C4

 

 (putrescine) has a very prominent second de-
scending phase, and consequently shows a minimum
followed by a maximum. Interestingly, for DM

 

C5

 

, the
minimum and maximum seem to merge into an ex-
tended plateau that precedes a second descending
phase. The curves corresponding to DM

 

C8

 

 through
DM

 

C10

 

 simply approach a nonzero level at the end of
the experimentally accessible voltage range.

 

Block of the CNG Channel by Spermine at Two 
Different Intracellular pH

 

To gain insight into the effect of polyamine charge on
channel block, we altered the average number of

 

charged amines in spermine by adjusting intracellular
pH, exploiting the fact that the pKa for some amine
groups is in the range of 8 to 9 (Palmer and Powell,
1974). Fig. 5 A shows the I-V curves of the CNG chan-
nel without and with 10 

 

m

 

M spermine at intracellular
pH 7.6 or 8.6. Altering intracellular pH had little effect
on the control I-V curve. However, it dramatically af-
fected channel block by spermine, which can be more
clearly seen in Fig. 5 B, where the ratios of currents
with and without spermine at the two intracellular pH
values are plotted against membrane voltage. Raising
intracellular pH shifts the first descending phase to
slightly more positive membrane voltages, but more
dramatically shifts the second descending phase to less
positive voltages. Increasing intracellular pH also re-
duces the amplitude of the intervening ascending
phase. However, the slopes of both blocking phases ap-
pear to be little affected by intracellular pH.

 

Block of the CNG Channel by Spermine and Spermidine 
Over a Wider Voltage Range

 

Fig. 6, A and B, shows the I-V curves of the CNG chan-
nel in the absence or presence of spermine and sper-
midine, while C and D shows the fractions of current
not blocked by spermine and spermidine, respectively,
against membrane voltage. Over this much wider range
of membrane voltage (

 

2

 

180 to 

 

1

 

180 mV), the curve for
spermine now displays two pairs of minima and max-
ima. Although the multiple phases in the curves for
spermidine are not as well defined (Fig. 6 D), the curve
for 100 

 

m

 

M spermidine has a small “minimum” (indi-
cated by an arrow) at voltages where the second mini-
mum in the spermine curve occurs (compare C with D).
We have repeated this measurement many times and
the small “minimum” in the 100 

 

m

 

M spermidine curve
was invariably observed. Thus, the blocking curves for
spermidine and spermine are likely fundamentally simi-
lar—two pairs of minima and maxima at comparable
membrane voltages—although the multiple phases are
poorly separated in the case of spermidine.

 

Block of the CNG Channel by Spermine at Various 
Concentrations of cGMP

 

To test whether block of the CNG channel by poly-
amines depends on cGMP concentration, we examined
channel block by spermine at various concentrations of
cGMP. Fig. 7, A–F, shows the I-V curves for the channel
in the absence and presence of various concentrations
of spermine, as the concentration of cGMP was varied
from 10 

 

m

 

M to 1 mM (

 

K

 

1/2 

 

for cGMP is 

 

z

 

80 

 

m

 

M)

 

.

 

 In the
presence of spermine, the shape of the I-V curves at
positive membrane voltages varied significantly with
the concentration of cGMP. The variations are more
clearly shown in Fig. 7, G–L, which shows the fractions
of unblocked current as a function of membrane volt-

Figure 2. Comparison of CNG channel block by intracellular
spermine and putrescine. (A) I-V curves of the CNG channel in
the absence and presence of 10 mM spermine (SPM). (B) The
fraction of current not blocked by 10 mM spermine is plotted
against membrane voltage. (C and E) I-V curves of the channel in
the absence and presence of 10 mM of putrescine (PUT), over dif-
ferent voltage ranges. (D and F) The fractions of current not
blocked by 10 mM putrescine, obtained from C and E, are plotted
against membrane voltage.
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age. The first descending and ascending phases are
very similar at all cGMP concentrations tested. The sec-
ond descending phase became steeper, and a second
ascending phase became apparent, when the cGMP
concentration was increased to 30 

 

m

 

M. The third de-
scending phase did not appear until cGMP was in-
creased to 50 

 

m

 

M. In other words, the first minimum
and maximum pair was present at all concentrations of
cGMP, but the second minimum and maximum pair at
positive voltages, absent at 10 

 

m

 

M cGMP, gradually ap-
peared when cGMP concentration was raised.

 

Block of the CNG Channel by a Spermine Derivative

 

To test whether depolarization-induced relief of chan-
nel block results from spermine permeation, we stud-
ied the blocking behavior of a natural derivative of
spermine isolated from a spider venom, called PhTx.
PhTx can be thought of as spermine with a bulky group
attached to one end. Fig. 8 A shows the I-V curves of
the channel in the absence and presence of PhTx at

the concentrations indicated. Unlike the complex I-V
curves obtained in the presence of spermine (see Fig. 6
A), the I-V curves in the presence of PhTx merely dis-
play a downward curvature, as expected for a nonper-
meant ionic pore blocker. Fig. 8 B shows that the frac-
tion of unblocked current in the presence of PhTx
decreases with increasing membrane voltage. No signif-
icant voltage-induced relief of channel block by PhTx
was observed between 

 

2

 

180 to 

 

1

 

180 mV.

 

D I S C U S S I O N

 

The extent of CNG channel block by intracellular
polyamines varies with membrane voltage in a complex
manner. For example, when membrane voltage is in-
creased from 

 

2

 

80 to 

 

1

 

80 mV in the presence of sper-
mine, the CNG current varies in three phases: two de-
scending phases with an intervening ascending phase,
resulting in a minimum followed by a maximum in the
voltage-dependent blocking curve (Fig. 2 B). A similar

Figure 3. Effect of diamines on
the current–voltage relationship
of the CNG channel. I-V curves
were obtained in the absence
and presence of nine diamines
(DMC2 through DMC10, labeled as
C2 through C10) at the various
concentrations indicated.
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Figure 4. Voltage dependence
of CNG channel block by various
diamines. The fraction of current
not blocked by nine diamines
(DMC2 through DMC10, labeled as
C2 through C10) at various con-
centrations is plotted against
membrane voltage. The curves
superimposed on the data are fits
of Eqs. 5 or 6 (see discussion).

 

phenomenon, although occurring over a much wider
range of membrane voltage, was also observed with
polyamines containing fewer amine groups; e.g., pu-
trescine (Fig. 2 F). As proposed previously, the first and
second descending phases in the relative current versus
membrane voltage plot can be attributed to channel
block by a polyamine molecule in one of two conforma-
tions with different affinity, while the intervening as-
cending phase can be accounted for by permeation of
the polyamine in its higher affinity conformation and
consequent resumption of ionic current (Lu and Ding,
1999). The interesting and complex blocking behavior
observed here can occur only when channel block by
the more permeant conformation occurs at much lower
membrane voltages.

To test whether the depolarization-induced relief of
channel block results from polyamine permeation, we
examined channel block by PhTx, a derivative of sper-
mine whose one end is attached to a bulky chemical
group. Such a chemical modification was previously

 

shown to dramatically hinder spermine permeation
through glutamate-gated channels (Bähring et al., 1997).
Here, we found that depolarization up to 

 

1

 

180 mV
does not significantly relieve block of the CNG channel
by PhTx (Fig. 8 B). Thus, the bulky group attached to
spermine in PhTx prevents the molecule from travers-
ing the CNG channel. Quantitatively, the voltage-depen-
dent blocking behavior of PhTx can be accounted for
by the Woodhull mechanism, arguing that PhTx acts on
the CNG channel as a nonpermeant ionic pore blocker.
These findings support the idea that the depolarization-
induced relief of polyamine block in the CNG channel
results from polyamine permeation and subsequent re-
sumption of Na

 

1

 

 ion passage.

 

Analysis of Channel Block by Various Diamines

 

To gain insight into the complex blocking behaviors of
diamines with methylene chains of varying length, we
analyzed the blocking curves of the various diamines
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Figure 5. Intracellular pH dependence of CNG channel block by intracellular spermine. (A) I-V curves of the CNG channel in the ab-
sence and presence of 10 mM spermine at intracellular pH 7.6 and 8.6. Extracellular pH was 7.6 in both cases. (B) Ratios of the I-V curves
at the corresponding pH, shown in A, are plotted against membrane voltage. The smooth curves were obtained by simultaneous fitting of
the two data curves using Eq. 7. The values of all parameters obtained from fitting are: K1

a 5 0.51 6 0.04 mM, Z1
a 5 3.0 6 0.1, k22

a/k21
a 5

8.5 6 0.3, “z22
a 1 z21

a” 5 5.5 6 0.1, K1
b 5 45.9 6 0.9 mM; Z21

b 5 1.8 6 0.1, and pKa 5 9.1 6 0.1 (mean 6 SEM, n 5 3).

Figure 6. Block of the CNG
channel by intracellular sper-
mine and spermidine over a
wider voltage range. (A and B)
I-V curves of the CNG channel
without or with spermine and
spermidine, respectively, at the
concentrations indicated. (C and
D) The fractions of current not
blocked by spermine and sper-
midine, respectively, are plotted
against membrane voltage.
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using a model shown in Fig. 9 A, similar to one previ-
ously used to analyze spermine block of this channel
(Lu and Ding, 1999). The model assumes that a di-
amine (DM) blocks the channel in one of two (slightly)

permeant conformations, a and b, resulting in two
blocked states. Interconvertibility between the two
blocked states cannot be assessed based on the steady
state data presented here. For simplicity, our model as-

Figure 7. Cyclic GMP concen-
tration dependence of CNG
channel block by spermine. (A–
F) I-V curves of the channel with-
out and with spermine at vari-
ous cGMP concentrations. (G–L)
The fractions of current not
blocked by spermine at various
spermine and cGMP concentra-
tions are plotted against mem-
brane voltage.
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sumes no direct transition between the two blocked
states. The fraction of unblocked channels, and thus
that of unblocked current, is then given by Eq. 1:

(1)

Using rate constants, we obtain:

(2)

where [DM] is the intracellular diamine concentration
(the extracellular diamine concentration is zero). As-
suming the second conformation is nonpermeant (i.e.,
k22

b 5 0), Eq. 2 becomes:

(3)

where K1
b 5 k21

b /k1
b, the equilibrium dissociation con-

stant for the nonpermeant form. Further assuming that

I
Io
----

Ch[ ]
Ch[ ] Ch?DMa[ ] Ch?DMb[ ]+ +

----------------------------------------------------------------------------- .=

I
Io
----

1

1 DM[ ]
k1

a

k 1–
a k 2–

a+
--------------------

k1
b

k 1–
b k 2–

b+
--------------------+

 
 
 

+

-----------------------------------------------------------------------------,=

I
Io
----

1

1 DM[ ]
k1

a

k 1–
a k 2–

a+
-------------------- 1

K1
b

------+
 
 
 

+

---------------------------------------------------------------,=

all rate constants vary exponentially with membrane
voltage, Eq. 3 becomes:

(4)

or

(5)

I
Io
---- 1

1 DM[ ]
k1

ae

z1
a
F Vm
RT

------------------

k 1–
a e

z– 1–
a

F Vm
RT

------------------------

k 2–
a e

z 2–
b

FVm
RT

--------------------

+

------------------------------------------------------- 1

K 1
b e

Z 1
b
FVm–

RT
----------------------

------------------------++

---------------------------------------------------------------------------------------------------------------------=

I
Io
----

1

1 DM[ ] 1

1
k 2–

a

k 1–
a

-------+ e

z 1–
a

z 2–
a

+( )F Vm
RT

---------------------------------------

 
 
 
 

K 1
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Z 1
a

– F Vm
RT

-----------------------

---------------------------------------------------------------------------- 1

K 1
b e

Z 1
b
F Vm–

RT
-----------------------

-------------------------++

-------------------------------------------------------------------------------------------------------------------------------------------

=

Figure 8. Block of the CNG channel by a spermine derivative. (A) I-V curves without or with three concentrations of a spermine deriva-
tive, PhTx. (B) The fractions of current not blocked by PhTx are plotted against membrane voltage. The curves superimposed on the data
are fits of the Woodhull equation, I/Io 5 1/(1 1 [PhTx]/Kde2ZFV/RT. The Kd and Z determined from the fits are 2.8 6 0.5 mM and 1.8 6 0.3
(mean 6 SEM, n 5 4).
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where K1
a 5 k21

a/k1
a is the equilibrium dissociation

constant for the permeant form, and quantities zi
x and

Zi
x are the apparent valences associated with the corre-

sponding constants. Vm is membrane voltage, and F, R,
and T have their usual meanings.

Fig. 9 B illustrates how the various transitions in the
model (or the various constants in Eqs. 4 or 5) are re-
lated to the different phases in a putrescine (DMC4)-
blocking curve. Curve a superimposed on the data is a
fit of Eq. 5, while the other three curves correspond to
three hypothetical cases: putrescine acting as (b) a sin-
gle-conformation, high-affinity, permeant blocker (K1

b
 5

`), (c) a single-conformation, high-affinity, nonpermeant
blocker (K1

b
 5 ` and k22

a 5 0), or (d) a single-confor-
mation, low-affinity, nonpermeant blocker (K1

a 5 ` and
k22

b 5 0). The values of the corresponding parameters
used to generate curves b–d are the same as those for
the full curve a. Thus, the first and second descending
phases of the blocking curve are accounted for by chan-
nel block by putrescine in the high- and low-affinity con-
formations, respectively, while the intervening ascend-
ing phase reflects permeation of putrescine in the high-
affinity conformation. Since k22

a/k21
a is the relative

probability of a diamine bound in the pore escaping to
the external solution versus returning to the intracellu-
lar solution, it provides a measure of diamine perme-
ation. Quantities k22

a/k21
a and “z21

a 1 z22
a” were treated

as single adjustable parameters in the fit of Eq. 5.
To analyze those blocking curves that do not display a

significant second descending phase, we omitted the
term K1

b:

(6)

Examples of analyses of diamine data using Eqs. 5 and
6 are shown in Fig 4; the curves superimposed on the
data are all in fact fits of these equations. The parame-
ters obtained from these fits are summarized in Fig. 10.

Fig. 10, A and B, plot K1
a and Z1

a versus the number

I
Io
----

1

1 DM[ ]

1
k 2–

a

k 1–
a

-------+ e

z 1–
a

z 2–
a

+( )F Vm
RT

---------------------------------------

 
 
 
 

K 1
ae

Z– 1
a
F Vm

RT
-----------------------

----------------------------------------------------------------------------+

-------------------------------------------------------------------------------------------.=

Figure 9. A kinetic model for
CNG channel block by diamines.
(A) Reaction scheme. Ch repre-
sents the CNG channel, DMi and
DMo denote intra- and extracel-
lular diamines, and Ch?DMa and
Ch?DMb denote the CNG chan-
nels blocked by DM in two
conformations, respectively. Rate
constants at 0 mV (kx or k2x) and
the corresponding valence num-
ber (zx or z2x) are indicated. (B)
Noisy experimental trace plots
the fraction of current not
blocked by 10 mM putrescine
against membrane voltage. Curve
a superimposed on the data is a
fit of Eq. 5. The fit gives K1

a 5 2.0
mM, Z1

a 5 1.1, k22
a/k21

a 5 2.0,
“z22

a 1 z21
a” 5 1.9, K1

b 5 388.2
mM, and Z21

b 5 0.5. The other
three curves correspond to three
hypothetical cases using the cor-
responding parameters from the
fit, except that putrescine is as-
sumed to act (b) as a pure high-
affinity permeant blocker (K1

b
 5

`), (c) as a pure high-affinity
non-permeant blocker (K1

b
 5 `

and k22
a 5 0), or (d) as a low af-

finity nonpermeant blocker for
curve d (K1

a 5 ` and k22
b 5 0).
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of methylene groups in the tested diamines, respec-
tively. These two parameters are mainly related to the
first descending phase; i.e., binding and unbinding of
diamines in the permeating conformation. With the ex-
ception of DMC2, longer diamines generally have a
lower K1

a (higher affinity), consistent with the observa-
tion that longer diamines have higher blocking po-
tency (Fig. 3). Although the amine groups of shorter

diamines may both be located inside the narrow re-
gion, with increasing methylene chain length the trail-
ing amine group should gradually extend out of the
pore into the intracellular solution, as originally pro-
posed for sarcoplasmic reticulum K1 channel block by
bis-Q compounds (di-quaternary ammoniums) (Miller,
1982). This picture can also be invoked to explain the
decrease in apparent valence Z1

a.

Figure 10. Summary of the
fitting parameters obtained
from analyzing the diamine-
blocking curves. As illustrated
in Fig. 4, all diamine-blocking
curves were fitted with either
Eq. 5 or 6, depending on
whether the fitted curve con-
tains a second descending
phase. The six adjustable pa-
rameters, plotted in A–F against
number of methylene groups in
the diamine chain, were K1

a,
Z1

a, k22
a/k21

a, and “z22
a 1 z21

a”
needed in both equations, and
K1

b and Z1
b needed in Eq. 5 only.

All parameters, obtained from
the fits, are presented as mean 6
SEM (n 5 6–10).
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When the number of methylene groups in diamines
increases, k22

a/k21
a becomes smaller (Fig. 10 C). Longer

diamines being less likely to go across the pore to the
extracellular side is consistent with the expectation that
energy barriers are higher for the longer and more hy-
drophobic diamines. Since “z21

a 1 z22
a” decreases with

diamine length, the enhancement of permeation by
membrane depolarization decreases with diamine length
(Fig. 10 D). These two factors together account for the
observed reduction in permeation for longer diamines.

The blocking curves of both DMC4 and DMC5 have a
rather prominent second blocking phase, a behavior
apparently associated with methylene chain length be-
tween the amine groups. Thus, we used the full Eq. 5 to
analyze their behavior. We found that the K1

b value of
DMC5 is significantly lower (high affinity) than that of
DMC4 (Fig. 10 E), whereas the apparent affinity (or K1

a)
of the high-affinity conformations of the two diamines
is comparable (Fig. 10 A). These findings are compati-
ble with the observation that the first and second block-
ing phases of DMC5 are less well separated. The re-
duced separation of the two blocking phases and the
lower permeability (k22

a/k21
a) of DMC5 together ex-

plain why the minimum and maximum that clearly sep-
arate the two blocking phases in the case of DMC4 be-
come merged into an extended plateau in the case of
DMC5 (Fig. 4).

Although various diamines exhibit rather different
blocking behaviors, we found that increasing methyl-
ene chain length generally favors diamine binding, but
reduces the likelihood of permeation. Thus, not sur-
prisingly, hydrophobic forces play a critical role in the
interactions between channel and diamines.

Protonation Underlies the Different Blocking 
Conformations of Polyamines

Ammonia has a pKa value of 9.3. Attaching an alkyl
group of arbitrary length to the nitrogen atom raises its
pKa to a nearly uniform value around 10.6 (Albert and
Serjeant, 1971). For example, pKa values for the mono-
amines methylamine (C1), octylamine (C8), and doco-
sylamine (C22) are 10.66, 10.65, and 10.60, respectively.
When a second alkyl group is added to form a second-
ary amine, the additional pKa perturbation is much
smaller. In the case of diamines, protonation of the first
amine group significantly affects protonation of the
second group. As expected for an electrostatic effect,
this pK perturbation in diamines diminishes as the in-
tervening methylene chain length increases. Compar-
ing four diamines, DMC2, DMC3, DMC4 and DMC8, the
pKa values for the first protonation are 10.1, 10.6, 10.8,
and 11.0, while those for the second protonation are
7.0, 8.6, 9.4, and 10.1, respectively. Similar pKa pertur-
bations occur in spermine. Palmer and Powell (1974)

determined four distinct pKa values for spermine (10.8,
10.0, 8.9, and 8.0 at 100 mM ionic strength and 258C).
Although the exact assignment of pKa values in sper-
mine is uncertain, the finding implies that a significant
fraction of spermine molecules is not fully protonated
at pH 7.6, where we examined CNG channel block by
spermine.

We surmise that the hypothesized multiple blocking
conformations of spermine represent its different pro-
tonated states, the more protonated species corre-
sponding to the higher-affinity, more permeant confor-
mation, and the less protonated species corresponding
to the lower-affinity, less permeant conformation. If this
is true, altering intracellular pH should alter the sper-
mine-blocking curve in the following manner. At a
given spermine concentration, raising intracellular pH
deprotonates spermine and thus decreases its fraction
in the high-affinity form, which should shift the first
blocking (descending) phase to more positive mem-
brane voltages. Simultaneously, the increased fraction
in the low-affinity (less protonated) form should shift
the second blocking (descending) phase to lower volt-
ages. As the two blocking phases are now closer to one
another, the amplitude of the intervening ascending
phase (reflecting permeation of the high-affinity form)
should decrease. The steepness (apparent voltage de-
pendence) of the two blocking phases should be unaf-
fected by pH, because each reflects how the channels
interact with a given form of spermine, not its concen-
tration. This is, indeed, what we observed when we
raised intracellular pH from 7.6 to 8.6. Fig. 5 B plots
the fraction of unblocked current in the presence of 10
mM spermine at intracellular pH 7.6 and 8.6. We ana-
lyzed the data according to the scheme shown in Fig.
11, which assumes that the two spermine conforma-
tions reflect the titration of a single amine group. The
fraction of unblocked current in the presence of sper-
mine is then given by:

(7)

where U 5 102pH/(102pH 1 102pKa). The two smooth
curves superimposed on the blocking curves obtained
at intracellular pH 7.6 and 8.6 are simultaneous fits of
Eq. 7; i.e., all the fitting parameters are the same for
both curves. The pKa of the titrated amine group, de-
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termined from the fit, is 9.1 6 0.1 (mean 6 SEM; n 5
3), very close to 8.9, the second lowest pKa value of sper-
mine (Palmer and Powell, 1974). Thus, the data can be
accounted for by a model in which the two observed
blocking conformations of spermine result from titrat-
ing the amine group with the second lowest pKa value.
The model is also compatible with the finding that the
values of the apparent valence associated with each of
the blocking conformations are 3.0 6 0.1 and 1.8 6 0.1
(mean 6 SEM), respectively. Thus, it is understandable
why channel block by the higher-affinity (higher charge)
form of spermine is more voltage dependent than that
by the lower-affinity (lower-charge) form.

Although the observed multiple blocked channel
states are well accounted for by nonuniform protona-
tion of the blocking agent, they can in principle be
equally well accounted for by different protonation
states of the channel. In the olfactory CNG channel,
protonation of a glutamate residue (equivalent to E363
in the retinal channel), located at the external end of
the pore, reduces the single-channel conductance (Root
and MacKinnon, 1994). Moreover, residue E363 in the
retinal CNG channel forms the binding site for external
divalent cations and also affects the binding of internal
divalent cations to the pore (Root and MacKinnon,
1993; Eismann et al., 1994; Park and MacKinnon, 1995).
To examine whether the multiple spermine-induced
blocked states result from nonuniform protonation of
E363, we examined spermine block of the E363G mu-
tant channel in which E363 was replaced by a nonproto-
natable glycine residue. With this E363G channel, we
still observed the multiphasic spermine-blocking curve
seen in the wild-type channel, except for a 140-mV shift,
as if residue E363 merely affects spermine binding by an
electrostatic mechanism (Fig. 1). Thus, the different
blocking states do not primarily reflect nonuniform pro-
tonation of residue E363 in the channel.

Additional Blocking Components of Spermine Revealed with a 
Wider Range of Membrane Voltage

At positive voltages, the spermine-blocking curves in
Fig. 5 B deviate somewhat from what is predicted by Eq.
7, which assumes for simplicity that spermine in the
second blocking conformation is strictly nonpermeant.

To examine whether the second blocking conforma-
tion is also slightly permeant, we examined spermine
block over a much wider range of membrane voltage
(2180 to 1180 mV). We found that, above 190 mV,
channel block by spermine was significantly relieved by
further depolarization (Fig. 6 C), consistent with sper-
mine in the second blocking conformation also being
permeant. Interestingly, beyond 1140 mV, channel
block was again enhanced. These observations argue
that spermine blocks the channel in at least three con-
formations. Thus, to account for this extraordinary volt-
age dependence of channel block, a third blocking state
(c) would need to be added to the model in Fig. 9 A.
This third conformation (c) should bind to the chan-
nel with even less affinity and be less likely to permeate.
If the first blocking conformation (a) corresponds to
spermine with three (and four) charged amines and
the second (b) corresponds to spermine with two charged
amines, then the third (c) will correspond to spermine
with a single charged amine. This proposal is compati-
ble with the observation that voltage dependence of
channel block by the first blocking conformation is
stronger than the second, which is stronger than the
third, as manifested by the different slopes of the three
blocking phases (Fig. 6 C). As already mentioned in re-
sults, spermidine appears to behave similarly, although
the multiple components are much less well separated
(Fig. 6 D).

Altering cGMP concentration has different effects on
each of the three blocking components of spermine
(Fig. 7). Lowering cGMP concentration has little effect
on the first blocking component, but diminishes the
second blocking phase, whereas the third blocking
phase essentially vanishes at cGMP concentrations be-
low 30 mM. These results argue that spermine confor-
mation a occupies open and closed channels with simi-
lar affinity, b occupies open channels with higher affin-
ity, and c essentially occupies only open channels.
Previous studies showed that decreasing cGMP concen-
trations enhances block of the CNG channel by intra-
cellular tetracaine (Fodor et al., 1997). The cGMP de-
pendence of channel block by intracellular cations
most likely reflects conformational changes of the pore
resulting from channel gating.

Figure 11. A kinetic model for
pH dependence of CNG channel
block by polyamines. The model
essentially is the same as that in
Fig. 9 A, except that polyamine
molecules can be in either a
more or a less protonated form.
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