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Modeling cardiac contractile cooperativity across
species
Matthew Carter Childers1

Phan and Fitzsimons (https://doi.org/10.1085/jgp.202413582) develop a new mathematical model of muscle contraction that
explores cooperative mechanisms in small (murine) and large (porcine) myocardium.

Introduction
Cardiac muscle contraction is replete with cooperative mecha-
nisms (Bremel and Weber, 1972; Murray and Weber, 1981;
Tobacman, 1996; Lehrer, 1994; McKillop and Geeves, 1993; Solaro
and Rarick, 1998; Moore et al., 2016; Gordon et al., 2000). Co-
operativity in cardiac muscle promotes energy-efficient, syn-
chronized contractions at variable mechanical loads. The impact
of cooperativity in cardiac muscle is exemplified by the strong
dependence of force development on thin filament activation
(Regnier et al., 2004; Brenner, 1986, 1988). Detailed experiments
have identified several cellular, molecular, and structural con-
tributions to cooperativity, such as tropomyosin–tropomyosin
overlap interactions, crossbridge (XB)-dependent Ca2+ sensitiv-
ity of troponin, and regulatory unit (RU)–mediated activation of
neighboring RUs (Moore et al., 2016). However, significant gaps
remain, particularly in understanding the relative strengths of
cooperative interactions, their effects across spatial and tem-
poral scales, and their differences across species. In this issue of
the Journal of General Physiology, Drs. Tuan Phan and Daniel P.
Fitzsimons present a mathematical model to test how coopera-
tivity among RU–RU, RU–XB, and XB–XB interactions affect
cardiac muscle contraction (Phan and Fitzsimons, 2025).

Themathematical modeling of XB contraction inmuscle has a
rich history, originating from foundational studies aimed at
understanding the molecular basis of muscle force generation.
Niederer, Campbell, and Campbell provide detailed history of
mathematical models of muscle contraction (Niederer et al.,
2019). Briefly, early theoretical frameworks modeled relation-
ships between muscle shortening velocity and load (Hill, 1938).
The sliding filament models of Huxley (1957), Huxley and
Simmons (1971), and others yielded a quantitative description
of the molecular basis by which actin–myosin interactions
produce force and motion. Subsequent models addressed vari-
ous types of muscle contractions and included more complex
dynamic processes such as, including the regulation of XB
function by Ca2+ and nucleotide states (Smith et al., 2005; Lymn
and Taylor, 1971), spatially explicit phenomena (Daniel et al.,

1998), roles of cooperative interactions (Campbell, 2009;
Razumova et al., 2000; Kalda and Vendelin, 2020), filament
compliance (Tanner et al., 2012), and multifilament interactions
(Tanner et al., 2007). Grounded in the desire to understand the
complex mechanisms underlying muscular function, mathematical
models of muscle contraction have evolved significantly over the
years. Contemporary methods now integrate various models of
contraction into multiscale frameworks (Hock et al., 2023; Teitgen
et al., 2024) that bridge the gap betweenmolecularmechanisms and
macroscopic muscle function. Increases in model sophistication
reflect how synergy between experimental data, theoretical in-
sights, and computational power can yield robust platforms to ex-
plore physiological and pathological states of muscle contraction.

Advancements in cardiac muscle experimentation and mod-
eling have brought attention to species-specific differences in
contraction kinetics and muscle regulation. These differences
are associated with variations in protein isoforms and cooper-
ative behaviors and are necessary to fulfil the varied cardiac
outputs required for animals of different sizes. For instance,
tension redevelopment kinetics (ktr) in murine myocardium,
which predominantly expresses α-myosin heavy chain, exhibits
a steep activation dependence: ktr increases nearly 10-fold across
submaximal calcium levels (Patel et al., 2023). In contrast,
porcine myocardium, dominated by β-myosin heavy chain,
shows near-maximal ktr values at low calcium activation, indi-
cating tighter coupling between steady-state force and ktr (Patel
et al., 2023). Such differences underscore the need for models
that account for species-specific contractile properties. Phan and
Fitzsimons (2025) develop a new model that examines the rel-
ative contributions of RU–RU, XB–RU, and XB–XB cooperative
interactions in murine and porcine myocardium. Their work
builds on earlier studies by parameterizing cooperative inter-
actions, systematically probing relative combinations of coop-
erativity, and by linking computational predictions with
experimental data. By relating computational modeling with
recent insights from structural biology, their approach ad-
dresses long-standing questions about the molecular basis of
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cooperativity in different organisms and provides a foundation
for future research.

Modeling cardiac muscle contraction
Phan and Fitzsimons adapt prior methods (Razumova et al.,
2000; Campbell et al., 2010) and present a mathematical model
of muscle contraction that couples thin filament activation and
XB cycling into a multistate system. The model includes three
states of RU in thin filament regulatory scheme (McKillop and
Geeves, 1993) and a XB model with one detached state and two
attached states. This model incorporates parameters that de-
scribe cooperative interactions among and between troponin–
tropomyosin RUs and actin–myosin XBs. The cooperativity
parameters are tunable and can assess the relative contributions
of various cooperative mechanisms, providing a better under-
standing of contraction in mammalian cardiac muscle. Phan and
Fitzsimons assess the combined effects of RU–RU, XB–XB, and
XB–RU cooperative interactions with eight distinct parameter
sets. The diverse parameters explore the collective roles of co-
operativity in modulating the kinetics of thin filament activation
and force generation. Finally, the authors fit their model to
porcine and murine ventricular myocardium data (Patel et al.,
2023). In consensus with prior models (Razumova et al., 2000;
Campbell et al., 2010; Moore et al., 2016), they find that RU–RU
cooperativity is necessary to fit experimental force–pCa and
ktr–pCa relationships, supporting an essential role of RU–RU
interactions in both thin filament activation.

Bringing species-specific differences into focus
The fundamentals of cardiac muscle contraction are considered
generally conserved across mammals, but identification and quan-
tification of the subtle details that distinguish different species is a
long-standing challenge (Milani-Nejad and Janssen, 2014). By
comparing murine and porcine myocardium, Phan and Fitzsimons
address species-specific differences in myocardial contractility,
providing valuable insights into how RU–RU cooperativity con-
tributes to functional adaptations in small and large mammals. The
authors observed a stronger RU–RU cooperative interaction in
porcine ventricular myocardium compared with murine myocar-
dium. Successful fits of a generalized mammalian cardiac contrac-
tion model to murine and porcine data suggest that the model may
be “dialed” to model a range of mammalian contractions. Nonuni-
form activation of the thin filament due to stochastic Ca2+ binding
and differing activation energies for cooperative recruitment are
proposed to explain differences in contractile responses between
murine and porcine myocardium at submaximal Ca2+ levels.

Looking ahead
The Phan and Fitzsimons model further establishes the RU–RU
interaction as the predominant cooperative mechanism gov-
erning thin filament activation and force generation in cardiac
muscle. This model challenges simplified views of cooperative
activation, demonstrating that RU–RU interactions dominate
over XB-mediated cooperativity (XB–RU or XB–XB) in certain
contexts and refines our understanding of the hierarchical
contributions of various cooperative mechanisms. Based on
the study’s findings and limitations, several future research

directions are indicated. Experimental perturbations (e.g., mu-
tations or small molecules that target RU or XB interactions)
would further validate the proposed cooperative mechanisms.
Further exploration into a broader range of species would be
valuable to assess the generalizability of the findings and predic-
tive utility of the model. By demonstrating differences in RU–RU
interaction strength betweenmurine and porcinemyocardium, the
paper also provides amolecular basis for species-specific variations
in myocardial contractility. This has implications for translating
findings from animal models to human cardiac physiology. Several
assumptions in the model, which are clearly delineated and fairly
discussed in the article, reduced the computational burden at the
cost of simplification. For example, the systemmodels interactions
within a single, infinitely long thin filament. Future modeling ef-
forts may explore the effects of cooperative activation across spe-
cies when multiscale factors (e.g., length-dependent activation and
multifilament models) are considered. Additionally, regulation of
thick filaments is emerging as an important factor in muscle
contraction (Marcucci, 2023; Irving, 2017). New insights into thick
filament regulation (Park-Holohan et al., 2021; Turner et al., 2024),
thick filament regulatory proteins (Barefield et al., 2023; Harris,
2021), thick filament biochemical activity (Craig and Padrón, 2022;
Walklate et al., 2022), and high-resolution structures of thick fil-
aments (Dutta et al., 2023; Tamborrini et al., 2023) should prompt
incorporation of thick filament cooperativity/regulation in future
modeling efforts. Cooperation and synergy between experiment,
theory, and computation continue to drive our field forward.
Just as insights from the electron microscope paved the way for
the sliding filament theory (Huxley, 1957), new structures of
protein–protein complexes (Risi et al., 2022; Doran et al., 2023),
and experimental data from diversemodel organisms inform novel
theoretical frameworks of muscle structure-function. Current
modeling results emphasize the need for more accurate quan-
tification of RU–RU structure/function to better understand
myocardial function in health and disease.
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