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Stochastic force generation in an isometric binary
mechanical system

Vidya Murthy'@® and Josh E. Baker'®

Accurate models of muscle contraction are necessary for understanding muscle performance and the molecular modifications
that enhance it (e.g., therapeutics, posttranslational modifications, etc.). As a thermal system containing millions of randomly
fluctuating atoms that on the thermal scale of a muscle fiber generate unidirectional force and power output, muscle
mechanics are constrained by the laws of thermodynamics. According to a thermodynamic muscle model, muscle’s power
stroke occurs with the shortening of an entropic spring consisting of an ensemble of force-generating myosin motor switches,
each induced by actin binding and gated by inorganic phosphate release. This model differs fundamentally from conventional
molecular power stroke models that assign springs to myosin motors in that it is physically impossible to describe an entropic
spring in terms of the springs of its molecular constituents. A simple two-state thermodynamic model (a binary mechanical

system) accurately accounts for muscle force-velocity relationships, force transients following rapid mechanical and
chemical perturbations, and a thermodynamic work loop. Because this model transforms our understanding of muscle
contraction, it must continue to be tested. Here, we show that a simple stochastic kinetic simulation of isometric muscle force
predicts four phases of a force-generating loop that bifurcates between periodic and stochastic beating through mechanisms
framed by two thermodynamic equations. We compare these model predictions with experimental data including
observations of spontaneous oscillatory contractions (SPOCs) in muscles and periodic force generation in small myosin

ensembles.

Introduction

Muscle is a complex and dynamic macromolecular system that is
integral to physiological functions such as locomotion, digestion,
and the beating heart. While high-resolution structures and
single-molecule mechanics have provided significant insights into
molecular structure-function relationships (Guilford et al., 1997;
Finer et al., 1994; Molloy et al., 1995; Baker et al., 2002; Lymn and
Taylor, 1971; Cooke, 1997; Goldman, 1987), the mechanisms of
muscle’s structure-function relationships such as muscle’s power
stroke (the work performed by shortening muscle) remains un-
clear (Baker and Thomas, 2000a, 2000b; Baker, 2022a, 2022b,
2023a). In 1998, we observed within isometric muscle an ensemble
of myosin force-generating switches or discrete lever arm rota-
tions (Baker et al., 1998), each induced by actin binding and gated
by the release of inorganic phosphate (Fig. 1 A). In 1999, we
showed that this ensemble of switches responds to changes in
muscle force like an entropic spring (Baker et al., 1999), and in
2000, we proposed that the shortening of this entropic spring is
the muscle’s power stroke mechanism (Baker and Thomas,
2000a). This differs fundamentally from the conventional de-
scription of a molecular power stroke mechanism (Huxley,
1957) that occurs with the shortening of a molecular spring.

We have since developed a simple two-state thermodynamic
model of muscle force generation that accurately accounts for
the observed muscle force-velocity relationship (Baker and
Thomas, 2000a; Baker, 2022b) and the four phases of muscle
force transients following a rapid perturbation to either muscle
chemistry or muscle force (Baker, 2022b). This simple model also
accounts for muscle’s thermodynamic work loop and has broad
implications for physical chemistry, suggesting a novel ther-
modynamic kinetic formalism (Baker, 2023b, Preprint), a solu-
tion to the Gibbs (mixing) paradox (Baker, 2023c), quantized
thermodynamics (Baker, 2024a, Preprint), and constructive en-
tropic forces in biological systems (Baker, 2024a, Preprint). Here,
we describe novel model predictions for stochastic isometric
force generation, showing that in stochastic simulations, four
phases of a thermodynamic force-generating loop emerge bi-
furcated between periodic and stochastic beating.

Most models of muscle contraction to date are corpuscular
mechanic models that assume that muscle force is determined
from the forces of individual myosin motors (Baker, 2023a). In
contrast, in a thermodynamic muscle model, muscle force is
determined from the free energy of a myosin motor ensemble
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Figure 1. A binary mechanical model. (A) Two-state scheme in which actin
(gray helix) binding to a single myosin motor (ovals) in the MDP state (green)
with bound ADP, D, and phosphate, P, induces a myosin lever arm rotation
upon P release that displaces elements external to that myosin a distance, d,
to form the AMD state (orange). The reversible binding reaction occurs with
forward, f,, and reverse, f_, rates. Myosin motors irreversibly detach from
actin through an active (ATP-dependent) process at a rate v. (B) Muscle force
is represented by a single spring with stiffness k., that on one end (left) is
reversibly stretched a distance d/(aN) with each binding step while the other
end is defined by macroscopic mechanics (here held at a fixed force or
length).

(Baker, 2022b; Baker and Thomas, 2000a). These two theories
are mutually exclusive because the entropic contribution to free
energy does not exist within individual myosin motors. Because
a thermodynamic model transforms our understanding of
muscle contraction, it is imperative to establish and test
thermodynamic mechanisms of muscle contraction. Here,
we continue this 25-year effort (Baker, 2023a) by establishing
the thermodynamic mechanisms of isometric muscle force
generation.

A simple kinetic simulation of the binding reaction in Fig.1 A
accurately describes most key aspects of muscle contraction
(Baker and Thomas, 2000a; Baker, 2022b, 2023a, 2024b). Force
generation by a non-equilibrium binding reaction is described
by a simple spring equation (Eq. 1), where a system spring is
stretched by a binding reaction with rates defined by the force-
dependent binding free energy equation (Eq. 2). Eq. 1 provides a
mathematical solution from which Hill's force-velocity rela-
tionship is derived (Baker and Thomas, 2000a; Baker, 2022b).
The time course of force generation can be determined either by
solving differential equations (continuous) or through stochastic
time steps (discrete). We previously used Matlab to generate
continuous time courses of muscle force and state occupancies
(Baker and Thomas, 2000a; Baker, 2022b, 2024b). However,
these models do not capture the emergent stochastic mechanics
of myosin motor ensembles. Here, we use Python to generate
discrete changes in muscle force and state occupancies (Data S1).
We observe that, framed by Egs. 1 and 2, isometric force gen-
eration follows four phases (binding, ergodic, isothermal, and
catastrophic) that create a force-generating loop as observed in
small myosin motor ensembles (Hwang et al., 2021; Pertici et al.,
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2018) and in spontaneous oscillatory contractions (SPOCs) of the
muscle (Fabiato and Fabiato, 1978). A parametric analysis shows
how the periods and amplitudes of these loops depend on a
limited number of parameters and how under certain conditions
these loops bifurcate between stochastic and periodic beating.
This model reconciles disparate force-generating behaviors ob-
served in different in vitro force studies, makes clear predictions
about the effects of ligand concentrations, system stiffness,
binding kinetics, etc. on force generation, and has novel im-
plications for mechanistic differences between tonic and phasic
muscle.

Materials and methods

Here, we simulate isometric force generation using the ther-
modynamic model of force generation illustrated in Fig. 1 and
formally developed in Baker (2022b, 2023b, Preprint). Single-
molecule mechanic studies show that the formation of a strong
bond between actin (A) and myosin (M) induces a discrete
conformational change (a myosin lever arm rotation) in indi-
vidual myosin motors that displaces elastic elements external to
the motor a distance, d, of 8 nm (Baker et al., 1998; Baker and
Thomas, 2000a; Baker, 2022a; Sweeney et al., 2020). This force-
generating molecular switch occurs through an intermediate
step in the actin-myosin catalyzed ATP hydrolysis reaction,
where actin binding to a myosin motor in the MDP state
(myosin, M, with bound ADP, D, and inorganic phosphate, P)
is gated by the release of P in forming the AMD state (Baker
et al., 1998, 2002). This binding reaction is reversible with for-
ward, f,, and reverse rates, f_, and is pulled from equilibrium
through the ATPase reaction which irreversibly transfers myosin
motors from AMD to MDP at the effective rate, v, for ADP release,
ATP-induced actin-myosin dissociation, and ATP hydrolysis.
Here, we assume ATP hydrolysis is not rate-limiting.

Our computational model is nothing more than a stochastic
kinetic simulation of a force-generating binding reaction (a
spring equation, Eq. 1) with forward and reverse binding rates
defined in terms of the binding free energy (Eq. 2). The collec-
tive force generated when the binding reaction stretches a sys-
tem spring of stiffness, ., is

F =1ty - d - N /(aN),

where d/(aN) is the spring displacement per binding step, Naup
is the number of bound motors (i.e., the net number of steps),
and N is the total number of myosin motors (Baker, 2022b). For
many reasons (see below), the binding reaction can equilibrate
with a force, F, that differs from the equilibrium force, F,, and
ergodicity, a, is the ratio of these forces, a = F/F,. As described in
Baker (2022b, 2024b), the force generated by a step, d, of
an individual motor equilibrates with and thus is distributed
among all N myosin motors. This is analogous to a displacement, d,
by one of N equilibrated parallel springs that displaces the effec-
tive spring a distance d/N. When on average, a fraction, a, of
myosin motors equilibrate with the equilibrium force, d is
distributed among aN motors. When all motors equilibrate, the
displacement is d/N. When only one of N motors equilibrates,
the displacement is d (this is the assumption in corpuscular
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Figure 2. Simulations using N = 30, Ky = 2 pN nm™2, and v = 50 s™* compared with Egs. 1 and 2. (A-C) Plots of Egs. 1 (blue curve) and 2 (red curve) are
overlaid with replots (black trace) of simulated time courses of (B) Nypp (green trace), Naup (orange trace), and (C) force. Four phases of isometric force
generation (binding, ergodic, isothermal, and catastrophic) are labeled both in the Nypp domain of force (Egs. 1and 2, A) and in the time domain of force (C). In
these simulations, AG® = -5.7 RT and d = 8 nm which according to Eq. 2 gives F, = -NAG®/d = 90 pN when Naup = Nupp-.

mechanic models where force generation is not distributed
among motors) (Huxley, 1957). Thus, values for a range from
1/N to 1.

Unlike in Baker (2022b), here, we substitute a = F/F, into the
above equation to obtain

_ Ksys(ﬂ\rAMDl:'u
F= [ ()

From this equation, the time course of F can be determined
from a simple kinetic simulation of the binding reaction (the
time course of Nayp). Eq. 1 is plotted in Fig. 2 A (blue line).

When the binding reaction equilibrates, Eq. 1 no longer de-
fines F. Instead, F is defined by the binding free energy equation
derived in Baker (2022b) as

ArG = AG® + kBT . ln(NAMD/NMDP) +F. d/(aN),

where A,G is the binding reaction free energy, AG® is the stan-
dard binding free energy, the kgT - In term is a change in en-
tropic energy of the spring (Baker, 2022b, 2023b, Preprint), and
Nupp and Nyyp are the numbers of motors in the bound and
unbound states. Here, for large Nayp, the Nayp + 1 term in Baker
(2022b, 2023b, Preprint) is approximated as Nayp. If the binding
reaction equilibrates in an ergodic state (a = 1), an equilibrium
(A.G = 0) force, F,, is reached

F, = -N[AG® + ksT - In(Nanp/Nupe)] /d. (2)

This equation is plotted in Fig. 2 A (red line).

When the binding reaction equilibrates with a non-equilibrium
force (F < F,) in a non-ergodic state (a < 1), substituting Eq. 2 into
the free energy equation gives A,G = (F,d/N - Fd/aN). We have
shown that this equation forms the basis for Hill's muscle force-
velocity relationship (Baker and Thomas, 2000a), where the
binding reaction equilibrates with a non-equilibrium isotonic
force, F = aF, and the free energy available for work is relative
to the equilibrium force (a = 1). We have shown that during
unloaded muscle shortening, intermolecular interactions gen-
erate a non-ergodic frictional force, Fy, against which muscle
shortens, in which case Fy= aF,, where aF, is Hill's coefficient of
shortening heat (Baker, 2022b). We have shown that during
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phase 2 (the binding reaction) of a transient force response to a
chemical or mechanical perturbation of isometric force, the
binding reaction can generate force in series elastic elements
that result in a non-equilibrium force, F = aF,, where the phase 3
response occurs when F approaches F,. Here, we show that the
force, F, generated in isometric muscle upon equilibration of
the binding reaction (Fig. 2 A, binding phase) can be less than
F,(a<1).

As described in Baker (2023b, Preprint) (which uses a no-
menclature slightly different from that in Baker [2022b]), the
probability of a forward binding step relative to a reverse
binding step, f./f-, is determined by the binding free energy,
where f, and f_ are the forward and reverse binding rates, re-
spectively. Specifically,

-Fd NAMD 5o
Bk Ting2MD-a

% Sl (3)

where the binding free energy is in the exponent. According to
Eq. 3, when the binding reaction equilibrates (f, = f_), net force
generation through Eq. 1 stops because there is no net change in
Nanp- In our simulations, the ATPase reaction continuously pulls
the binding reaction out of equilibrium, which upon re-equilibration
actively generates additional force.

In short, our computer modeling is nothing more than a
simple kinetic simulation of a binding reaction (Eq. 1) with
forward and reverse binding rates (from Eq. 3)

Fd
0.5 ﬂ)
f. = f’Nuope (kBT

and

0. M)
f- = f*Nampe 5( ot

where f,° and f_° are forward and reverse rate constants, re-
spectively, and the partitioning between forward and reverse
rates is arbitrarily chosen to equal 0.5.

Four phases of isometric force generation emerge from this
simple kinetic simulation (Fig. 2 A). The first phase (binding
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phase, Eq. 1) is the binding reaction which occurs at the binding
relaxation rate and terminates when the binding reaction
equilibrates. Both the second and third phases occur when the
ATPase reaction perturbs the binding reaction from equilibrium
which upon re-equilibration generates additional force at a rate
v. In a non-ergodic state (a < 1) this active force generation in-
creases ergodicity, a = F/F, (ergodic phase). In an ergodic state
(a = 1), active force generation increases F, along the binding
isotherm (isothermal phase) corresponding to a decrease in
N (Eq. 2). The isothermal phase is not somehow prescribed in
our simulations; it emerges from the definition of binding rate
constants in terms of binding free energy, which forces the re-
action to equilibrate along the binding isotherm. When Nupup
equals zero, force can no longer be maintained, and F is set to
zero (catastrophic phase), completing the loop.

Our stochastic simulations of the binding reaction (Fig. 1) are
developed using Python. Briefly, the state of each of N myosin
motors is stored in an array. To determine if a motor leaves its
current state, a random number is generated for each motor
with each microsecond time step and compared with the net rate
out of a motor’s current state. If a motor leaves a state, a second
random number is generated and compared with the relative
rates of multiple pathways out of a motor’s current state to de-
termine which of those pathways the motor takes. In all simu-
lations, we used model parameters consistent with experimental
studies: f,° = 30 st and f_° = 0.1 57! (rate constants that give a AG®
of -5.7 RT) and d = 8 nm (Woledge et al., 1985; Guilford et al.,
1997).

Online supplemental material

Fig. S1 shows the supplement to simulations in Fig. 3 varying
system spring stiffness, gy, using v = 0, N = 30. Fig. S2 shows
the supplement to simulations in Fig. 4 varying N, using v = 0
and Kgys = 2 pN/nm. Fig. S3 shows the supplement to simulations
in Fig. 5, varying v, using N = 30 and s = 2 pN/nm. Fig. S4
shows the supplement to simulations in Fig. 6 varying sy, using
v =50 s7' and N = 30. Fig. S5 the shows supplement to simu-
lations in Fig. 7 varying N, using v = 50 s7! and K.y = 2 pN/nm.
Data S1 provides the sample python code used for simulations.

Results

Here, we performed simple stochastic kinetic simulations of a
force-generating binding reaction (Eq. 1) with binding rates
defined in terms of the binding free energy (Eq. 3) to obtain time
courses of the occupancy of the intermediate states AMD (Nap,
Fig. 2 B, orange trace) and MDP (Nypp, Fig. 2 B, green trace) in
the actin-myosin ATPase reaction and the corresponding time
courses of F (Fig. 2 C). These time courses (Fig. 2, B and C) are
then replotted as F versus Nypp (Fig. 2 A) so that they can be
compared with Egs. 1 (blue line) and 2 (red line).

These simulations result in up to four phases of isometric
force generation (Fig. 2 A). Starting at F = 0 and Nayp = O, the
non-equilibrium binding reaction (binding phase) generates
force at a rate f, + f_. If this is much faster than the ATPase rate,
v, the binding reaction equilibrates before the ATPase reaction
begins to pull the binding reaction from equilibrium at a rate, v,
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generating an active force upon re-equilibration of the binding
reaction. If the binding reaction equilibrates at a non-equilibrium
(F < F,), non-ergodic (a < 1) force, then active force generation
increases a = F/F, (ergodic phase) until a = 1. At an equilibrium
(F = F,) force, active force generation increases F, along the
binding isotherm (isothermal phase), corresponding to a de-
crease in Nayp (Eq. 2). This occurs, not because it is explicitly
prescribed in our simulations, but because binding rates that
are defined in terms of the binding free energy (Fig. 3 and Fig.
S1) constrain equilibration along the isotherm. In other words,
a decrease in Nuyp is required to balance the equilibrium free
energy equation when F, increases through active force gen-
eration. The isothermal phase terminates when Nayp = 0, at
which point there are no bound myosin motors to maintain
force, and F is set to zero (catastrophic phase). This returns the
simulation back to the starting parameters Nyyp = 0 and F = 0,
completing a force-generating loop that then repeats.

The simulated force-generating loop is framed by Eqs. 1 and
2 (Fig. 2 A); however, because these equations describe ideal
thermodynamic processes, under non-ideal conditions, the
simulated force-generating loop need not follow these equa-
tions. For example, because binding rates are defined in terms
of the binding free energy, force generation during the binding
phase (Eq. 1) is influenced by Eq. 2. As another example, if the
ATPase rate, v, is comparable to the binding relaxation rate, the
binding reaction never reaches a non-ergodic equilibrium, and
the ergodic phase is held far from equilibrium (see below). Here,
we perform a parametric analysis of this force-generating loop.
We begin by simulating isometric force generation through
equilibration of the binding reaction alone (v = 0).

The system spring stiffness, i, is highly variable and is
determined by many factors including protein stiffness, the
number of actin-bound myosin motors, structural proteins in
the contractile assembly, as well as the extracellular matrix
(Westerhof et al., 2006; Huxley and Tideswell, 1996). In Fig. 3,
we consider the effects of the system spring stiffness, i;,;, on the
binding reaction. The left panels in Fig. 3 are simulated time
courses of both force, F, and ergodicity, a, (inset), and the right
panels are F versus Nypp from the same simulations overlaid
with Egs. 1 and 2. Panels from top to bottom are simulations
performed for ), values ranging from 0.01 to 10 pN/nm.

When the system spring stiffness is low (Fig. 3, A and B, #, =
0.01 pN/nm), myosin motors rapidly bind actin with no signif-
icant force generation such that a never exceeds 1/N. Because
the total force, F, generated by N myosin motors never exceeds
the equilibrium force of one myosin motor, F,/N, the maximum
system force is unable to balance the chemical force of even one
motor. Thus, the reaction proceeds to Nayp = N as it would in
solution in the absence of mechanical force.

At higher stiffnesses (Fig. 3, C and D, ,,, = 0.16 pN/nm), the
value of a rapidly exceeds 1/N, and the binding reaction and
corresponding force generation equilibrate at a non-ergodic
isotherm when Nayp = Nypp. This results from Eq. 3, which
shows that starting from Nanp/Nuypp = 1, with a reverse binding
step the decrease in both F and Nuyp favors net force generation
f. > f- and with a forward binding step the increase in F and
Namp favors a net reversal of force generation, f. < f_. This
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Figure 3. Simulations varying system spring stiffness, ks, using v = 0, N = 30. (A-H) Left panels are simulated time courses of force, F, and ergodicity, a
(inset), and right panels are F and Nypp replotted and overlaid with Egs. 1 (blue curve) and 2 (red curve) at Ky, values of (A and B) 0.01 pN/nm, (C and D) 0.16
-5.7 RT and d = 8 nm, which according to Eq. 2 gives F, = -=NAG®/d = 90 pN
when Nayp = Nypp. The simulated time courses of state occupancies are in Fig. S1.
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Figure 6. Simulations varying Ksys, using v = 50 s> and N = 30. (A-H) Left panels are simulated time courses of force, F, and right panels are F and Nypp
replotted and overlaid with Eqgs. 1 (blue curve) and 2 (red curve) using ks values of (A and B) 0.01 pN/nm, (C and D) 0.16 pN/nm, (E and F) 2 pN/nm, and (G and
H) 10 pN/nm. In these simulations, AG® = -5.7 RT and d = 8 nm which according to Eq. 2 gives F, = =NAG®/d = 90 pN when Naup = Nypp. The simulated time
courses of state occupancies are in Fig. S4.
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Figure 7. Simulations varying N, using v = 50 s and K,y = 2 pN/nm. (A-H) Left panels are simulated time courses of force, F, ergodicity, a (inset), and right
panels are F and Nypp replotted and overlaid with Egs. 1 (blue curve) and 2 (red curve) using N values of (A and B) 5, (C and D) 15, (E and F) 30, and (G and H)
100. In these simulations, AG® = -5.7 RT and d = 8 nm which according to Eq. 2 gives F, = ~NAG®/d = 3N pN when Nayp = Nupp. The simulated time courses of
state occupancies are in Fig. S5.
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effectively creates a restoring force that maintains maximum
entropy, Nayp = Nupp (Baker, 2023b, Preprint). This is the case
independent of values for f, and f_ in the absence of force, as
experimentally observed (Baker et al., 1999). In our simulations,
spontaneous ergodic force generation is observed where F ap-
proaches F,. This is because the effective displacement, d/(aN),
by a forward step is larger than that of the reversal of that step
(the latter occurs at a higher force and larger ergodicity, a). At
sufficiently high stiffness, adiabatic force generation equili-
brates with the equilibrium isotherm in an ergodic state (Fig. 3,
G and H).

In Fig. 4 and Fig. S2, we consider the effects of the number, N,
of myosin motors on simulated binding reactions. The left panels
are plots of the simulated time course for both force, F, and
ergodicity, a, (inset), and the right panels are F versus Nypp from
the same simulations overlaid with Eqgs. 1 and 2. Panels from top
to bottom are simulations performed with values for N ranging
from 5 to 100 myosin motors. At low N (N = 5), adiabatic force
generation directly equilibrates with the equilibrium isotherm
with no ergodic phase. The ergodic force required to reach the
equilibrium isotherm increases with N.

Fig. 5 and Fig. S3 show simulations of the model in Fig. 1
introducing an ATPase reaction that cycles at a rate, v. The left
panels are plots of the simulated time course of both force, F, and
ergodicity, a, (inset), and the right panels are F versus Nypp from
the same simulation overlaid with Egs. 1 and 2. Panels from top
to bottom are simulations with values for v increasing from 1 to
200 sec™..

Force generation simulated at low v not surprisingly re-
sembles simulations in Fig. 4 with v = 0, where the binding
reaction and corresponding force generation equilibrate at a
non-ergodic force when Nayp = Nypp. With increasing v, the
ATPase reaction pulls the binding reaction further from a non-
ergodic equilibrium (Nayp < Nypp) in a non-equilibrium steady
state. During this steady state, for every myosin motor irre-
versibly transferred from AMD to MDP through the ATPase
reaction, one myosin motor generates force through the binding
reaction, increasing the ergodicity, a = F/F, until a = 1. At this
point, a is set to 1, and force generation increases F, along the
binding isotherm (Eq. 2), corresponding to a decrease in Nayp.
Isothermal force generation continues until the last bound
myosin motor detaches, at which point a catastrophic loss of
force, F, returns the system to its initial state. This four-phase
force-generating loop repeats, resulting in periodic force gen-
eration. The maximum amplitude of periodic force generation
is the maximum force along the isotherm (Eq. 2, Nypp = N - 1)
with a period that varies with the inverse ATPase rate, v. The
maximum periodic amplitude is unaffected by v because the
force along the isotherm at which the last bound myosin motor
detaches is independent of v (right panels).

However, at sufficiently high rates, v, the force-generating
loop is right-shifted to a point where ergodic force generation
occurs when most motors are detached (small Nayp), increasing
the probability that the few remaining bound motors sponta-
neously detach before F reaches the isothermal force, F,. This
results in stochastic force-generating loops with stochastic am-
plitudes and durations that are smaller than those of periodic
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loops. In Fig. 5, E and F (v = 100 s7'), one out of nine force-
generating loops terminates through this stochastic mecha-
nism with a smaller period and amplitude. In Fig. 5, Gand H (v =
200 s71), most force-generating loops terminate stochastically
and exhibit stochastic periods and amplitudes. The probability of
stochastic periodic force generation increases at low N, low f,,
high x,,, and high f_.

Fig. 6 and Fig. S4 show that increasing i, decreases the
period but not the amplitude of force-generating loops because
increasing u,y increases the steepness of the force-generating
binding reaction (Eq. 1 and Fig. 6 right panels blue curves)
without affecting the isotherm (Eq. 2 and Fig. 6 right panels red
curves), creating smaller loops (shorter periods) of the same
amplitude. Fig. 7 and Fig. S5 show that increasing N decreases
the period and increases the amplitude of force-generating loops
because increasing N increases the isotherm (Eq. 2 and Fig. 7
right panels red curves), creating larger loops (longer periods)
with larger amplitudes.

Discussion

In almost every model of muscle contraction to date, muscle
force is determined from myosin motor forces, where the me-
chanical state variable is the force of a myosin motor (Huxley,
1957; Hill, 1974; Pate and Cooke, 1989; Linari et al., 2010; Jarvis
et al., 2021; Campbell et al., 2011; Mansson, 2020). These models
are based on the obsolete 17th-century philosophy of corpuscular
mechanics disproven by Carnot 200 years ago (Baker, 2023a). In
contrast, according to a thermodynamic muscle model (Baker
and Thomas, 2000a; Baker, 2022b), muscle force is deter-
mined from the free energy of a myosin motor ensemble (Eq. 2),
where the mechanical state variable is muscle force, F.

In 1938, A.V. Hill observed that muscle mechanics, energet-
ics, and kinetics are all functions of muscle force, F, implying
that F is the mechanical state variable of a thermodynamic
muscle system. Based on these observations Hill developed a
thermodynamic equation that accurately describes the rela-
tionship between muscle force, F, muscle shortening velocities,
V, muscle power output, and muscle heat output (Hill, 1938). In
1999, we observed that the mechanics, kinetics, and energetics of
force-generating myosin switches in muscle are functions of
muscle force, F (Baker et al., 1999), which is to say that muscle
force is determined from the free energy of an ensemble of
myosin switches. Based on these observations, we established
that the molecular mechanism of muscle contraction is the
shortening of an entropic spring consisting of an ensemble of
force-generating myosin switches (Baker et al., 1999; Baker,
2022b), where the entropic spring bridges the gap between
force-generating myosin switches and A.V. Hill's thermody-
namic muscle force (Baker and Thomas, 2000a).

According to thermodynamics, muscle force is mechanically
constrained (defined) on only one thermal scale—the thermal
scale of muscle. That is, muscle force, F, is the only mechanical
state variable that can be defined in a model of muscle con-
traction. At this thermal scale, the stochastic, thermally fluctu-
ating forces of molecules on all smaller thermal scales (including
the scale of individual myosin motors) are defined by muscle
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force, F, not the other way around. In other words, myosin
motors function under the constraint of F with their kinetics and
energetics defined by F not by molecular forces that corpuscu-
larians imagine to be constrained on the thermal scale of muscle.

Stochastic models are necessary for understanding the
emergent behaviors of thermally fluctuating forces on a given
thermal scale. Here, we develop a stochastic model of thermally
fluctuating forces on the thermal scale of muscle and observe
bifurcation between periodic and stochastic dynamic force
generation that cannot be observed in mathematical models or
continuous computer simulations. The fluctuating structures,
degrees of freedom, thermal energy, and entropy defined on the
thermal scale of muscle all differ from those defined on smaller
scales. For example, the entropic contractile force (Eq. 2) defined
here in terms of global protein structures on the thermal scale of
muscle differs from entropic forces defined in terms of protein
structural components on smaller thermal scales (e.g., the en-
tropic folding forces of proteins). A thermodynamic muscle
model implies that a change in thermal scale is a physical, dis-
crete transformation (Baker, 2023b, Preprint, 2024a, Preprint)
and that stochastic simulations cannot span thermal scales but
instead must be run as nested simulations of one coarse-grained
thermal scale at a time (Aboelkassem et al., 2019), where the
simulations presented herein are coarse-grained on the thermal
scale of muscle.

Because a thermodynamic model upends our current un-
derstanding of how muscle works, additional testing is needed.
We show here that four phases of force generation emerge from
a simple kinetic simulation of a binding reaction (binding, er-
godic, isothermal, and catastrophic), creating a thermodynamic
force-generating loop that repeats periodically. The force-
generating binding reaction (Eq. 1, binding phase) and isother-
mal force generation (Eq. 2, isothermal phase) are different
thermodynamic phases of force generation that are both well-
defined mathematically. If the binding reaction fails to equili-
brate (along Eq. 1) with the binding free energy, it equilibrates in
a non-ergodic state (a < 1) from which an active ergodic phase
provides a pathway from Eq. 1 to Eq. 2 (ergodic phase). The
phase from Eq. 2 back to Eq. 1 (catastrophic phase) occurs with a
catastrophic loss of force.

Muscle must first generate force before it generates power
output. For example, in lifting a dumbbell, a force equal to and
opposite the weight of the dumbbell must be generated within
muscle before power can be transferred to a gravitational po-
tential upon lifting the dumbbell. These are the first two phases
of muscle’s thermodynamic work loop. We previously described
the first phase of muscle’s thermodynamic work loop as the
binding phase of force generation (Baker, 2022b); however, if
power output can be gated, for example, by valves in the heart,
this force-generating phase in a work loop may include ergodic
and isothermal phases of force generation as well. The second
phase of the muscle’s thermodynamic work loop is the short-
ening of the entropic spring (Baker, 2022b), or the thermody-
namic power stroke, which occurs with a decrease in force along
the binding isotherm (Eq. 2, right-to-left in Fig. 2 A). In other
words, a thermodynamic power stroke is the reversal of iso-
thermal force generation (Eq. 2, left-to-right in Fig. 2 A). The
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implication is that the isothermal force generated prior to a
power stroke increases the size of the subsequent power stroke
(e.g., increases the stroke volume in a cardiac cycle). This sug-
gests that the muscle’s thermodynamic work loop is optimized
by tuning parameters like those varied herein to maximize
isothermal force generation prior to a power stroke.

This contrasts with the conundrum posed by a recent cor-
puscular mechanic characterization of myosin’s lever arm ro-
tation as a force-generating power stroke. If actin-induced lever
arm rotations generate force, large forces are generated when
many motors are in a post-power stroke, Nayp, state, or

F = Nayp + Funis

where F,,; is the average force of a bound motor. According to
this equation, at large forces, the muscle cannot generate power
output because most motors are in a post-power stroke state.
This equation also shows that the spontaneous detachment of
all myosin motors becomes increasingly improbable at higher
forces inconsistent with periodic force generation.

In contrast, in a thermodynamic model, isothermal force
generation primes motors for a power stroke and increases the
probability of a spontaneous detachment of all myosin motors.
According to Eq. 2,

Fo-AG® + kpT - In(Nypp/Nawp ),

Nanp decreases with an increase in force because the entropy
of the ensemble of switches decreases [kg-In(Nyipp/Nanp)] with
an increase in force (Baker, 2023b, Preprint). Therefore, force
generation detaches myosin motors, priming them for the sub-
sequent power stroke that occurs with actin-myosin binding
along the isotherm in the opposite direction of force generation.
Here, the probability of spontaneous detachment of all myosin
motors increases with increasing force and is assured when F
exceeds that at Nayp = 1.

Periodic force-generating loops are observed in in vitro
studies of small myosin motor ensembles (Hwang et al., 2021)
and in SPOCs in muscle (Fabiato and Fabiato, 1978; Martin et al.,
2003), indicating that even though it is not physiological iso-
thermal force generation occurs in these systems. Consistent
with the simulations herein, Kaya and colleagues observed
force-generating loops in small myosin motor ensembles that
bifurcate between periodic and stochastic beating (Hwang et al.,
2021; Kaya et al., 2017). In these studies, the effective step size,
d/(aN), is observed to decrease with increasing force, consistent
with force-dependent ergodicity (a = F/F,). The kinetics, perio-
dicity, stochasticity, and amplitudes of these force-generating
loops can be measured in these experiments under different
conditions (e.g., ATP, ADP, P concentrations, kinetic rates,
optical trap stiffness, numbers of myosin motors, N, etc.). To
test our model, these experiments can be compared with simu-
lations like those presented herein. Because very few adjustable
parameters are available in this model to compel it to fit data,
experiments that differ significantly from the model predictions
herein would disprove the model. In other words, the model is
highly predictive and thus easily tested.

A binary mechanical model accounts for the apparent dis-
crepancy between the periodic force generation observed by
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Kaya and colleagues (Hwang et al., 2021) and the steady-state
non-ergodic stall force observed by Lombardi and colleagues
(Pertici et al., 2018). Intramolecular forces are non-ergodic and
prevent myosin motors from equilibrating with F,,, stalling force
generation in a frustrated, non-ergodic (a < 1) steady state, F =
aF,. In the experiments of Kaya and colleagues, intramolecular
forces are minimized by flexible S2 domain tethers, enabling
ergodicity (a = 1) and force-generating loops. In experiments of
Lombardi and colleagues, there are no flexible tethers, and in-
tramolecular forces stall force generation in a non-ergodic state,
preventing periodic force generation. Kaya observed stalled
non-ergodic force generation at low [ATP], consistent with our
observations that intramolecular interactions increase at low
[ATP] (Stewart et al., 2013). It remains unclear whether iso-
metric muscle force results from a non-ergodic steady-state
force or from asynchronous force-generating loops summed
over many actin filaments.

Intramolecular forces slow the rate of ADP release, increasing
the number of bound motors, which further increases both in-
tramolecular forces and the number of bound motors. These
intermolecular forces are thought to contribute to sustained
tonic muscle contractions, which implies that tonic muscle force
is non-ergodic. A more rapid (phasic) relaxation of muscle force
requires fewer bound motors, which is achieved through iso-
thermal force generation.

There are several discrepancies between our simulations and
experimental observations. First, in in vitro force assays, rela-
tively long periods with no mechanical activity are observed
between force-generating loops. This is easily reproduced in
simulations (Kad et al., 2005) by assuming a slower binding rate
when all myosin motors are detached and actin filaments are no
longer held in close proximity to the surface. With the goal of
characterizing periodicities and amplitudes, we did not include
this conditional rate in our simulations. Second, in Figs. 6 and 7,
we used a relatively slow rate, v (= 50 s7Y), to study the effects of
N and ), on periodicity and amplitude. A more physiological v
(=200 s7!) at N = 5 results in a larger number of single binding
events as observed experimentally.

Simple kinetic simulations of a force-generating binding re-
action account for the muscle force-velocity relationship, the
four phases of muscle force transients, the four phases of a
muscle work loop, and here the four phases of both stochastic
and periodic force-generating loops (Baker, 2022b). The binding
equation (Eq. 1) describes phase 2 of a force transient, phases
1and 3 of a work loop, and phase 1 of isometric force generation.
The free energy equation (Eq. 2) describes phase 4 of a force
transient, phases 2 and 3 of a work loop, and phase 3 of isometric
force generation. It is remarkable that these diverse and com-
plex mechanochemical behaviors all emerge from a single mo-
lecular mechanism (Fig. 1 A). This simple binary mechanical
model provides a radically new perspective on the mechanisms
of muscle and motor ensemble function, which we have been
developing and testing for 25 years.
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Figure S1. Supplement to simulations in Fig. 3 varying system spring stiffness, ks, using v = 0, N = 30. (A-D) Simulated time courses of Nypp (green
trace) and Nayp (orange trace) are plotted at values for ks of (A) 0.01 pN/nm, (B) 0.16 pN/nm, (C) 2 pN/nm, and (D) 10 pN/nm.
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Figure S2.  Supplement to simulations in Fig. 4 varying N, using v = 0 and Ky = 2 pN/nm. (A-D) Simulated time courses of Nyupp (green trace) and Nawp
(orange trace) are plotted at values for N of (A) 5, (B) 15, (C) 30, and (D) 100.
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Figure S3. Supplement to simulations in Fig. 5, varying v, using N = 30 and Ky = 2 pN/nm. (A-D) Simulated time courses of Nyupp (green trace) and Naup
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Figure S4.  Supplement to simulations in Fig. 6 varying K.y, using v = 50 s> and N = 30. (A-D) Simulated time courses of Nypp (green trace) and Nayp
(orange trace) are plotted at ks values of (A) 0.01 pN/nm, (B) 0.16 pN/nm, (C) 2 pN/nm, and (D) 10 pN/nm.
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Figure S5.  Supplement to simulations in Fig. 7 varying N, using v = 50 s and Ky = 2 pN/nm. (A-D) Simulated time courses of Nypp (green trace) and
Namp (orange trace) are plotted at N values of (A) 5, (B) 15, (C) 30, and (D) 100.

Provided online is Data S1. Data S1 provides the sample python code used for simulations.
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