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Machine learning meets Monte Carlo methods for
models of muscle’s molecular machinery to
classify mutations
Anthony Asencio1,2,3,4*, Sage Malingen2,4*, Kristina B. Kooiker3,4,6, Joseph D. Powers7, Jennifer Davis2,4,5,6, Thomas Daniel1,2,4, and
Farid Moussavi-Harami3,4,5,6

The timing andmagnitude of force generation by a muscle depend on complex interactions in a compliant, contractile filament
lattice. Perturbations in these interactions can result in cardiac muscle diseases. In this study, we address the fundamental
challenge of connecting the temporal features of cardiac twitches to underlying rate constants and their perturbations
associated with genetic cardiomyopathies. Current state-of-the-art metrics for characterizing the mechanical consequence of
cardiac muscle disease do not utilize information embedded in the complete time course of twitch force. We pair dimension
reduction techniques and machine learning methods to classify underlying perturbations that shape the timing of twitch
force. To do this, we created a large twitch dataset using a spatially explicit Monte Carlo model of muscle contraction.
Uniquely, we modified the rate constants of this model in line with mouse models of cardiac muscle disease and varied
mutation penetrance. Ultimately, the results of this study show that machine learning models combined with biologically
informed dimension reduction techniques can yield excellent classification accuracy of underlying muscle perturbations.

Introduction
Vertebrate hearts are comprised of highly specialized cells that
cyclically contract throughout an organism’s lifespan. Each cell is
composed of axially connected contractile units called sarcomeres
(Powers et al., 2021; Willingham et al., 2020). Sarcomeres, in turn,
contain axially oriented, compliant protein filaments—the inter-
digitating thick and thin filaments. Thin filaments extend from
Z-disks (which bracket the ends of the sarcomere) and contain a
double-helical strand of actin monomers to which myosin motors
can bind. Along the thin filaments are troponin–tropomyosin
protein complexes, which are responsible for calcium-dependent
regulation of contraction. The myosin molecular motors that ul-
timately power contraction constitute the bulk of the thick fila-
ment; they extend radially from the thick filament backbone in the
form of a three-start helix (Fig. 1). For a review of the structure
and function of the sarcomere, see Powers et al. (2021).

Sarcomere contraction follows the electrical activation of the
cell. Electrical activation triggers a cascade of biochemical and
biophysical events, beginning with an influx of calcium into the
sarcomere and the calcium-dependent activation of the thin fila-
ments. The activation of the thin filaments results in the
troponin–tropomyosin complex exposing actin-binding sites to
myosin motors, which probabilistically bind and form force-
generating cross-bridges between the filaments. During activa-
tion and force generation, the thin filament regulatory protein
complexes andmyosinmotors undergo a series of state transitions
determined by a host of rate constants (Fig. 1 D). Perturbations to
any of these complex inter- and intrafilament interactions can
lead to abnormal contractility and, ultimately, to pathological
conditions (Davis et al., 2016; Feest et al., 2014; McKenna et al.,
2017; Powers et al., 2020; van der Velden and Stienen, 2019).
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Several metrics have been developed to characterize the
mechanical consequences of cardiac muscle diseases caused by
underlying dysfunction of sarcomeric proteins. For unloaded
cells, measures such as the magnitude of cell/sarcomere short-
ening or the rate of shortening and relaxation are commonly
reported (Davis et al., 2016; Feest et al., 2014; Toepfer et al.,
2020). Additionally, under isometric conditions, peak twitch
forces and the time constants of their activation and relaxation
can be measured from single-cell or multicellular preparations
(Powers et al., 2020; Zaunbrecher et al., 2019). A recently de-
veloped and successful metric for classifying cardiomyopathy
phenotype is the tension–time index (TTI) associated with
twitch forces. This index is computed from the integral of the
tension–time relationship of a twitch (the impulse of a twitch):
the area of pathological twitch is subtracted from that of a
control twitch, both normalized to the peak force of the control
twitch. The TTI has been shown by several groups to be pre-
dictive of cardiomyopathy phenotype (hypertrophic or dilated)
in murine- or human-induced pluripotent stem-cell-derived
(hiPSC-CM) cardiomyocytes (Davis et al., 2016; Hinson et al.,
2015; Powers et al., 2020; Sewanan et al., 2019). TTI is likely
predictive because it is a summative measurement that involves
both activation and relaxation kinetics. It is also an integration
function and provides a measure of noise reduction. Myocytes
sense the abnormal tension and remodel with the activation of
pathways such as MEK–ERK1 and calcineurin.

While the TTI usefully compresses time course data into a
single number, integration necessarily loses the temporal fea-
tures associated with a twitch. Currently, it is unknown if the
time course of twitch force embeds information about the un-
derlying sarcomeric function. We suggest that there is mean-
ingful information about the underlying complex interactions
within the sarcomere reflected in the shape of a cardiac twitch.
This information could be encoded in the subtle temporal fea-
tures of activation and relaxation that alter the overall shape of
the tension–time trace.

Connecting temporal features of cardiac twitches to under-
lying rate constants and their perturbations associated with
genetic cardiomyopathies remains a fundamental challenge.
Addressing this challenge requires (1) large data sets of twitches
and (2) the development and validation of data analytic methods.
Therefore, we used biophysical simulations to produce large
data sets for feature extraction and building classifiers. Here, we
combine computational simulations of cardiac twitches with
machine learning (ML) methods to address two key questions:
(1) what features of cardiac twitches best reflect perturbations in
the biochemical and biophysical determinants of force genera-
tion? and (2) can subtle differences in the features be used to
classify disease states given variation and stochasticity in data?
For the simulations we use here, we modify our previously
published spatially explicit model of muscle force generation to
account for calcium activation of the thin filament (Powers et al.,
2018; Tanner et al., 2012; Williams et al., 2013). We use calcium
transients derived from previously measured experimental data
(Sparrow et al., 2019) to drive activation in our simulations, and
compute the temporal pattern of force during a twitch. We then
introduce perturbations to specific rate constants that mimic

alterations in thin and thick filament activation associated with
genetic cardiomyopathies. The twitch forces from these simu-
lations mirror changes observed experimentally. Harnessing
this large, labeled data set, we used ML methods to leverage
temporal features embedded in the twitches for classifying
disease states. This study reveals that dynamic features of
twitches can delineate normal and pathological conditions; ad-
ditionally, it lays groundwork for linking observed muscle
function to underlying molecular mechanisms.

Materials and methods
Spatially explicit half-sarcomere model
We build upon previous spatially explicit models of muscle
contraction (Daniel et al., 1998; Powers et al., 2018; Tanner et al.,
2012; Williams et al., 2013). In this current study, we have in-
corporated both thin filament regulation and titin mechanics
into our previous models and have added a data-driven calcium
transient in order to simulate a twitch (Powers et al., 2018;
Sparrow et al., 2019; Tanner et al., 2012).

As many aspects of this model have been described previ-
ously (Daniel et al., 1998; Powers et al., 2018; Tanner et al., 2012;
Williams et al., 2013), we only briefly summarize it here. Our
spatially explicit multifilament model of the half-sarcomere is a
stochastic, Monte Carlo–based, kinetic model consisting of eight
actin thin filaments and four myosin thick filaments arranged in
a double-hexagonal lattice (a 2:1 thin to thick filament ratio,
Fig. 1 A). Since we model known protein mutations with unclear
twitch dynamics, it is particularly important to simulate rele-
vant interfilament interactions explicitly (such as troponin ac-
tivity), instead of modeling overall force output from themuscle.

Thick and thin filaments are modeled as compliant helical
structures. The thin filament is a double helix of actinmonomers
imbued with tropomyosin strands and Ca2+-binding troponin
sites spaced every seven actin monomers. The thick filament is
modeled as a three-start helix with myosin crowns colinearly
spaced every 43 nm. The calcium-activated thin filament regu-
latory processes and crossbridge interactions are simulated
within a network of elastic linear and torsional springs. The
axial and radial location of each myosin head determines the
angle and extension of the crossbridge springs and the force
generated by the crossbridge (Fig. 1 B). We added six springs
representing titin to each of the four thick filaments, each of
which spans the length of the I-band and anchors to the Z-line.
We followed the analysis of Powers et al. (2018) by using a
nonlinear elastic contribution of titin governed by a simple
exponential:

F � a.e b.ΔL( ),

where F is the local force, ΔL is the local titin deformation, and a
and b control the magnitude and non-linearity of titin stiffness,
respectively.

Crossbridge state transitions are based on a three-state
crossbridge model for attachment, force generation, and de-
tachment. At each time-step, we cycle through the myosin mo-
tors, allowing each a series of random number generator checks
to determine crossbridge state updates, transitioning through
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three states, XB1–XB3, as shown in Fig. 1 D. Thin-filament acti-
vation is modeled with the following states: (1) calcium binding
to cTnC, (2) change in the cTnC–cTnI interaction (newly added
to the model), and (3) thin filament activation via movement of
tropomyosin that allows myosin binding (Fig. 1 D). Our starting
point (base model) for all transition rates and spring constants is
based on recent analyses using this model from (Powers et al,
2018) and is summarized in Fig. 1 D and Table 1.

Simulations parameters
The simulations were implemented in Python, and the code is
available in our Github repository (Asencio et al, 2019). The
spatially explicit model is prescribed by dozens of parameters
that may be organized into two categories: biochemical param-
eters and experimental parameters. The four experimental pa-
rameters are sarcomere length (1,150 nm), calcium concentration
(pCa 4.0), lattice spacing (12.85 nm), and Poisson ratio (constant
spacing, 0.0). By default, these parameters remain constant
throughout the course of a simulation. The simulation frame-
work also allows sarcomere length, calcium concentration, and
lattice spacing to be defined by time series, allowing for temporal
control and specification of experimental conditions.

Following a set of simulations using the base parameters that
represent control twitches (see Table 1), we undertook a set of

parameter modifications that reflect various pathological con-
ditions (sarcomeric mutations). In addition to adjusting the
magnitude of parameter values, the spatially explicit nature of
our model allows us to vary the penetrance (or mutant protein
incorporation) of any specific mutation by randomly assigning
parameter changes to specific subunits within the sarcomere.
For example, an increase in the binding of calcium to troponin
that is associated with the L48Q mutation of cardiac troponin C
(cTnC) can be applied to a random subset of thin filament sub-
units. The extent of mutation (change in binding) and the
fraction of sites (penetrance) can be adjusted accordingly.

While there are myriad parameter variations one could ex-
plore, we focus here on two thin filament mutations and one
thick filament mutation. For the thin filament, we modeled the
effects of mutations associated with the mutations L48Q cTnC
and D65A cTnC that have been previously characterized (Gillis
et al., 2007; Wang et al., 2012). The L48Q cTnC mutation in-
creases Ca2+ binding to cTnC (Kreutziger et al., 2011; Wang et al.,
2012), while the D65A cTnC mutation does not activate the thin
filament due to the inability to bind Ca2+ (Gillis et al., 2007). We
adjusted the Ca2+ to cTnC binding rate (rt;12) based on experi-
mental recombinant L48Q cTnC measurements (Tikunova and
Davis, 2004; the default rate of 1.7 × 108 s−1 mol Ca−1 was changed
to 7.4 × 108 s−1 mol Ca−1). Additionally, we changed the

Figure 1. Sarcomere model is based on lattice
geometry, filament compliance, and transi-
tion rates. (A) A simplified schematic of the
thick filament (red) and binding sites on the thin
filament (blue) in a hexagonal pattern. (B) My-
osin is modeled as a system of linear (kR) and
torsional (kθ) springs with a defined myosin rest
angle (θ) globular domain length (R). (C) The
sarcomere is modeled as an array of springs of
different stiffness. During contraction, the myo-
sin heads cycle and the distance between the
Z-line (blue, right) and the M-line (red, left) de-
creases. (D) The model cycles through a coupled
thin filament (TF) state transitions and myosin
motor head (XB) state transition, where myosin
is unable to leave the unbound state (XB1) until it
is in range with an actin site that has reached an
open state (TF4).
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equilibrium constant K1 from the default value of 1.47 to 18.0 ×
105 mol Ca−1. For D65A cTnC, we prevent TnC–TnI interaction
caused by calcium binding by setting the k23 forward rate to 0. We
also simulated thick filament gain of function by decreasing the
myosin detachment rate (rx,31; Fig. 1D), which depends on the forces
acting on themyosin head, by a factor of 0.5. That gain of function is
similar to small molecules (Lehman et al., 2022; Powers et al., 2019)
or myosin mutations (Anderson et al., 2018) that increase the
number of myosin motors interacting with the thin filament.

Isometric twitch simulations
For isometric twitch simulations, we updated and recorded the
state space of the model every 500 μs for 1 s of simulated time
(2,000 time-steps). This time scale was chosen to be close to the
rate-limiting step of our crossbridge cycle and is similar to that
used in recent instantiations of this model (Powers et al., 2018).
The first 50 ms and the last 350ms of the simulation are without
calcium. The calcium transient was specified to last for 600 ms.

Sarcomere length was set to 2:3 μm, giving a half-sarcomere
length of 1,150 nm. At this length, the stiffness of titin is ∼1.9
pNnm−1, and therefore the 24 titin filaments exert around 9.81
pN of force. We correct this with a baseline subtraction of the
passive tension in all analyses. The calcium transient used in our
simulations is based on the intralattice calcium signal measured
from guinea pig cardiomyocytes (Sparrow et al., 2019). We fitted
the calcium transient using the equation

[Ca2+](t) � α ∗ Exp
"
−
�
β ∗ tsym − tp

ω

�2
#
,

where α is the peak concentration of the calcium transient, sym
determines the symmetry of the transient about the peak value,
tp affects the time to peak, ω affects the width of the trace, and β
was set to 1 s1-sym for dimensional consistency (Fig. 2 A, blue
dashed line).

Isometric twitch analysis
We use several metrics to characterize the dynamics of twitches
for simulations of both control (baseline condition) and abnor-
mal sarcomeres. As mentioned above, the twitch tension index
(TTI) is computed from the difference in the force impulse
(integral of the tension time relationship) of a wild type (control)
twitch and that of one associated with some pathological con-
dition, both normalized to the peak force of the control twitch
(Davis et al., 2016). That difference, in turn, is then represented
as a fraction of the control impulse. We also calculated more
traditional metrics of twitch dynamics, including the peak force
(maximum tension); the activation time, as measured by the
time to half-peak force; and the relaxation time, as measured by
the time between peak force and that of half-peak force during
relaxation.

Singular value decomposition feature analysis
Metrics such as those above represent considerable dimension
reduction relative to the detailed time history of the peak force.
Singular value decomposition (SVD) can reveal additional tem-
poral features that may vary with changes in parameters asso-
ciated with twitch forces. Indeed, SVD is a robust, reliable, and
efficient method for feature extraction and dimension reduc-
tion. In prior studies, we have used such approaches to reveal
temporal features of motor control and force generation or
temporal features underlying sensory encoding (Sponberg et al.,
2015). Further, SVD lies at the heart of principal component
analysis (PCA), which recasts the data into a space where
twitches with different shapes can be differentiated.

We used the NumPy package in Python for SVD and PCA. We
then determined the variation in the total dataset represented by
a single component by normalizing to the most prominent
component (Fig. 3 B). Finally, we projected the Frobenius norm
of each twitch onto the two most prominent eigenvectors to
produce a PCA scoring in each principal component.

ML algorithm
We used a gradient-boosting decision tree algorithm housed in
the xGBoost library to train a mechanism-free model to classify

Table 1. Base model parameters

Component Constant Default
value

Units

Actin filament
backbone

Spring constant k 1,743 pN/nm

Myosin filament
backbone

Spring constant k 2,020 pN/nm

Titin Non-linear spring constant a 240 pN

Non-linear spring constant b 0.0045 nm−1

Myosin converter
domain

Weak rest angle 0.8230972752 rad

Strong rest angle 1.277581012 rad

Weak torsional spring
constant k

40 pN/rad

Strong torsional spring
constant k

40 pN/rad

Myosin globular
domain

Weak rest length 19.93 nm

Strong rest length 16.47 nm

Weak spring constant k 2 pN/nm

Strong spring constant k 2 pN/nm

Tropomyosin Equilibrium constant K1 1.47E+05 mol Ca−1

Equilibrium constant K2 1.30E+02 -

Equilibrium constant K3 9.10E−01 -

Forward rate constant rt;12 1.70E+08 s−1mol
Ca−1

Forward rate constant rt;23 1.40E+04 s−1

Forward rate constant rt;34 2.00E+03 s−1

Forward rate constant rt;41 110 s−1

Cooperative modifier 1 -

Mechanistic properties of the base model including mechanical and kinetic
parameters are listed. These properties can also be found in the source code
for the base model.
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the perturbation type based on a set of given features about the
twitch. This random forest (RF) method has been widely used in
fields such as bioinformatics and medical imaging (Borstelmann,
2020; Retson et al., 2019). We have used it previously to probe
complex data relationships between the temporal dynamics of
myofilament lattice spacing and the electrical activation of
skeletal muscle in a model organism (Malingen et al., 2020). RF
is suitable for handling large data sets with high dimensionality
(like twitches). The datawere partitioned into training (75%) and
testing (25%) sets. We used a variety of inputs for the RF in-
cluding full twitch, TTI, the first two principal components (PC1/
2), and traditional activation/relaxation parameters (Fig. 5).

Classifier optimization
To increase the efficiency of the RF, we implemented a genetic
algorithm to tune the parameters of the RF. The RF hyper-
parameters that are tuned include the number of trees, learning
rates, and maximum size of decision trees. These settings are
passed down in a way similar to genetic inheritance—two trees
that did well combine their settings—and there is also a chance
for mutation in the values. Each round of this optimizes the
objective (overall scoring percent), solely by changing the gen-
eral settings of the forest.We ran the genetic algorithm for seven
generations with a population of 10 trees, recombined to opti-
mize hyperparameters. The algorithm was set to maximize
classification accuracy. Then we average the data and calculate
95% confidence intervals. Finally, we used one-way analysis of
variance (ANOVA) with Dunnett’s multiple comparisons test to
compare accuracy between the different conditions.

Results
Isometric twitches
Simulations of a constant length sarcomere with our prescribed
calcium transient produce twitch forces which have temporal
behaviors consistent with those measured experimentally
(Fig. 2; Davis et al., 2016; Powers et al., 2020; Prodanovic et al.,
2022). Moreover, a peak force of ∼100 pN is generated by our
model myofilament lattice which has a cross-sectional area of
6,500 nm2 corresponding to a stress (force/area) of 1.5 × 104 Nm−2

(which is equal to 15 mN mm−2), a value consistent with experi-
mentally measured twitch stresses in cardiac muscle (Powers
et al., 2020). Our 50%D65A cTnC simulations show the expected
decrease in maximal twitch force and negative TTI without af-
fecting activation or relaxation kinetics (Table 2). Conversely,
replacing as little as 25% of the control cTnC with L48Q cTnC
resulted in significantly higher maximal force (fmax) and faster
activation (decreased t50%). In this case, relaxation is also slowed,
as measured by the time to 50% relaxation, with an associated
increase in TTI. When the number of thin filaments with L48Q
cTnC is increased, TTI and fmax are increased, while t50%max is
decreased. In our myosin simulation condition, we observe in-
creased fmax and TTI without changing activation kinetics.

SVD and PCA clustering
Our SVD analysis reveals that the first two components describe
the majority of the variation in the data (Fig. 3), as reflected by

the magnitude of their eigenvalues. As expected, the first com-
ponent appears visually similar to an average twitch, while the
second component reflects changes in the timing of both activa-
tion and relaxation that are characteristic of L48Q cTnC twitches.
These changes reflect those seen in Fig. 2, where an average
control twitch was subtracted from an averaged trace for each
of our conditions. The principal components provide a low-
dimensional representation of the twitch time-course that is not
fully conveyed by other metrics. Although PCA is agnostic about
underlying biophysical mechanisms, changes in kinetics result in
changes to twitch timing, represented by clustering in the PCA.

Fig. 4 B shows the result of projecting our twitch data onto
the two most prominent eigenvectors (PC1 and PC2). This pro-
jection shows clusters of twitches sharing similar time course
behavior. Our D65A treatment, in particular, shows the greatest
difference from the other twitches along the PC1 dimension.
Further, we are able to separate the 75% L48Q and myosin
modification twitches, which have similar TTI as seen in Table 1.

Classifier accuracy
The accuracy with which the random forest classifies pertur-
bation type depends on how the input features are engineered.
We considered a total of eight scenarios, providing the model
with different combinations of input features: (1) metrics in-
volving relaxation, including force at 50% relaxation, time to
50% relaxation, and time to 90% relaxation, (2) metrics in-
volving activation, which include peak force, time to peak force,
and time to 50% peak force, (3) common twitch summary
metrics, which include peak tension, time to peak tension, and
half-max width of the twitch, (4) the TTI, (5) the projection onto
the two dominant principal components, (6) the full-time his-
tory of the twitches (all the data), (7) the time history of the
twitch along with the TTI, and (8) the projection onto the two
dominant principal components combined with the TTI.

All of the options provide a level of classification accuracy
well above chance (14.3%), even the relaxation time alone. Our
results show that the combination of PC1, PC2, and TTI as input
features for the RF provides the highest classification accuracy
(78.5 ± 0.1%), while the full twitch time histories combined with
TTI are a close second. Interestingly, by identifying relevant
information for phenotype classification using three dimension-
reduction techniques, we achieved better classifier accuracy
than a model using the full twitch time series alone.

Our data also show that the addition of the TTI to either PC1
and PC2 or the full twitch significantly improves classifier ac-
curacy. The traditional activation and relaxation parameters do
not perform as well as the full twitch, PC1 and PC2, TTI, or their
combinations. In Fig. 5, we show the accuracy for each of the
input features compared to each other and relative to classifi-
cation by chance (dashed line in Fig. 5).

The overall accuracy of the classifier shown in Fig. 5 A does
not entirely reflect our ability to classify a specific category. A
confusion matrix (Fig. 6) can reveal how each training set per-
forms for each particular variant. For instance, the confusion
matrix shows that the combination of PC1, PC2, and TTI per-
forms better than the full twitch and TTI at classifying 100 and
75% L48Q and control, respectively. For decreased Rx;31 and 50%
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D65A, the two training sets yield similar levels of classification.
However, the combination of the projection onto the two dominant
principal components combined with the TTI performs slightly
better than the combination of full twitch and TTI. Not surpris-
ingly, the more subtle effects corresponding to low penetrance of
L48Q are more challenging for all of the classifiers to identify, al-
though the confusion matrices show that this is not uniformly the
case. It is notable that misclassifications of 25% L48Q, in particular,

are usually one-off diagonal in the confusion matrices for the best-
performing classifiers, indicating they are oftenmistaken for either
a higher penetrance (50% L48Q) or control.

Discussion
In this study, we combined computational simulations of cardiac
twitches with ML methods to address two key questions: (1)

Figure 2. Isometric twitch simulations. (A) An example of the input calcium trace (blue dashed line) and the resulting single simulated twitch force (black)
using baseline model conditions. (B) An average (black) of 100 simulations (gray) for the baseline simulated conditions, demonstrating the stochastic nature of
the model. (C) Average twitch trace of 100 independent simulations of control and each of our modifications indicated in the legend. (D) Average control twitch
subtracted from average twitch of each of our modifications reveals both magnitude and shape changes.

Table 2. Isometric twitch analysis

t50%fmax (ms) fmax (pN) TTI (%WT.ms) × 104 t50%relax (ms)

Control 37.4 ± 0.80 145.8 ± 1.7 0.0 ± 0.4 242.6 ± 6.0

50%D65A 37.3 ± 5.1 (NS, P = 0.32) 87 ± 1.2 (P = 3.2e−208) −2.32 ± 0.3 (P = 2.1e−245) 180.4 ± 7.1 (P = 7.7e−33)
Decreased Rx;31 36.7 ± 0.76 (NS, P = 0.85) 169.0 ± 1.9 (P = 2.7e−58) 1.60 ± 0.3 (P = 4.26e−163) 275.4 ± 4.8 (2.1e−10)
25% L48Q 32.5 ± 0.91 (P = 3.6e−13) 150.3 ± 2.1 (P = 0.0032) 0.48 ± 0.3 (P = 3.8e−25) 250.6 ± 6.9 (NS, P = 0.47)

50% L48Q 28.2 ± 0.89 (P = 1.9e−40) 154.8 ± 1.6 (P = 4.8e−11) 0.96 ± 0.3 (P = 1.6e−81) 262.7 ± 7.0 (P = 0.00058)

75% L48Q 24.86 ± 0.6 (P = 9.2e−68) 157.9 ± 1.6 (P = 7.3e−19) 1.41 ± 0.4 (P = 2.6e−139) 275.6 ± 7.1 (P = 1.6e−10)
100% L48Q 22.75 ± 0.6 (P = 3.4e−86) 164.7 ± 1.8 (P = 2.5e−41) 1.96 ± 0.3 (P = 4.2e−207) 285.8 ± 7.7 (P = 3.5e−17)

Time to 50%maximal force (t50%fmax), average and standard deviation of maximal force (fmax), TTI, and time to 50% relaxation (t50%relax) ± 95% CI are recorded
for the ensemble of 100 independent simulations of each of our simulated conditions. Comparison with WT using ANOVA, followed by Sidak’s multiple
comparison.
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what features of cardiac twitches best indicate perturbations in
the biochemical and biophysical determinants of force genera-
tion? and (2) can subtle differences in the features be used to
classify disease states given variation and stochasticity in data?
Indeed, it is an open question whether the full time-course of
twitch force embeds information about the underlying sarco-
meric properties and function. Thus, elucidating the connection
between temporal features of cardiac twitches and underlying
perturbations to rate constants associated with genetic cardio-
myopathies remains a fundamental challenge. To address this
challenge, we used an extensive data set of simulated twitches
(along with their associated myofilament perturbations) and
developed a series of ML methods to classify disease types from
simulated cardiac twitches.

Four key results emerged from this study. First, we simulated
cardiac twitch forces that reflect those in both wild type and
disease conditions found in mouse model systems. Importantly,
we found these simulations to reasonably reflect both the
magnitude (normalized to area) and time course of experi-
mentally measured twitch force. Second, using simple dimen-
sion reduction methods (e.g., SVD and PCA), we isolated
temporal features of twitch forces that correspond to changes in
the kinetics of thin filament regulation. Third, even in the
presence of significant stochasticity arising from the Monte

Carlo–based simulations, the results of dimension reduction
approaches applied to twitch data can be used as features that
enhance classifier performance. And fourth, the classifier ac-
curacy depends quite strongly on the features of the twitch that
the model has access to, and there is an interesting structure in
the classifier discrimination capability for each feature set.

While we conclude that ML methods hold great promise for
classifying disease states, even with subtle genetic penetrance, it
is important to describe some of the limitations in the present
study. First, we used the same intralattice calcium transient for
all of our simulations (Sparrow et al., 2019). In reality, there is
evidence that altering sarcomere function via mutations or small
molecules results in concomitant changes in intracellular calci-
um levels (Davis et al., 2016; Psaras et al., 2021; Sparrow et al.,
2019; Sparrow et al., 2020). Additionally, while our spatially
explicit model incorporates thin filament regulatory kinetics, it
does not currently incorporate any cooperative thin filament
activation mechanisms as had been suggested by Tanner et al.
(2012). Further, we used a three-state approximation of the
crossbridge cycle in our biophysical simulation although this is a
simplification (Powers et al., 2021). The current version of our

Figure 3. SVD of twitches. (A) The first two components of the SVD of the
matrix containing force vs. time from 100 of each of our different simulated
conditions. (B) The contributions of each mode normalized to the first
component shown on linear and logarithmic scales. Figure 4. Twitch principal components allow for separation of twitches

with similar tension index. (A) Twitches with different underling pertur-
bations may have similar TTI, with a change in the time course of force de-
velopment. (B) Projections of twitches onto the first two eigenmodes (PC1
and PC2) allows for separation of our twitch data set.
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model does not account for thick filament regulation, which is
known to be involved in both the pathogenesis and treatment of
cardiomyopathies (Lehman et al., 2022; Nag and Trivedi, 2021).
In future studies, we will add a new myosin population as
modeled by other groups (Kosta et al., 2022; Mijailovich et al.,
2021a). Our initial model parameters were not optimized to any
particular species and that may limit the ability of the model
to match experimental measurements. Finally, while our ML
methods performed well, we have not comprehensively tested
different classification algorithms to determine which might
have optimal performance.

Physiologically reasonable twitches can be produced from a
spatially explicit model
Despite these limitations, we were able to generate physiologi-
cally reasonable twitches using our spatially explicit model of
the sarcomere. Our original multifilament model of the sarco-
mere was, to our knowledge, the first spatially explicit model of
muscle force generation (Daniel et al., 1998). Prior models of the
mechanochemistry of force generation were based on mass ac-
tion kinetics and could not account for the discrete geometrical
relationship between individual myosin heads and the actin-
binding sites (Huxley, 1957; Pate and Cooke, 1989). Our model
accounts for lattice geometry, and filament compliance and has
the ability to independently alter functional properties of indi-
vidual components in the system. Since its original two-filament
formulation, our model has been extended to a 3-D lattice of
compliant myosin and actin filaments (Chase et al., 2004) and
integrates extensional and torsional mechanics of the cross-
bridge (Williams et al., 2010) and, most recently, the non-linear
dynamics of titin (Powers et al., 2018). This now accounts for

both radial and longitudinal forces generated by a twitch that are
important for ventricular pressure development. With the ad-
vent of advanced computing, using spatially explicit models in
muscle biology is more practical and is more widely used. The
most recent published version of our model incorporated titin
stiffness as a variable but did not account for thin filament
regulation, which we had in the previous version (Williams
et al., 2013). Titin has a critical role in myocyte elasticity,
stretch-dependent activation, and intracellular mechanosens-
ing, and its variants are the leading cause of genetic DCM
(Kellermayer et al., 2019).

In this study, we incorporate both thin filament regulation
and account for titin stiffness. Thin filament activation is mod-
eled as the following states: (1) Ca2+ binding to cTnC, (2) change
in the cTnC–cTnI interaction (newly added), and (3) thin fila-
ment activation via movement of tropomyosin that allows my-
osin binding. Each transition in the thin filament activation
pathway contains tunable forward and reverse rate constants. The
state transitions follow from prior published results from our
group and others (Aboelkassem et al., 2015; Siddiqui et al., 2016;
Tanner et al., 2012; Table 1). Now, for the first time, we have
adapted the model so that subunits can have different rate prop-
erties, making it possible to simulate a lattice where mutated
proteins may have varying penetrance. This modification is es-
sential since genetic cardiomyopathies are typically heterozygous,
resulting in at most only 50% abnormal protein. Finally, in order
to simulate twitches from our sarcomere model, we drive force
generation and relaxation via a calcium transient based on pub-
lished intralattice measurements (Sparrow et al., 2019).

Using our model, we simulate the sarcomeric twitch force
resulting from underlying perturbations in binding rates. The

Figure 5. Classifier Accuracy. The random forest classifier accuracy for 100 twitches from each condition with different input features as indicated along the
horizontal axis. The dashed line denotes accuracy for random classifier accuracy (14.3%).
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binding rates were drawn from in vitro biochemical assays that
target the changes observed in models of cardiac muscle disease.
For the L48Q cTnC modification, we used experimentally mea-
sured KCa (Ca2+ binding affinity to the troponin complex) and
koff (Ca2+ dissociation rate) values to adjust the first transition
rate (rt,12). For D65A cTnC, we prevent TnC–TnI interaction
caused by calcium binding by setting the k23 forward rate to 0.
For our thick filament (myosin) modifications, we decrease the
myosin detachment rate (rx,31) by half in order to increase the
number of attached myosins.

The resulting twitch simulations captured some of the twitch
metrics recorded in experiments (Mijailovich et al., 2021b;
Powers et al., 2020). However, our ability to make direct

comparisons to experimental data from L48Q cTnC mouse is
limited by the fact that we used a published guinea pig calcium
transient, which is similar to human and with different kinetics
than a mouse calcium transient (Prodanovic et al., 2022). In
addition, for simplicity, the current version of our model did not
incorporate thin filament cooperativity, which affects activation
and relaxation kinetics. As seen in Table 1, increasing cTnC Ca2+

binding by introducing the L48Q cTnC modification increased
maximal force and activation rate and prolonged relaxation.
While our findings in 25% and 50% cTnC L48Q simulations show
a similar trend seen in experimental data from transgenic mice
with ∼30% L48Q cTnC incorporation (Powers et al., 2020), the
extent of prolonged relaxation is underestimated. This is likely

Figure 6. Confusion matrices of RF classifier
accuracy. (A–H) Classifier accuracy for each
perturbation by classifier input features. The y
axis is the true perturbation class, and the x axis
represents classifier prediction. As each of the
twitches receives a classifier prediction the sum
of a row is 1.0, and each square represents the
proportion of twitches that were assigned to the
class on the x axis. The darker shades of the heat
map correspond to larger proportions of twitches
predicted to fall within a given class.
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secondary to having a different Ca2+ transient and a lack of thin
filament cooperativity. It was reassuring that the TTI in our 25%
L48Q cTNCwas calculated to be 0.5 × 104, which is similar to the
published value of about 0.3 × 104 in experimental data with
∼30% L48Q cTnC (Powers et al., 2020). Increasing amount of
L48Q cTnC is linearly correlated with all four parameters re-
ported in Table 1. Similar findings have been reported for the
L48Q cTnC simulations using MUSICO spatially explicit model
(Mijailovich et al., 2021b). As expected, inactivation of thin fila-
ments with the D65A cTnC decreases maximal force and TTI.
There is no change in t50%fmax, while the t50%relax is decreased,
suggesting faster relaxation. This behavior has been seen in the
I61Q cTnC which has a faster Ca2+ dissociation rate compared
with WT cTnC (Davis et al., 2016; Wang et al., 2013). While there
are no experimental data from D65A cTnC measurements, when
a 50:50 mixture of WT and D65A cTnC was exchanged into de-
membranated trabecula, there was an ∼70% decrease in maximal
force and reduced Hill coefficient, indicating decreased coopera-
tive activation (Korte et al., 2012). Our myosin modification re-
sulted in increased force and TTI, prolonged relaxation, and no
change in t50%fmax. Such hypercontractility and prolonged re-
laxation are reported in experimental studies of myosin muta-
tions that show similar mechanisms of increased crossbridge
binding (Toepfer et al., 2020). Taken together, these results show
that the perturbations in model thin filament or thick filament
rate constants inspired by diseased states or small molecules re-
sult in changes in both the magnitude and the shape of twitches.

Temporal features combined with machine learning methods
yield better disease classification than traditional
metrics alone
How can the differences between the twitches be systematically
distinguished? Traditional twitch metrics such as maximal force
or time to 50% activation or relaxation are able to distinguish
features in extreme conditions (e.g., control and D65A cTnC).
However, such metrics are unable to capture more subtle dif-
ferences between conditions (e.g., 50 and 75% L48Q cTnC). This
is apparent in our twitch data set, where traditional twitch
metrics overlap for different perturbation types. To better cap-
ture subtle differentiating features in the temporal dynamics of
our twitch data set, we employed dimension reduction techni-
ques. Using SVD of the force vs. time matrix, we were able to
capture the majority of the variation in the data within the first
two eigenmodes (Fig. 3 A). As expected, the first eigenmode
resembles the activation and relaxation dynamics of a twitch.
The second eigenmode captures the activation and relaxation
features seen in our L48Q cTnC twitches. This can be seen by
comparing the second eigenmode (Fig. 3 A) to the average
control twitch subtracted from the average of each of the L48Q
cTnC conditions (Fig. 2 D). Since SVD lies at the heart of PCA, we
next projected the data onto the first two components. As seen in
Fig. 4, projecting the data onto the two most prominent features
(principal components), we were able to identify unique clusters
and spread out the twitches. Since the second component mostly
describes the L48Q cTnC behavior, the projection onto this
component primarily separates out the conditions with different
amounts of L48Q cTnC.

Next, we trained eight different machine learning models to
classify underlying biophysical perturbations given twitch data.
Each model received a different set of features from which to
classify underlying perturbation, and we show in Fig. 5 A which
feature sets enable the most accurate model predictions for our
large, diverse data set. Due to the stochastic process of myosin
interacting with actin, the simulated forces fluctuate in time
(Fig. 2 A), resulting in a challenging classification problem for a
model presented with only twitch time course data. As shown in
Fig. 5 A, using the full twitch or the projection onto PC1 and PC2
resulted in about 70% accurate identification of a given twitch.
This accuracy is higher than classifiers that used TTI alone as the
input. This is not surprising as several of our conditions have a
significant amount of overlap in this metric, and indicates that
important information is included in the timing of a twitch.
However, adding the TTI to either full twitch or projection onto
PC1 and PC2 results in the highest classifier accuracy. This
demonstrates the utility of integration, which reduces the noise
in a full twitch. This is also an example of how applying domain-
specific knowledge to better engineer features can improve
model performance.

In addition to overall classification accuracy, we use confu-
sion matrices to distinguish which perturbations are correctly
classified and, if they are misclassified, into which classes they
fall. Interestingly, we observed that some perturbations were
classified more or less accurately based on the feature set a
model used, while others were classed similarly by all models.
For instance, the D65A cTnC twitches are easily distinguished
using any of the input features. Remarkably, even the relaxa-
tion, activation, or summary features that do not perform well
overall provide enough information to classify D65A cTnC with
100% accuracy. However, these input features perform poorly in
classifying 50 or 75% L48Q cTnC. Using the TTI, projections onto
PC1 and PC2 or the full twitch as input features yield models
with higher classification accuracy. However, there are specific
challenging classifications that deserve discussion. For example,
the model using TTI alone performs poorly in classifying de-
creased rx,31. This is likely because it has a similar TTI to 100%
L48Q. In contrast, the models using either the projections onto
PC1 and PC2 or the full twitch performmuch better in classifying
decreased rx,31, and when TTI is combined with PC1/PC2 or the
full twitch, the accuracy is further increased. Similar improve-
ments are noted across all groups as seen in Fig. 6. In addition to
these observations, the confusionmatrices also show that for the
top-performing models many misclassifications are between
different penetrance of the mutant L48Q subunits. Since mu-
tation penetrance is a continuous value that we have artificially
binned into classes (rather than distinct mutation classes), it can
be argued that these miss-classes are still correctly indicating
the type of underlying rate change.

ML methods have potential in diagnosis and management of
genetic cardiomyopathies
While our current study evaluated a limited number of con-
ditions, after more extensive validation, one can envision the
utility of ML and/or simulations in the care of patients with
genetic cardiomyopathies. One simple use of this approach
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would be to model a new mutation in cTnC by providing the
computational model with Ca2+ binding or troponin–tropomyosin
interaction rate estimates that are associated with experi-
mental recombinant protein measurements. These would pro-
vide a direct test of the model. Alternatively, one can use
techniques such as adaptive steered molecular dynamics
(Hantz and Lindert, 2021) to quantify how mutations alter
calcium binding affinity. This approach can replace the need for
generating any experimental transition rates for input into our
spatially explicit model. Additional and relatedMLmethods can
be used to address the inverse problem of (1) identifying the
space of rate constants that best explain observed twitch data
and (2) predicting changes in underlying kinetics (rates) that
can be adjusted to compensate for abnormal transition rates
that correlate with patient-specific mutations. Lastly, a similar
pipeline could be applied to a large data set of myocardial time
strain curves by using speckle-tracking echocardiography. PCA
has been applied to such data to distinguish physiologic from
non-physiologic strain curves (Yahav et al., 2020).

Conclusion
The time course of muscle contraction echoes the underlying
inter- and intrafilament interactions that shaped it. In disease,
perturbed filament interactions alter the timing of force gen-
eration, but typical metrics captureminimal timing information.
Using a spatially explicit model to simulate disease states, we
created a large, labeled dataset that connects biophysical per-
turbations with resulting twitch time courses; this data set was
the training ground for novel ML classifiers. We demonstrate
that ML methods herald great promise for classifying the un-
derlying mechanistic changes that reshape twitch forces in
disease.

Data availability
All the data generated for the manuscript are available from the
corresponding author upon reasonable request.
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