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A strategy for determining the equilibrium constants
for heteromeric ion channels in a complex model
Klaus Benndorf1, Thomas Eick1, Christian Sattler1, Ralf Schmauder1, and Eckhard Schulz2

Ligand-gated ion channels are oligomers containing several binding sites for the ligands. However, the signal transmission
from the ligand binding site to the pore has not yet been fully elucidated for any of these channels. In heteromeric channels, the
situation is even more complex than in homomeric channels. Using published data for concatamers of heteromeric cyclic
nucleotide–gated channels, we show that, on theoretical grounds, multiple functional parameters of the individual subunits
can be determined with high precision. The main components of our strategy are (1) the generation of a defined subunit
composition by concatenating multiple subunits, (2) the construction of 16 concatameric channels, which differ in
systematically permutated binding sites, (3) the determination of respectively differing concentration–activation
relationships, and (4) a complex global fit analysis with corresponding intimately coupled Markovian state models. The amount
of constraints in this approach is exceedingly high. Furthermore, we propose a stochastic fit analysis with a scaled unitary
start vector of identical elements to avoid any bias arising from a specific start vector. Our approach enabled us to determine
23 free parameters, including 4 equilibrium constants for the closed–open isomerizations, 4 disabling factors for the mutations
of the different subunits, and 15 virtual equilibrium-association constants in the context of a 4-D hypercube. From the virtual
equilibrium-association constants, we could determine 32 equilibrium-association constants of the subunits at different
degrees of ligand binding. Our strategy can be generalized and is therefore adaptable to other ion channels.

Introduction
The function of receptor proteins is essential for the homeostasis
of living cells and, thus, of whole organisms. Receptor proteins
are functionally controlled by the binding of ligands to highly
specific binding sites. This binding triggers specific conforma-
tional changes, evoking secondary responses. Ligands can be
simply ions such as Ca2+ ions or molecules of highly different
size such as diverse neurotransmitters or peptide- and proteo-
hormones. Ionotropic receptors are receptors in which the
binding of ligands controls the openness of a pore for ions. Many
of these ionotropic receptors are oligomers composed of several
identical or homologous subunits. This results in a respective
number of binding sites that are formed either by the subunits
alone (e.g., ionotropic AMPA receptors [Sobolevsky et al., 2009],
cyclic nucleotide–gated channels [Li et al., 2017]) or at interfaces
between adjacent subunits (e.g., purinergic P2X receptors
[Kawate et al., 2009], nicotinic acetylcholine receptors [daCosta
and Baenziger, 2013]). Consequently, the activation of the re-
ceptors is controlled by several binding steps. Further, taking
into account that the subunits can specifically influence each
other upon activation in a cooperative fashion and that the

underlying conformational changes reciprocally feed back to the
binding steps themselves (Colquhoun, 1998; Kusch et al., 2010),
analyzing receptor activation is a highly challenging task.

For decades, the Monod–Wyman–Changeux (MWC) model
(Monod et al., 1965) has been applied to interpret cooperative
ligand-induced activation in proteins. It was thereby assumed
that a symmetric oligomeric protein of identical subunits per-
forms a joint “allosteric” conformational change of all subunits
and that only the equilibrium of the allosteric step is shifted in
proportion to the number of ligands bound. To keep the model
simple, fixed stoichiometric factors are typically used, leaving
only one equilibrium constant for ligand association (K), one
equilibrium constant for the allosteric conformational change
(E0), and one fixed allosteric factor (f) with changing power (Fig.
S1). The MWC model has been widely applied, ranging from
oxygen binding to hemoglobin (Eaton et al., 1999) to various
ionotropic membrane receptors (e.g., GABAA receptors
[Steinbach and Akk, 2019], nicotinic acetylcholine receptors
[Lee and Sine, 2005], cyclic nucleotide–gated channels
[Goulding et al., 1994]). However, the uniqueness and accuracy
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of identifiable parameters in state models is often over-
estimated, as discussed for both electrophysiological data
(Colquhoun, 1998) and data on ligand binding (Middendorf and
Aldrich, 2017a, b), even when including a Bayesian framework
(Hines et al., 2014). Unfortunately, more limitations arise
when analyzing heteromeric ion channels containing differ-
ent binding sites because a much larger number of different
equilibrium constants has to be distinguished. As a conse-
quence, thorough functional studies are very rare. In some
cases, sophisticated single-channel analyses have shed light
into the intricate gating mechanisms (Burzomato et al., 2004;
Beato et al., 2007).

Recently, we investigated activation gating in hetero-
tetrameric cyclic nucleotide–gated channels, composed of
two CNGA2 subunits, one CNGA4 subunit and one CNGB1b
subunit. We analyzed a full set of 16 concatamers with defined
functional and disabled binding sites, providing 16 different
concentration–activation relationships (CARs), and subjected
these CARs to a global fit analysis (Schirmeyer et al., 2021).
This allowed us to quantify receptor activation by means of a
complex model containing 32 equilibrium association con-
stants, together with disabling factors for the four binding
sites and four closed–open isomerization constants. Because of
multiple constraints, given by microscopic reversibility and
the simplifying assumption that the two A2 subunits are
functionally equal, we could reduce the number of free fit
parameters to 17, which is still a challenging number. Notably,
the precision of our fit, given by a low parameter variance,
was still surprisingly high.

This encouraged us to investigate on theoretic grounds why
such a high precision could be achieved at all, how many CARs
are required, which functional changes mutations should pref-
erably evoke, and how “unnoisy” the data should be. We used
the determined parameters of our 16 concatameric CNGA2:A4:
B1b channels, containing all possible combinations of a disabling
binding site, to simulate data. We then systematically permuted
all combinations of CARs at variable noise and number of data
points and refitted these simulated data to derive conclusions on
the determinateness of the parameters. To minimize the risk of
biasing in the fits, we use a stochastic fit approach with a scaled
unitary (SU) start vector of identical elements. In the proposed
framework, our results show that intimately coupled CARs,
carrying well-defined mutations, are a powerful source of in-
formation, not only to quantify the effects of the mutations but
also to identify the gating operation of the individual subunits in
a WT heteromeric channel.

Materials and methods
Data simulation
The 16 CARs for the 16 HA models were simulated by using the
data determined for the A4-A2(1)-B1b-A2(2) concatamer
(Schirmeyer et al., 2021). The parameters are listed in Table S1.

Global fit
The nlinfit routine of Matlab software, determining parameters
by an iterative least square estimation, was used to globally fit

between 1 and 16 CARs. The maximum iteration number was set
to 100. The routine provides the 23 fit parameters, xi (4 × Ex, 15 ×
Zxxxx, 4 × fdx), the covariance matrix, CovEZf, with the 23 × 23
elements σij of which the main diagonal gives, with i = j, the 23
variances and SDs σ2

i and σi of the fit parameters, respectively.
Relative SDs, σi,rel, of the parameters Ex, Zxxxx, and fdx were

determined according to

σi,rel � σi

�
xi. (1)

From the 15 Zxxxx values, specifying the virtual equilibrium
association constants in the 4-D hypercube, the 32 Kxxxx values,
specifying the equilibrium association constants in the scheme
of Fig. 1, left, were obtained by the ratios provided by Table S2.
To keep track, we transferred the 15 Zxxxx to Z1–Z15 (Table S7)
and computed the 32 Ki by Ki = Zm/Zn (i = 1…32; m,n = 1…15) as
specified in Table S2. For example, the calculation of K5 = Z8/Z2
reads in long-term K0110 = Z0110/Z0100, where the not-
underlined 1 in K0110 denotes that the binding of the ligand
occurs at the third subunit, whereas the underlined 1 denotes
that the second subunit was already occupied previously.

To calculate the SDs σKi of the 32 Ki, we computed the co-
variance matrix CovK of the association constants with 32 × 32
elements from the covariance matrix of Zi (i = 1…15), CovZ, ac-
cording to

CovK � B × CovZ × BT, (2)

using the rules of matrix multiplication. The matrix B is of type
32 × 15, and BT, the corresponding transposed matrix, of type
15 × 32. The elements of B are the partial derivatives of the Ki

with respect to the Zj,

Bij � ∂Ki

∂Zj
, (3)

For the example of K5 = Z8 / Z2 (Table S2), the two elements in
row 5 of matrix B are B52 � ∂K5

∂Z2
� −Z8Z22 and B58 � ∂K5

∂Z8
� 1

Z2
. All other

elements in row 5 of matrix B are 0, because K5 depends only on
Z2 and Z8.

Coming back to the SDs, σKi, of the 32 × Ki values, they are
then given by

σKi �
ffiffiffiffiffiffiffiffiffiffiffiffi
CovKii

p
. (4)

The relative SDs, σKi,rel, of the constants Ki were determined
with

σKi,rel � σKi

�
Ki. (5)

The dimensionless relative SDs, σi,rel or σKi,rel, are useful for
comparing the uncertainty of different parameters or equilib-
rium association constants, respectively. Here, two different
measures are used to quantify the uncertainties, “imprecision”
and “inaccuracy.”

Imprecision: The term “precision” of a parameter xi or a de-
rived equilibrium association constant Ki specifies its quality,
without any guarantee that the parameter has been determined
correctly. Hence, the term imprecision (ipr) denotes a statistical
variability with respect to the determined mean. Herein, we use
ipri = σi,rel for a parameter and iprKi = σKi,rel for an equilibrium
association constant.
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The imprecision of the parameters was also used to calculate
an overall measure for the goodness of fit based on all n pa-
rameters. Three types of means of the imprecision were tested:

The arithmetic mean

ipri,am � 1
n

Xn
i�1

σi,rel. (6a)

iprKi,am � 1
n

Xn
i�1

σKi,rel. (6b)

The squared mean (Euclidean distance)

ipri,sm �
 
1
n

Xn
i�1

σ2
i,rel

!1
2

. (7a)

iprKi,sm �
 
1
n

Xn
i�1

σ2
Ki,rel

!1
2

. (7b)

The geometric mean (length of an edge in an n-dimensional
hypercube)

ipri,gm �
�
∏
n

i�1
σi,rel

�1
n

. (8a)

iprKi,gm �
�
∏
n

i�1
σKi,rel

�1
n

. (8b)

Inaccuracy: The term “accuracy” of a parameter specifies the
quality of a fitted parameter xiwith respect to the true value, xitr.
Herein we use the ratio

accuracyi � xi
�
xitr. (9)

The term inaccuracy indicates the relative deviation of a
parameter or equilibrium association constant from the true
value according to

αi,rel � 1
xitr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi − xitr( )2

q
(10a)

αKi,rel � 1
Kitr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(Ki − Kitr)2

q
, (10b)

respectively. Because we analyzed only simulated data herein,
xitr and Kitr values are available. The inaccuracy was used as a
second measure for the uncertainty of either a parameter or an
equilibrium association constant.

To calculate also for the inaccuracy an overall measure for
goodness of a fit, we again tested three types of means:

The arithmetic mean

iaci,am � 1
n

Xn
i�1

αi,rel. (11a)

iacKi,m � 1
n

Xn
i�1

αKi,rel. (11b)

The squared mean (Euclidean distance)

iaci,sm �
 
1
n

Xn
i�1

α2
i,rel

!1
2

. (12a)

Figure 1. Structure of the CHA16 model. 16 HA models for the concatamers 1234 (WT, left) through 1m2m3m4m (quadruple mutated, right) form, together
with the 14 other models of Figs. S2, S3, and S4, the complete CHA16 model. In equilibrium association constants for ligand binding, Kxxxx, x can be 0, 1, and 1 for
an empty binding site, a binding site to actually occupy, and a preoccupied binding site, respectively. An HA model has 32 Kxxxxs, either black or red for
liganding a WT and mutated subunit, respectively. For the maximum CHA16 model, the total number of black and red Kxxxxs is 64. Blue circles, ligands; white
circles, empty binding sites; red crosses, disabled binding sites. The set of closed–open isomerizations on the bottom is valid for all HA models. For the single-,
double-, and triple-liganded open channel, the ligands are drawn below the channel cartoon to illustrate that there are 4, 6, and 4 options of occupancy
(brackets).
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iacKi,sm �
 
1
n

Xn
i�1

α2
Ki,rel

!1
2

. (12b)

The geometric mean (length of an edge in an n-dimensional
hypercube)

iaci,gm �
�
∏
n

i�1
αi,rel

�1
n

. (13a)

iacKi,gm �
�
∏
n

i�1
αKi,rel

�1
n

. (13b)

Correlation matrices
To obtain the correlation matrix for the 4 Ex and the 15 Zi, we
first built the respective 19 × 19 covariance matrix CovEZ pro-
vided by the fit. It is then easy to calculate the 19 × 19 correlation
matrix CorrEZ containing the elements

ρij � CovEZ i, j( )
.
(σi,σj) (14a)

To obtain the correlation matrix for the 4 Ex and the 32 Ki, we
adapted Eq. 2 to build the respective 36 × 36 covariance matrix CovEK.
NowB (36 × 19) contains thepartial derivatives of the 36 constantswith
respect to the 19 parameters and BT (19 × 36) is the transposed matrix.
The elements of the 36 × 36 correlation matrix CorrEK are given by

ρij � CovEK(i, j)
��

σEKi,σEKj

�
. (14b)

The theoretical determinability of the parameters
In the online supplemental materials, we consider for the case of
noiseless data how many CARs and data points are required to
determine all parameters of an HA model uniquely. For the ex-
ample of six CARs with nine data points each, all calculation
steps are described. If the data set contains only as many data
points as model parameters (fewer than nine data points per
CAR), we show that the system of equations to be solved becomes
nonlinear. This would require iterative numerical calculations
and includes the possibility that more than one solution exists.
The right solution might be found by including more data points.
Hence, the need for iterative approaches and additional data
points arises already for the case of noise-free data if the exact
rational functions for Po(L) cannot be calculated at first. In noisy
data, the loss of precision can be compensated for by additional
CARs and data points, as demonstrated by the fits herein.

Fitting a Gaussian function to histograms
Stochastically varying parameters were fitted with a Gaussian
function according to

y � A
wαi,rel

exp

"
−(xi − xitr)2
2w2

αi,rel

#
, (15)

where A is an amplitude factor, wαi,rel is the width (SD), xi is the
actual parameter, and xitr is the respective true value.

Calculation of a normalized measure for the mean squared
error (MSE)
To refine the search for the best minimum among the successful
fits, as identified by containing positive parameters only, they

were sorted with respect to the MSE value, starting with the
smallest. In this sequence of MSE values, a normalized measure,
C(MSEx), was calculated for each MSEx in an iterative manner
according to

C MSEx( ) � MSEx
1

x − 1( )
Xx−1
n�1

MSEn

" #−1
− 1, x � 2, 3...( ) (16)

C(MSEx) reaches 0 if the nextMSEx is identical to themean of
all previous MSE1 to MSEx−1. C(MSE1) is 0 and therefore not
included on the log scale of Fig. 13 C. C(MSEx) increases already
at very subtle changes of the MSE.

Online supplemental material
Fig. S1 shows the structure of the commonMWCmodel. Figs. S2,
S3 and S4 show HA models of the concatamers with indicated
disabled binding sites. They build, together with the two models
in Fig. 1, the 16 HA models of the CHA model. Fig. S5 shows the
comparison of fits with 35 either equidistant or clustered data
points. Fig. S6 shows histograms of correlation coefficients ob-
tained by the global fit. Fig. S7 shows effects of data noise on the
fit at stochastic variation of the true start vector. Table S1 shows
constants used to simulate the 16 CARs. Table S2 provides
equilibrium association constants and their genesis. Table S3
provides a comparison of true values, fitted parameters, and
errors for an example fit. Table S4 shows a matrix of correlation
coefficients for the fit parameters Ex, Zi, and fdx. Table S5 shows
a matrix of correlation coefficients for Ex and Ki. Table S6
summarizes effects of stochastic variation of the true start vector
on the fit outcome at different conditions. Table S7 assigns the
parameters Z1–Z15 to the 15 Zxxxx. Supplemental text derives on
theoretical grounds that noiseless data require already at least six
CARs for determining all parameters and that for data with real-
istic noise the situation is more complex.

Results
All computations were performed with the heteromeric allo-
steric (CHAx) model (Fig. 1 together with Figs. S2, S3, and S4),
consisting of between 1 and 16 individual HAmodels differing by
the disabling mutations of the binding sites (Fig. 1, top;
Schirmeyer et al., 2021). The suffix x in a CHAx model specifies
the combination of the included CARs differing by the disabling
mutations (Table 1). Notably, the mutations disable the respec-
tive binding sites by only hindering the binding, but not
knocking it entirely out; i.e., a disabled binding site can still be
occupied by a ligand, but the affinity of the binding site is
lowered. For a disabled subunit, the respective equilibrium as-
sociation constant of the WT subunit is multiplied by a specific
disabling factor fd < 1. The HA model consists of 16 closed states
(C0000…C1111). Among the closed states, a network of 32
transitions with the equilibrium association constants Kxxxx is
spanned. Here x = 0, x = 1, and x = 1 specify an empty binding
site, a binding site that is actually occupied, and a preoccupied
binding site, respectively. In the context of our previous work,
the four digits denote the subunits A4, A2(1), B1b, and A2(2),
counted from the N- to C-terminus of the concatamer. The
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Table 1. Schedule of CAR combinations with all 95 combinations of disabled binding sites
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model contains 15 corresponding open states (O1000…O1111) if at
least one binding site is occupied. The equilibrium constants for
the closed–open isomerizations (Ex) were assumed to be equal for
an equal degree of liganding, resulting in the four different con-
stants E1…E4. The disabling effects of the mutations are given by
the factors fd1…fd4 that are specific for each subunit and inde-
pendent of the occupation of the other subunits. As in the previous
report (Schirmeyer et al., 2021), transitions between the open
states are not considered explicitly but are actually determined
due to microscopic reversibility (Colquhoun and Hawkes, 1995).

In order to generalize our considerations for any other tetra-
meric allosteric protein, we enabled different ligand binding for all
four subunits. According to our previous approach, we used for the
analysis a 4-D hypercube specifying 15 virtual equilibrium associ-
ation constants Zxxxx (Fig. 2, A and B; Schirmeyer et al., 2021). In
total, this results in 23 free parameters for the full CHA16model used
herein, comprising 4 Ex, and 4 fdx in addition to the 15 Zxxxx. The
number of 23 free parameters is larger by 6 than that used in our
previous study on experimental data (Schirmeyer et al., 2021).

How many CARs are required and useful?
We simulated a data set by using the constants Zi, Ex, and fdx
determined experimentally from A4-A2-B1b-A2 concatamers of
heterotetrameric CNG channels (Schirmeyer et al., 2021). The
parameters are provided in Table S1. To these computed noiseless
data, we added noise whose amplitude was proportional to Po(1 −
Po), generating a maximum amplitude at Po = 0.5, as is typical for
channel noise. For the fit, the data points were weighted respec-
tively. Subsequently, these data were globally fitted with a
Levenberg–Marquardt algorithm (see Materials and methods).

We started with the maximal fit constraints in the CHA16

model (1111; CAR combination 95) and considered first the effect
of systematically reducing the CAR number to reach finally 1 CAR
in the CHA1 = HA model (0000; CAR combination 1), thereby
determining the fit quality for all 95 possible CAR combinations
(Table 1). An example of a fitted CHA16 model is shown in Fig. 3.
Consider first the values of the fit parameters Zi and Ex (Fig. 4 A).
It becomes immediately obvious that the parameters are poorly
determined at combinations with low CAR numbers. Here, many
fits fail as indicated by the large peaks. The situation pro-
gressively improves toward combinations with higher CAR
numbers. We reproduced this 20 times and always obtained
very similar results. On theoretical grounds, we state that
noiseless data, which are unrealistic in experiments, require
at least six CARs for determining all parameters (see Sup-
plemental materials at the end of the PDF). In noisy data,
however, the situation is more complex.

To compare the SDs σi of the parameters provided by the fit,
relative SDs σi,rel were determined by σi/xi. These relative SDs,
σi,rel, are dimensionless. They allowed us to compare the preci-
sion of the determined parameters, xi. σi,rel is therefore termed
here imprecision, ipri, with ipri = σi,rel (see also Materials and
methods). The imprecision for the fit shown in Fig. 3 is shown in
Fig. 4 B, further confirming that the goodness of the fit increased
with the number of the included CARs. For the example of CAR
combination 95 (CHA16), the determined parameters, xi, and the
relative errors, ipri = σi,rel, are also listed in Table S3.

We next computed from the 15 Zi the 32 Ki (Fig. 4 C), ac-
cording to the relationships provided by Table S2, and also
the respective imprecisions, iprKi (see Materials and methods;

Figure 2. Analysis of the association constants by a 4-D hypercube. (A) Scheme of the 4-D hypercube. The 16 closed states (C0000…C1111) of a HAmodel
are the corners of a 4-D hypercube in which the Kxxxxs denote the 32 edges (x = 0 for an empty subunit, x = 1 for a subunit to be occupied, and x = 1 for a
preoccupied subunit). The colored lines indicate liganding of the respective subunits. (B) Virtual equilibrium association constants Z0001…Z1111 (violet lines)
specifying the independent parameters.

The combinations span from the WT concatamer 0000 to the quadruple mutated concatamer 1111. The notation of the four digits is that the first (N-terminal)
subunit is left and the last (C-terminal) subunit is right. 0 and 1 denote a WT and a mutated binding site, respectively.
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Fig. 4 D). Accordingly, the Ki values are determined correctly
when including 12 or more CARs and, notably, the imprecisions
even further decrease in the direction to CHA16, varying over
about two orders of magnitude between 0.003 and some more
than 0.3. Nevertheless, it is remarkable that for high numbers
of included CARs (≥12) all Ki are determined, as are also all Ex
(Fig. 4, C and D) and fdx (see legend to Fig. 3).

Subsequently, the ipri = σi,rel values were used to derive an
easy-to-handle overall mean reporting the goodness of the fits.
We tested three different means: the arithmetic mean, ipri,am
(Eq. 6a), the squared mean, ipri,sm (Eq. 7a), and the geometric
mean, ipri,gm (Eq. 8a). For the fit shown in Figs. 3 and 4, A–D, the
plot of these means along the 95 CAR combinations shows that
all three means provide a useful measure in order to demon-
strate the advantage of including 12, or better, 16 CARs in the fits
(Fig. 5 A).

Our analysis of simulated data allowed us also to compute a
second measure for the goodness of a fit, the inaccuracy. Based
on the convention that accuracy of a parameter specifies the
quality of a parameter with respect to the true value, xi/xitr (Eq.
9), the term inaccuracy indicates the relative deviation of the
parameters from their true value according to Eq. 10a. Thus, in
analogy to the imprecision, the inaccuracy iaci = αi,rel can be used
as a second measure for the uncertainty of the fit. The in-
accuracy is also dimensionless (see Materials and methods). To
derive an appropriate easy-to-handle overall mean for the in-
accuracy, we again tested the three different means of αi,rel: the
arithmetic mean, iaci,am (Eq. 11a), the squared mean, iaci,sm (Eq.
12a), and the geometric mean, iaci,gm (Eq. 13a). For the fit shown
in Figs. 3; and 4, A–D, the plot of these values along the 95 CAR
combinations indicates that, in analogy to the imprecision, also
these three means provide a useful measure for demonstrating
the advantage of including 12, or better, 16 CARs in the fits (Fig. 5

B). In order to compare the quality of global fits herein, we de-
cided to use in the following preferentially the squared means,
ipri,sm and iaci,sm. This avoids erroneous distortions possibly
arising from either negative (ipri,am, iaci,am) or zero values
(ipri,gm, iaci,gm) of any parameters.

Effect of the number of included data points
In the above analysis, the observed decrease of the uncertainty
of the fits in the direction toward higher CAR numbers could
have been caused by both an increased number of data points
and different effects of the mutations. To distinguish between
the two effects, we aimed to analyze the uncertainties at a
constant number of data points in all selected CARs, meaning
that CAR combination 1 (0000; WT) contains 16 times the
number of data points compared to CAR combination 95 (1111).
Therefore, we tested to use the same number of 35 × 16 = 560
data points in all CARs. To avoid unwanted grouping effects
when calculating the number of data points in clustered data,
appearing when successively increasing the number of data
points per CAR, we chose to perform this analysis with equi-
distant data in the CARs. We therefore first tested if the results
with equidistant data match those obtained with clustered data
as shown in Fig. 3. As expected, both imprecision and inaccuracy
dropped similarly for equidistant and clustered data in the di-
rection towards increased CAR numbers (Fig. S5).

This allowed us to compare fits with a constant number of
560 data points in all selected CARs (Fig. 6, A and B), with the
condition that the successive reduction of CARs reduces the data
point number in steps of 35 data points (Fig. 6 C). As expected, the
relationships coincide when 16 CARs were included with all 560
data points in both relationships. When progressively decreasing
the CAR number from 16 down to 1, the imprecision increased
similarly. Only at intermediate CAR numbers, there seemed to be

Figure 3. Fit of 16 CARs with the CHA16 model. 7 ligand concentrations and 5 data points at each ligand concentration were chosen, summing up for the 16
CARs to 560 data points. The noise level was set to 0.25. The conditions were our standard conditions. The values for Zi and Ex as well as Ki are provided by
Fig. 4, A and C, respectively. The fdx values (imprecisions) were fd1 = 7.022 (0.0354), fd2 = 7.42 × 10−3 (0.0289), fd3 = 1.11 × 10−4 (0.0357), and fd4 = 7.30 × 10−3

(0.0262). The brackets in the legends indicate closely similar data points and curves. The big gray double arrow illustrates that the CAR combination is varied.
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a slightly better precision with the constant data point number of
560 (inset in Fig. 6 C). Despite this small difference, the lower
uncertainty at increased numbers of included CARs remains when
the total data point numberwas kept constant, suggesting that this
effect is mainly caused by the effect of the mutations.

Effect of disabling mutations on the uncertainties
To quantify the effects of the mutations on the goodness of the
global fit, we scanned a wide range of mutational effects while
leaving the number of fit points constant. Practically, we started
with no mutational effect, i.e., the 16 CARs were equal apart
from the stochastic noise of the data points (left superimposed
relationship in Fig. 7 A). We then systematically decreased each
fdx 110 times by a constant factor such that it reached after 100
steps the value used for our standard conditions (top scheme in
Fig. 7, B and C; cf. legend to Fig. 3).

The plots along the 95 CAR combinations show that the Ki

were determined properly when the four fdx values were re-
duced about 60 times (Fig. 7, B and C), although moderate

improvement of the uncertainty of some Ki was still obtained
when decreasing the fdx values further. Fig. 8, A and B, show for
the mean imprecision and the inaccuracy three plots each (see
Materials and methods) to confirm that this result does not
depend on the chosen type of mean. Together, this shows that
strong mutational effects provide the best results for accurately
determining the equilibrium constants of the HAmodel and that
an at least ∼60-fold increase of the affinity by a mutation is a
good idea.

Accuracy of non-failing fits at CAR numbers below 16
Next, we addressed the question to what extent our global fit
analysis is successful to determine the true parameters for lesser
CARs than 16. To this end, we ran the fits of the 95 CARs max-
imally 100 times each and counted the number of fits with only
positive parameters, thereby again using the start vector with
the true values (Fig. 9 A). In line with the results above, low CAR
numbers generated only a low incidence of successful fits,
whereas combinations with 12 or more CARs (CAR combinations

Figure 4. Effect of inclusion of different CAR numbers on Zi, Ex, and Ki. Standard conditions. The abscissas indicate the number of the CAR combination
according to Table 1. (A) Zi and Ex as functions of the included CARs. The dimensions of Z1–Z4, Z5–Z10, Z11–Z14, and Z15 are μM−1, μM−2, μM−3, and μM−4,
respectively. The Ex are dimensionless. (B) σi,rel of Zi and Ex as functions of the included CARs. Including more CARs decreases the imprecision of the fit. (C) Ki as
function of the included CARs. The Kiwere computed from the Zi values according to the ratios specified in Table S2. (D) σi,rel of Ki as a function of the included
CARs (see also Materials and methods).

Benndorf et al. Journal of General Physiology 8 of 18

A strategy for determining the equilibrium constants for heteromeric ion channels in a complex model https://doi.org/10.1085/jgp.202113041

D
ow

nloaded from
 http://rupress.org/jgp/article-pdf/154/6/e202113041/1802710/jgp_202113041.pdf by guest on 10 February 2026

https://doi.org/10.1085/jgp.202113041


80–95; cf. Table 1) generated consistently 100% successful fits. It
is remarkable that successful fits can also appear exceptionally at
CAR combinations with 6 or less CARs (CAR combinations 1–16;
c.f. Table 1) though the value of 6 is the theoretical border for a
successful fit in noiseless data (see Supplemental materials).

We then calculated for the selected fits the inaccuracy for
each parameter xi (Eq. 10a). The plot of the mean inaccuracy (Eq.
12b) of these values as function of the 95 CARs (Fig. 9 B) reveals
that the inaccuracy essentially decreases in the direction to-
wards the highest CAR number of 16. Hence, the best deter-
minability is obtained with 16 CARs and a still reasonable
determinability with 12–15 CARs.

Accuracy of parameters and the equilibrium
association constants
Next, we considered how well our approach determines the 23
fit parameters. With the optimal condition of including 16 CARs,
we varied the data points stochastically, and fitted the CAR
combination 1,000 times. As read-out we calculated the accur-
acy as defined by Eq. 9. The distributions of the resulting 1,000
values per parameter were then used to build 23 respective
histograms (Fig. 10 A). These histograms are all bell-shaped with
a mean near xi/xitr = 1 but differ significantly in their width. To
quantify this width, the histograms were fitted by a Gaussian
function (Eq. 15; fits not shown), yielding the SD as measure for
the goodness of each parameter. A bar graph of these SDs (Fig. 10
B) reveals that all values apart from E4 and Z15 are <0.1 and that
E1, E2, and E3 are smaller than the others. The latter fact makes it
promising for the future to distinguish between the equilibrium
constants of the closed–open isomerizations.

Because the experimentalist likes to know preferentially the
equilibrium association constants K1–K32 in the kinetic scheme

of Fig. 1 left, we also calculated the respective histograms (Fig. 10
C) by the relations given in Table S2 and determined the SDs
accordingly (Fig. 10 D). The obtained standard deviations of
K1–K28 are between 0.08 and 0.14, telling that the accuracy of
these constants is still very good. K29–K32 are somewhat larger
due to the large value of Z15 used for their calculation. This in-
dicates an increased vagueness for determining the binding of
the fourth ligand. So far, these results demonstrate a robust
minimum for our global fit of 16 intimately coupled models
which enables to determine the formidable number of 23 pa-
rameters xi if only an appropriate start vector is available.

Correlations
The excellent goodness of our global fit raised the question as to
the correlation between the parameters, xi. We therefore cal-
culated the correlation matrix (Table S4) from the covariance
matrix (Eq. 14a). As usual, a perfect correlation has the value 1, a
perfect anti-correlation −1, and no correlation 0. Accordingly,
the n = 23 parameters themselves produce a correlation coeffi-
cient of 1, as indicated in the main diagonal. The remaining (n +
1)n / 2 − n = 253 correlation coefficients between all parameters
are also illustrated graphically in a color-coded manner (Fig. 11
A). Most correlation coefficients are between −0.3 and +0.3,
suggesting low correlation (Fig. S6 A). There is only a single
pronounced anti-correlation between E4 and Z15, where the co-
efficient is −0.99.

To relate these considerations better to the state model of
Fig. 1, left, we computed a respective correlation matrix for the
4 Ex and 32 Ki by using Eqs. 2 and 14b (see Materials and
methods). This resulted in a matrix with n = 36 to (n + 1)n /
2 − n = 630 correlation coefficients (Table S5 and Fig. 11 B). Also
here, most of the correlation coefficients are between −0.3 and

Figure 5. Comparison of three means of both imprecision and inaccuracy. (A) Plot of three mean imprecisions, ipri,x, as functions of the 95 CAR com-
binations. The values were computed by Eqs. 6a, 7a, and 8a (see Materials and methods). All three means drop similarly if more CARs are included in the fit,
indicating that all three means are similarly appropriate for testing the precision of a fit. (B) Plot of the mean inaccuracies, iaci,x, as functions of the 95 CAR
combinations. The values were computed by Eqs. 11a, 12a, and 13a (see Materials and methods). The mean inaccuracies also drop similarly if more CARs are
included, suggesting that these three mean inaccuracies are similarly appropriate for testing the accuracy of a fit.
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+0.3 (Fig. S6 B). However, there are also somemore positive and
negative values: (1) the fourth binding steps show a pronounced
positive correlation between each other with coefficients close
to 1 (lower right corner of the plot). (2) There is a negative
correlation between the fourth binding steps and E4. To some
extent, this resembles the relationship between the binding step
and the subsequent conformational change in the much simpler
del Castillo–Katz scheme (Colquhoun, 1998). (3) A similar
tendency, although not as strong, is indicated between all
third binding steps and E3. (4) There is a moderate anti-
correlation among the three possible second binding steps.
All anticorrelations contribute as coupled reactions to the
population of an open state (e.g., K29–K32 with E4), generating

only a small component of the overall signal. Thus, the anti-
correlation indicates a balance of the deviations of one equi-
librium by an opposing deviation of another. Prospectively,
inclusion of more concentrations at which these states con-
tribute more and additional read-outs (e.g., by fluorescence)
could decrease the uncertainty in such anticorrelations.

Minimum of the global fit
To further confirm our observation of excellent convergence
with 16 CARS and 23 parameters, we performed another test. For
our standard conditions of 7 × 5 data points for each of the 16
CARs, we fitted only 22 parameters while systematically fixing
the 23rd parameter. We then systematically varied the 23rd

Figure 6. Effects of the data point number on the goodness of the global fit. (A) Fit of 16 CARs with the CHA16 model. 35 equidistant ligand concen-
trations were used as data points in the CHA16 model, and the number of data points per CAR was increased such that reducing the CAR number kept in total
560 data points. The noise level was set to 0.25. The brackets in the legends indicate closely similar data points and curves. The big gray double arrow il-
lustrates that the CAR combination is varied. (B) Plot of the imprecisions iprKi = σKi,rel for the 32 Ki values as function of the 95 CAR combinations. (C) Plot of the
mean imprecision, iprKi,sm, for the 32 Ki values as function of the 95 CAR combinations for a constant total number of 560 data points (red) compared with 35
data points per CAR (blue). At intermediate numbers of included CARs, iprKi,sm is slightly lower for a constant total number of 560 data points (inset).
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parameter by the factor B in the proximity of the true value that
was determined before by the fit with 23 free parameters. In the
case of a robust minimum, this should lead to a minimum MSE
at B = 1. Matching our observation of excellent convergence, a
minimum was observed for all parameters (Fig. 12, A–C). This
minimum was steep for all parameters apart from the two
anticorrelated parameters E4 and Z15, for which it was much
flatter. Nevertheless, these two parameters also showed a
minimum. These results show that in the proximity of the
identified minimum of the fits there is no continuum of pa-
rameter vectors as described for binding data when using a
simple model with only two binding steps and an allosteric

factor but without the helpful power of mutagenesis (Middendorf
and Aldrich, 2017a).

Stochastic variation of the true start vector
The weak point so far is that we used the true values as start
vector, because it is possible that more minima exist in the 23-
dimensional parameter space that the fit does not reach, thus
biasing the fit. We therefore decided to abandon the strategy of
using a start vector with the true parameters. In a first step,
we started to stochastically vary the parameters of the true
start vector and to count the incidence of successful fits,
containing exclusively positive parameters. We evaluated the

Figure 7. Mutational effect on the goodness of the global fit. (A) Fit of 16 CARs with the CHA16 model. The fit was started with nomutational effect, i.e., all
fdx values were set to 1 (left). Then each fdx was systematically decreased 110 times by a factor to reach, after 100 steps, the true fdx value, and 10 steps
further. The big gray double arrow illustrates that the fdx values were varied. The brackets in the legends indicate closely similar data points and curves. (B) Ki
as function of the factor by which fdx was decreased to reach, after 100 steps, the true value (arrow). The four fdx values are plotted in the top scheme.
(C) Imprecisions iprKi,sm as functions of the factor by which fdx was decreased to reach, after 100 steps, the true value. The values correspond to the plot in B.

Benndorf et al. Journal of General Physiology 11 of 18

A strategy for determining the equilibrium constants for heteromeric ion channels in a complex model https://doi.org/10.1085/jgp.202113041

D
ow

nloaded from
 http://rupress.org/jgp/article-pdf/154/6/e202113041/1802710/jgp_202113041.pdf by guest on 10 February 2026

https://doi.org/10.1085/jgp.202113041


mean imprecision (Eq. 6a) and the mean inaccuracy (Eq. 11a).
Our general protocol was to fit the full set of 16 CARs
1,000 times.

Because our analysis now contains two stochastic influences,
the noise of the data points and the variation of the start vector,
we tested first the effect of a different data noise on the

incidence of successful fits at unchanged stochastic variation of
the start vector. For our standard conditions of 560 data points
and noise factor 0.25, all parameters of the true start vector were
varied by the stochastic factor A = 5 in both directions, resulting
in total in a 25-fold variation range for each parameter (Fig. S7
A). In this representative example, 895 fits were successful, as

Figure 8. Mean uncertainty of the fits as function of the mutational effect. (A) Plot of three mean imprecisions, iprKi,am, iprKi,sm, and iprKi,gm (Eqs. 6b, 7b,
and 8b) corresponding to Fig. 7, A and B. (B) Plot of the three mean inaccuracies, iarKi,am, iarKi,sm, and iarKi,gm (Eqs. 11b, 12b, and 13b) corresponding to Fig. 7, A
and B. The shaded areas illustrate that mutations decreasing the affinity by ≥60-fold generate properly determined parameters.

Figure 9. Inaccuracy in selected successful fits at different CAR combinations. (A) Incidence of fits with positive parameters only. The 95 CARs were
fitted 100 times each, and the number of fits with only positive parameters, the criterion for a successful fit, was counted. The start vector contained the true
values. Low CAR numbers generate only a low incidence of successful fits, whereas combinations with ≥12 CARs (cf. Table 1) generated successful fits in all
cases. (B) Plot of the mean inaccuracy iaci,sm as a function of the 95 CARs of fits with only positive parameters. The mean was formed first for each successful fit
over all parameters xi by Eq. 12a and then over all successful fits specified in A. The inaccuracy decreases toward the highest CAR number of 16.
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also indicated by the reasonable imprecision and inaccuracy (fit
no. 1 in Table S6). Interestingly, in the failing fits, the tendency
of the parameters E4 and Z15 to become negative was elevated
(gray curve in Fig. S7 D), presumably mirroring the pronounced
anticorrelation between these two parameters. When increasing
the data noise eightfold to 2 (fit no. 2 in Table S6 and Fig. S7 B),
we obtained in total 853 successful fits, which is onlymoderately
less than obtained with the data noise 0.25. This indicates that at
a poor data noise, the constraints inherent in the 16 CARs are still
high, although both the imprecision and the inaccuracy have
conspicuously increased. Data completely free of noise produce a
rate of successful fits not dissimilar to the tested noisy data but
with much lower imprecision and inaccuracy (fit no. 3 in Table
S6; and Fig. S7, C and D). Together, these results suggest that the

data noise has less influence on the rate of successful fits than
the amplitude of the variation of the start vector.

We then tested the effect of increasing the amplitude of the
stochastic variation of the true start vector by increasing the
stochastic variation factor A of all parameters from 5 to 100,
resulting in an increased total range for each parameter from
2.5 × 101-fold to 104-fold, respectively (fit no. 4 in Table S6).
Compared to the standard conditions, the number of successful
fits has decreased, but it is most remarkable that this enor-
mously elevated stochastic variation of the start vector left 492
fits successful, with imprecision and inaccuracy similar to those
of control conditions (fit no. 1 in Table S6). Apparently, our
elimination strategy of failing fits by the criterion of at least one
negative parameter is useful to identify the true minimum.

Figure 10. Accuracy of parameters and equilibrium association constants. The optimal condition of including 16 CARs (CAR combination 95) was used.
This CAR combination was fitted 1,000 times while stochastically varying the data points from fit to fit. The distribution of the accuracy, xi/xitr (Eq. 9), was
evaluated. (A) Superimposed histograms of the distribution of accuracies for all 23 determined parameters. Bin width 0.01. The histograms are bell-shaped,
differing significantly in their width. (B) Bar graph of the SDs obtained by fitting the histograms in A with a Gaussian function (Eq. 15). The SDs of all parameters
are <0.1. (C) Superimposed histograms of the distribution of accuracies for the 32 equilibrium association constants Ki. Bin width 0.01. (D) Bar graph of the SDs
obtained by fitting the histograms in C with a Gaussian function (Eq. 15). The SDs of the Ki were computed by Eqs. 2–4. The values are on average larger than
the SDs of the Zi (B) from which they were computed (see Materials and methods).
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Stochastic variation of a SU start vector
The observed resilience of the fit success at an enormous stochastic
variation of the true start vector prompted us to try SU start vec-
tors, containing identical elements, and to vary them stochastically.
If enough successful fits are obtained and the nonsuccessful fits can
still be identified, a major source of bias would be removed.

We systematically scanned SU start vectors of 10−6 to 101 and
used the same stochastic factor, A = 102. The success rate was
maximal for an SU start vector of 10−1 (Fig. 13 A), which is near
the logarithmic mean of 2.8 × 10−2 for all parameters used for the
simulation. This shows that without prior knowledge about the
parameters, (1) a sufficient number of successful fits can be

Figure 11. Color-coded matrices of correla-
tion coefficients. (A) Parameters Ex, Zi, and fdx.
The exact numbers are indicated in Table S4. The
data are the mean of 100 converging fits. The
start vector was set to the true values. Noise
factor 0.5. The main diagonal illustrates the
correlations of the parameters with themselves,
resulting in correlation coefficients of 1. Most
other correlation coefficients are −0.3 to 0.3,
with few exceptions. (B) Ex and Ki. The exact
numbers are indicated in Table S5. The data are
the mean of the same 100 converging fits as in A.
Most correlation coefficients are −0.3 to 0.3, but
there are both more positive and negative values
than in A.
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obtained and (2) a useful range for a reasonable SU start vector
can be identified.

We next considered the distribution of the minima among
the successful fits. For a given SU start vector, all fits were
performed with identical data points, providing information
about the influence of the stochastic variation of the SU start
vector on the minimum. To this end, the fits were sorted with
respect to the MSE, starting with the smallest. For all MSEx of
this sequence, a normalized measure, C(MSEx), was iteratively
calculated (Eq. 16; see Materials and methods). C(MSEx) in-
creases at already very subtle changes.

Plotting C(MSEx) as function of the increasing MSEx shows
that with SU start vectors generating several tens of successful
fits (SU start vectors 3 × 10−2 to 3 × 10−1), the vast majority of fits
produced consistently C(MSEx) values <10−10 or even <10−13 (Fig. 13
B). Rare outliers produced excessively larger C(MSEx) values.

To select for each SU start vector fits with nearly identical
MSE, we set a threshold to 10−10 (red dashed line in Fig. 13 B).
When taking further into account that for a given SU start vector
at least five C(MSEx) values below the threshold are required,
this allowed us to select fits with SU start vectors between 3 ×
10−5 and 100 (Fig. 13 A). Both larger and smaller SU start vectors
produced less successful fits and were not considered further.

The fits below the threshold of C(MSEx) <10−10 are highly
consistent, because this threshold means a difference of anMSEx
value in the 11th digit after the decimal sign with respect to the
mean of MSE1 through MSEx−1. In contrast, for the fits above the
threshold, we observed in no case a comparable consistency.
This supports the conclusion that all 238 subthreshold fits ob-
tained with the SU start vectors of 3 × 10−5 to 100 represent the
best minimum. To show that the successful and consistent fits
indeed match the true parameters, we plotted all determined
parameters for the respective SU start vectors (Fig. 13 C). This
shows that the successful and consistent fits below the threshold

allowed us to determine the true parameters excellently, inde-
pendent of the value of the actual SU start vector.

In conclusion, our stochastic approach using SU start vectors
can help to identify the true values of the 23 parameters without
bias given by specific start vectors. Nevertheless, we note that
these results make it very likely that the consistently identified
minimum is the global minimum of the fit, but they do not fi-
nally exclude that another minimum in the huge 23-dimensional
parameter space exists.

Discussion
In this study, we investigated the determinability of 23 free
parameters for a model scheme of a heterotetrameric ligand-
gated ion channel. We derived from these parameters in total
40 constants. Our strategy is based on knowing the subunit
composition of the channel, disabling of different binding sites
of the subunits by mutations, and globally fitting CARs obtained
from macroscopic currents. One major assumption of our
strategy is that the mutations disable the binding sites but
preserve functionality, i.e., the subunits of all concatamers, in-
cluding the mutated ones, can still be activated. Another as-
sumption is that the principle of microscopic reversibility holds,
being aware that for some ion channels a violation of this
principle has been suggested (Schneggenburger and Ascher,
1997; Xu and Meissner, 1998).

A first relevant result is that we identified for 12 or more
CARs, preferably the full set of 16 CARs (CHA16 model), a net-
work of fit constraints of unusual intensity. The success of the
strategy is mainly based on introducing the four helper pa-
rameters, fdx, specific factors for disabling the affinity of the
binding domains. The fdx values were assumed to be unique for
each subunit, independent of the activation of the other sub-
units. These four helper parameters are not relevant for the

Figure 12. The minimum of the global fit. For our standard conditions (7 × 5 × 16 = 560 data points), fits with only 22 parameters were carried out while
fixing the 23rd parameter and varying it by the factor B in the proximity of the true value as obtained by the 23-parameter fit. B was varied from 1/8 to 8 in
logarithmically equidistant steps. The MSE was normalized to the true MSEtrue value of the respective parameter. (A–C) Plots of the indicated fit parameters.
There are robust minima of MSE/MSEtrue for all parameters apart from the anticorrelated parameters E4 and Z15, for which much flatter minima were found.
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interpretation of the constants of the WT channel, although
being essential for the global fit.

A second relevant result is that we identified in this global fit
for all 23 parameters a minimum that is remarkably robust,
apart from the two strongly anticorrelated parameters E4 and
Z15. Even for them, a flat minimum was shown (Fig. 12).

A third relevant result is that we proposed a stochastic ap-
proach to consistently identify a minimum with the true 23
parameters when using a SU start vector. This SU start vector
avoids any bias by more specific start vectors and thus proves
the power of our systematic mutations in the concatamers to-
gether with the global fit strategy. This approach is in fact
simple. First, a stochastic scan has to be performed to identify
the range for useful SU start vectors by counting the successful
fits with only positive parameters. Second, in a range with
enough successful fits, rare fits with larger and inconsistent
MSE values can be identified and discarded. The MSE of the
selected fits is extremely consistent and provides the final result,
which herein matched exclusively the true parameter values
used in the simulations, independent of the SU start vectors

(Fig. 13 C). If a continuum of minima (Middendorf and Aldrich,
2017a) were present in our simulated data, we speculate that we
would not have observed the consistent minimal MSE (Fig. 13 B).

The proposed strategy of fitting complex networks of coupled
HA models with different patterns of disabling, resulting in a
respective complex CHA model, is apparently an exceptionally
fortunate condition to reliably determine multiple parameters.
This does not automatically mean that a sufficiently large data
set leads necessarily to similarly consistent results for any
model, even if a model is simple compared with the models
considered herein. This is because, as shown, the goodness of the
fit depends on various influences including the number of CARs,
the noise amplitude, the chosen start vectors, andmost of all, the
strength of the disabling effects of the mutations (Figs. 7 and 8).
Nevertheless, our considerations allow us to say that more CARs
and strong disabling effects significantly promote the determi-
nability of the parameters. It seems to be promising to elaborate
in the future a unifying theory for all these influences.

The number of 23 free parameters in our global fits seems high
for investigators who are used to work with single equations

Figure 13. Successful fits with SU start vectors. SU start vectors, containing 23 identical start parameters, were varied by the stochastic factor A = 102.
1,000 fits were performed for each SU start vector. SU start vectors of 10−6 to 101 were tested. (A) Histogram of successful fits for different SU start vectors.
Among the successful fits for SU start vectors of 3 × 10−5 to 100, the differentiation with respect to a threshold refers to B. (B) Refined search for the fit
minimumwith SU start vectors of 3 × 10−5 to 100. The fits were sorted with respect to the MSE value, starting with the smallest. A normalized measure for the
xth element in this sequence, C(MSEx), was computed with Eq. 16 (see Materials and methods). The diagram shows the plot of C(MSEx) as a function of the
increasing MSNx number. The vast majority of fits consistently produced C(MSEx) values <10−10 or even <10−13. Setting a threshold to 10−10 (red line) allowed
for the elimination of successful fits with higher MSE values. Other thresholds of ∼10−13 to ∼10−5 would also produce satisfying results. The tiny variability of
C(MSEx) of 10−14 to 10−13 can be explained by the use of data points with different noise for different SU start vectors. (C) Plot of all determined parameters for
SU start vectors varying from 3 × 10−5 to 100. The dimensions of Z1–Z4, Z5–Z10, Z11–Z14, and Z15 are μM−1, μM−2, μM−3, and μM−4, respectively. The other
parameters are dimensionless. The true values are indicated. The accuracy of the determined parameters does not depend on a specific SU start vector.
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and few parameters. We like to present another argument
that 23 parameters for 16 CARs is in fact not a large number:
when comparing the 23 parameters with 16 × 2 = 32 pa-
rameters required to fit 16 CARs separately by single Hill
functions, the number is already significantly smaller. When
reflecting in addition the necessity of two components to
describe CARs, the respective double Hill functions require
five parameters. For example, when assuming six double Hill
functions, the total number of parameters obtained from the
data would increase to 10 × 2 + 6 × 5 = 50. This exceeds the 23
parameters substantially. In return, this tells how strong the
constraints are when globally fitting our system of inti-
mately coupled models.

As noted above, the analyses presented herein are based on
real data of concatameric heterotetrameric CNGA4:A2:B1b:A2
channels, where 17 parameters were previously determined. The
higher number of 23 in the present theoretical study results
from the assumption that each of the subunits was allowed to
adopt a different equilibrium association constant, whereas in
our previous study we assumed that the two A2 subunits are
identical. Hence, the extended considerations herein enable a
wider use of our approach for other heterotetrameric ligand-
gated ion channels.

For the future, it seems to be promising to extend our
analysis to dynamic data, evoked for instance by jumps of the
ligand concentration, and to determine, in addition to equilib-
rium constants, rate constants for conformational changes. It
seems to be promising to identify general basics for a successful
fit with our approach independent of a specific model, covering
the relations between the number of parameters, the structure
of the parameter vector, the structure of the model, and the size
of the stochastic factor A.

Our approach is straightforward and applicable to experi-
mental data accordingly. Beyond heterotetrameric ligand-gated
ion channels, heterotrimeric and heteropentameric ligand-gated
ion channels also seem to be candidates for our approach, if the
subunit composition is exactly known. Such approaches would
require a 3-D cube and 5-D hypercube, respectively, leaving the
basic strategy similar. Another field of applications of our
strategy are classic voltage-gated channels. In analogy, our
strategy seems to be suitable to identifying the correct stoichi-
ometry in heterotetrameric channels if part of the contributing
subunits do not form functional channels on their own, as for
example, Kv2.1/KV6.4 channels (Moller et al., 2020; Pisupati
et al., 2020). Here, a promising idea is to affect the voltage-
sensor domain of the subunits by appropriate mutations,
evoking shifts of steady-state activation to more positive
voltages. To some extent, this is analogous to the disabling
effects used herein for ligand-gated channels. Moreover, this
strategy should be usable to analyze natural heterotetramers,
such as Nav channels (Jiang et al., 2020) and Cav channels
(Wu et al., 2015).
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Supplemental material

The 4-D hypercube as a useful tool
Let us consider the 16 closed states Cv = Cijkl (v = 0…15) of a tetrameric ion channel, arranged in the corners of a 4-D cube, where the
binary components of the 4-D vector v = (ijkl) indicate whether the subunit in question is liganded (1) or not (0). A well-manageable
system to describe the equilibrium properties is based on using “virtual,” or rather “generalized,” equilibrium constants Zv = Zijkl
(v = 1…15) between state C0000 and state Cijkl. In this set of 15 generalized equilibrium constants, Zijkl has some advantages over the
use of the actual equilibrium constants Kxxxx between adjacent closed states. First, the Zijkl form a tree with only one single node in
C0000 and they are therefore evidently free from any microscopic reversibilities. Second, the equations for determining the Zijkl
from experimental data are low order or even linear compared to those with Kxxxx. Third, all desired Kxxxx can be calculated from
the Zijkl.

This is demonstrated for the example K1011

K1011 � Z1011/Z1010, (S1)

where the 1 in K1011 denotes that the binding of the ligand occurs at the fourth subunit, whereas the 1 denotes that the first and third
subunit are already occupied.

With the help of Zijkl, the occupation probability Pcijkl of any closed state Cijkl can now be written as a multiple of Pc0000 of the
empty “ground state” C0000, namely

Pcijkl � Pc0000∙Zijkl∙La. (S2)

The power α = i + j + k + l of the ligand concentration L counts the number of occupied subunits.
With the related equilibrium constants for the closed–open isomerizations, Eijkl, the occupation probability Poijkl of the open

state Oijkl is given by

Poijkl � Pc0000∙Eijkl∙Zijkl∙La. (S3)

Also, openings without bound ligands are included in Eq. S3 with Z0000 = 1 and E0000≠0.
The occupation probabilities of all open states add up to the open probability Po(L) of the whole channel, where the summation

extends over all combinations of 0 and 1 for i, j, k, l:

P0(L) �
X
i,j,k,l

poijkl �Pc0000∙
X
i,j,k,l

Eijkl∙Zijkl∙La (S4)

The occupation probabilities of all open and closed states add up to 1

1 �
X
i,j,k,l

(pcijkl + poijkl) � Pc0000∙
X
i,j,k,l

(1 + Eijkl)∙Zijkl∙La (S5)

The sums in Eqs. S4 and S5 can be divided into subtotals with equal number α = i + j + k + l of bound ligands:

P0(L) � Pc0000∙
X4
α�0

 X
i+j+k+l�α

Eijkl∙Zijkl

!
∙La (S6)

1 � Pc0000
X4
α�0

" X
i+j+k+l�α

(1 + Eijkl)∙Zijkl
#
∙La (S7)

It is useful to introduce abbreviations for the subtotals in Eqs. S6 and S7

aα �
X

i+j+k+l�α
Eijkl∙Zijkl (S8)

bα �
X

i+j+k+l�α
(1 + Eijkl)∙Zijkl, (S9)

where the summations cover all combinations with the same value of α = 0…4. For the special case α = 0 follows

b0 − a0 � 1. (S10)

Now Eqs. S6 and S7 simplify to
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P0(L) � Pc0000∙
X4
α�0

aα∙La (S11)

1 � Pc0000∙
X4
α�0

bα∙La. (S12)

Using Eq. S12, one can eliminate Pc0000 in Eq. S11 and calculate the probability of the whole channel as a rational function of the
ligand concentration L with five coefficients aα in the numerator and five coefficients bα in the denominator

Po(L) � a0 + a1L + a2L2 + a3L3 + a4L4

b0 + b1L + b2L2 + b3L3 + b4L4
. (S13)

How many parameters can be determined exactly from a data set?
To determine the 10 parameters of the rational function (Eq. S13), one needs 10 conditions. If exact values for the open probabilities
pi � Po(Li) are available at nine concentrations Li, i = 1…9, one gets nine equations from Eq. S13:

a0 + a1Li + a2L2i + a3L3i + a4L4i − b0pi − b1Lipi − b2L2i pi − b3L3i pi − b4L4i pi � 0 (S14)

Together with b0 − a0 � 1 (Eq. S10), this is a uniquely solvable system of 10 linear equations for 10 unknown coefficients aα and bα.
Ergo, one can always get the rational function (Eq. S13) from nine different noise-free data points.

Next, it is demonstrated how the Zijkl and Ea can be calculated from aα and bα. In our model we assumed that the equilibrium
constants for the closed–open isomerizations depend only on the number α of bound ligands, Eijkl = Eα, with α = i + j + k + l. Then the
coefficients in Eqs. S8 and S9 and their difference are

aα � Eα

X
i+j+k+l�α

Zijkl, (S15)

bα � (1 + Eα)
X

i+j+k+l�α
Zijkl, (S16)

and

bα − aα �
X

i+j+k+l�α
Zijkl. (S17)

The special case α � 0 yields with Z0000 = 1 the values a0 � E0 and b0 � 1 + E0.
It is then of interest to determine for a givenmodel and noise-free data Po(L) the maximal number of parameters in the absence of

any additional information.

Homotetrameric channel
First, a model for a homotetrameric channel with equivalent subunits but different equilibrium association constants Kα for each
binding step α is considered. Here, all the generalized constants Zijklwith the same number of ones in the four indices ijkl have the
same value Zα. From Eq. S15, one gets

bα − aα �
X

i+j+k+l�α
Zijkl �

�
4

α

�
Zα, (S18)

where the binomial coefficient
4
α

� �
provides the number of combinations with the same Zα. The Zα can be determined from Eq. S18,

and the Kα can be calculated by Eq. S1 according to

Kα � Zα/Zα−1, (α � 1…4). (S19)

For the parameters, Eα follows from Eqs. S15 and S17:

Eα � aα
�
(bα − aα), (α � 0…4) (S20)

This shows that the nine parameters E0…E4 and K1…K4 for the model of the homotetrameric channel can be theoretically cal-
culated from nine different data points.

Heterotetrameric channel
For the model of a heterotetrameric channel, more than nine equilibrium parameters are required. Because one CAR contains only
nine conditions, additional experimental information is needed. It is therefore useful to have further constraints by including
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additional CARs from channels containing subunits with a defined number of severely disabled but still functional binding sites. We
assume that this mutational effect can be described by factors of disabling, fdu (u = 1…4 for subunit u). According to Eqs. S15, S16, and
S17, this yields for each CAR (index β)

aα,β � Eα

X
i+j+k+l�α

Zijkl∙fda1 ∙fd
b
2∙fd

c
3∙fd

d
4 (S21)

bα,β � (1 + Eα)
X

i+j+k+l�α
Zijkl∙fda1 ∙fd

b
2∙fd

c
3∙fd

d
4 (S22)

and

bα,β − aα,β �
X

i+j+k+l�α
Zijkl∙fda1 ∙fd

b
2∙fd

c
3∙fd

d
4 (S23)

The exponents a, b, c, and d are either 0 or 1. Such an exponent is 1 if the subunit is mutated and has bound a ligand. Otherwise, it
is 0 (Schirmeyer et al., 2021). It is assumed for the following considerations that nine noise-free data points for six different CARs
each are available and that the rational functions for each CAR can be calculated with Eqs. S14 and S10. It is then possible to calculate
all the 24 parameters of the model (E0…E4, fd1…fd4, 15 × Zijkl) from these coefficients aα,β and bα,β. A simple way is saying that β � 0
denotes the WT channel, β � 1…4 denote the CARs with one mutation at subunit 1…4, and β � 5 denotes a channel mutated on more
than one binding place.

In the following it is shown that, under these assumptions, the unique calculation of all constants is possible. Part of the pa-
rameters can be calculated in different ways, starting with the Ex according to Eqs. S21 and S23.

Eα � aα,β
�
(bα,β − aα,β), (α � 0…4; any β) (S24)

For the channels with only one mutation, we need only the correct factor fdβ. From Eq. S23 follows for β � 1…4 the simplification

bα,β − aα,β �
X

i+j+k+l�α
Zijkl∙fdaβ (S25)

For the fourth coefficients with α = i + j + k + l = 4, the sum contains only one summand

b4,β − a4,β � Z1111∙fdβ, (β � 1…4) (S26)

yielding for the WT CAR

b4,0 − a4,0 � Z1111, β � 0( ). (S27)

Now, it is evident that the calculation of the factors of disabling by mutations can be performed by

fdβ � b4,β − a4,β( )
�
b4,0 − a4,0( ), β � 1…4( ). (S28)

As a consequence of Eqs. S21 or S22, for α = 4 this can again be performed in different ways:

fdβ � a4,β
�
a4,0 � b4,β

�
b4,0, (β � 1…4) (S29)

If the factors fdβ are known, all Zijkl can be calculated by linear equations. The most simple case is the calculation of Z1111

Z1111� b4,0 − a4,0 � (b4,β − a4,β)
.
fdβ (S30)

For calculating the other Zijkl, it is necessary to solve systems of linear equations. In the cases α = 1 and α = 3, four different Zijkl
have to be calculated and a system of four linear equations is needed, e.g., by employing Eq. S25 with β � 1…4.

For the case α = 2, the number of parameters Zijkl is elevated to six, resulting in six linear equations. This can be realized with Eq.
S17 for β � 0,with Eq. S25 for β � 1…4 and Eq. S23 for β � 5. This is the reason for the need of six different CARs in such an analysis
of noiseless data.

According to Eq. S1, all constants Kxxxx can be calculated from the Zijkl.
Finally, we emphasize again that the above considerations describe an unrealistic theoretical case of noiseless data. A critical

point is also the calculation accuracy if the equation systems are not well conditioned. However, our considerations show that
different calculation pathways are possible for most parameters of the model. This redundancy arises because 6 CARs measured at 9
concentrations each yield 54 conditions for the calculation of only 24 parameters.

This raises the question of whether only 24 data points (e.g., 6 points for each of 4 CARs) would be enough to calculate the 24
parameters of the model without first reconstructing the rational functions of the CARs involved. We get the 24 needed equations
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from Eq. S14, but the coefficients ak and bk must be replaced according to Eqs. S21 and S22. This would result in 24 equations which
are non-linear because of the now unavoidable products of the constants Zijkl with factors fdβ. As consequence, this system would
have to be calculated numerically and, generally, could havemore than one solution. If the data set contains at least a 25th data point,
one could use it to test all the solutions and find the right one.

It should be stressed again that all these considerations are only valid for the theoretical case of noiseless data.
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Figure S1. Structure of the MWC model. The empty binding site (white circle) of each subunit can bind one ligand (blue circle) in either the resting (gray
squares) or activated (gray circles) state. The equilibrium association constant is equal for all binding steps in the resting protein (K; mol−1), and in the activated
protein (fK; mol−1), resulting in the indicated stoichiometric factors. f is a constant allosteric factor. A joint allosteric step with the equilibrium isomerization
constant fnE0 (f > 1, n = 0…4) leads to progressive activation. For the double-liganded channel, the ligands are drawn below the channel cartoon to illustrate
that there are two options for binding, adjacent or diagonal.
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Figure S2. HA models for four concatamers containing one disabled binding site. The concatamers build, together with the two models in Fig. 1 and the
models in Figs. S3 and S4, the 16 models of the CHA model. Blue circles represent a ligand, white circles represent an empty binding site, and a red cross on a
white circle represents a disabled binding site. Equilibrium association constants for ligand binding, Kxxxx (x = 0 for an empty subunit, x = 1 for a subunit to be
occupied, and x = 1 for a preoccupied subunit) are indicated in black for a WT and red for a disabled subunit. One HA model contains 32 Kxxxxs, either black or
red. Shown is only the network for ligand binding. Each state model has to be complemented by the scheme of the closed–open isomerizations shown at the
bottom of Fig. 1.
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Figure S3. HA models for six concatamers containing two disabled binding sites. The concatamers build, together with the two models in Fig. 1 and the
models in Figs. S2 and S4, the 16 models of the CHA model. For further explanation see legend to Fig. S2.
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Figure S4. HA models for four concatamers containing three disabled binding sites. The concatamers build, together with the two models in Fig. 1 and
the models in Figs. S2 and S3, the 16 models of the CHA model. For further explanation see legend to Fig. S2.
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Figure S5. Comparison of fits with 35 either equidistant or clustered data points. Equidistant data points (blue) were generated for each CAR specifically,
running from Po = 0.01 to Po = 0.99. (A and B) For clustering, the 35 data points (red) were grouped to 7 equidistant portions containing 5 data points each. All
95 CAR combinations were tested (cf. Table 1). (A) Imprecision. (B) Inaccuracy.
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Figure S6. Correlation coefficients. (A) Histogram of correlation coefficients between the fit parameters Ex, Zi, and fdx. The variances of the parameters
themselves (correlation coefficient = 1) were omitted. Data are the mean of 100 converging fits. Noise factor 0.5. Most correlation coefficients are −0.3 to 0.3,
with few exceptions. An outstanding negative correlation exists between Z15 and E4. For individual values, see Table S4. (B)Histogram of correlation coefficients
between the Ex and Ki. The Ki values were calculated from the Zi values as described in Materials and methods. For individual values, see Table S5.
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Provided online are seven tables. Table S1 shows constants used to simulate the 16 CARs. Table S2 provides equilibrium association
constants and their genesis. Table S3 provides a comparison of true values, fitted parameters, and errors for an example fit. Table
S4 shows a matrix of correlation coefficients for the fit parameters Ex, Zi, and fdx. Table S5 shows a matrix of correlation
coefficients for Ex and Ki. Table S6 summarizes effects of stochastic variation of the true start vector on the fit outcome at different
conditions. Table S7 assigns the parameters Z1–Z15 to the 15 Zxxxx.

Figure S7. Effect of data noise on the fit at stochastic variation of the true start vector. Five data points at seven concentrations were used to refit the
CHA16 model 1,000 times. Representative examples of successful fits are shown. Each parameter was stochastically varied 5-fold in both directions, resulting in
a 25-fold total variation range. (A) Standard conditions with a noise level of 0.25. (B) Noise level 2.0. (C) No noise. (D) Incidence of negative parameters for the
fits in A–C.
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