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Directing two-way traffic in the kidney: A tale of

two ions

Lawrence G. Palmer'®

The kidneys regulate levels of Na* and K* in the body by varying urinary excretion of the electrolytes. Since transport of each
of the two ions can affect the other, controlling both at the same time is a complex task. The kidneys meet this challenge in two
ways. Some tubular segments change the coupling between Na* and K* transport. In addition, transport of Na* can shift
between segments where it is coupled to K* reabsorption and segments where it is coupled to K* secretion. This permits the
kidney to maintain electrolyte balance with large variations in dietary intake.

Introduction

The kidneys keep track of the electrolytes in the body, matching
the rates of excretion in the urine with those of ingestion in the
diet. There is now a broad consensus that control of Na* and K*
excretion involves the concerted effort of multiple nephron
segments; more proximal portions of the renal tubule reabsorb
both ions while distal parts reabsorb Na* and secrete K* into the
urine. This allows simultaneous adjustment of Na* and K* ex-
cretion rates to match rates of uptake from the diet. Further-
more, the coupling of K* movement (either in the reabsorptive
or secretory direction) to Na* transport can be modulated within
individual nephron segments. In this Perspective, I will review
recent results and current thinking about the cooperation of
different parts of the nephron to maintain balance of both Na*
and K*. I will also discuss some of the signaling pathways that
may be involved.

Na* balance
Transport along the nephron
Human kidneys filter about 25 moles of Na* each day, almost all
of which needs to be reabsorbed to maintain balance. All parts of
the renal tubule reabsorb Na* (Fig. 1). The major transporters
are the Na-H exchanger (NHE3) in the proximal tubule (PT), the
Na-K-2Cl cotransporter (NKCC2) in the ascending limb of
Henle’s loop (TALH), the Na-Cl cotransporter (NCC) in the distal
convoluted tubule (DCT), and the epithelial Na channel (ENaC)
in the connecting tubule (CNT) and collecting duct (CD; Table 1).
Na* entering epithelial cells from the urine through these
pathways is pumped out into the interstitium by the basolateral
Na-pump (Na-K-ATPase).

Two additional routes of reabsorption are less well docu-
mented. The inner medullary collecting duct expresses ENaC,

but some studies indicate an amiloride-insensitive component of
reabsorption that is poorly characterized but can be quite sub-
stantial in magnitude (reviewed by Weinstein [1998]). In addition,
an electroneutral Na* reabsorptive pathway based on Na*-
dependent Cl-/HCO;~ exchanger SLC4A8 has been observed in
the cortical CD (Leviel et al., 2010). Given the low concentration
of HCO;™ in the tubular fluid of the CD under most conditions,
the adequacy of the driving force for Na* uptake through this
transporter is uncertain under most conditions. These systems
will not be discussed further here.

The kidneys can adjust rates of Na* excretion to match an
enormous range of dietary salt intake. Mean rates of excretion in
modern populations range from >200 mmoles/day in parts of
Japan, China, and Korea to 0.2 mmoles/day for the Yanamamo
people of the Amazon basin (Intersalt Cooperative Research
Group, 1988). For reference, the American Heart Association
recommends a Na* intake (approximately equal to excretion) of
<100 meq/day (https://www.heart.org/en/health-topics/high-
blood-pressure/changes-you-can-make-to-manage-high-blood-
pressure/shaking-the-salt-habit-to-lower-high-blood-pressure).

Regulation of Na* excretion

The adaptation to different rates of Na* intake can be conve-
niently studied in rats and mice. For example, switching animals
from normal chow to a Na*-depleted diet produces a dramatic
upregulation of ENaC in the collecting duct (P4cha et al., 1993).
However, it seems likely that many if not all Na*-reabsorbing
segments participate in the process of Na* conservation. Ex-
periments with segment-specific diuretics suggested that the
overall response involves enhanced Na* reabsorption in proxi-
mal segments (PT and TALH) and reduced delivery of Na* to the
distal nephron, in addition to the activation of distal transport
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Figure 1. Major epithelial transport systems for Na* and K* and their position along the nephron. Segments of the renal tubule illustrated are the PT,

TALH, DCT, and the CNT/CCD.

machinery (Frindt et al., 2018). Another study came to very
similar conclusions based on measurements of renal Na*
transporter proteins in mice; the overall as well as the surface
expression of NHE3, NKCC2, and NCC were inversely related to
the amount of Na* in the diet (Udwan et al., 2017). Thus, Na*
reabsorption likely increases in all segments in response to Na*
restriction (Fig. 2).

K* balance

Transport along the nephron

Handling of K* by the kidneys also involves multiple nephron
segments (Malnic et al., 2007; Welling, 2013; McDonough and
Youn, 2017; Fig. 1). The PT reabsorbs much of filtered K* (about
800 mmoles/day) through a paracellular pathway. Fluid re-
absorption concentrates luminal K*, providing a diffusion gra-
dient which, together with the high permeability of tight
junctions, permits paracellular transport of the ion. In the TALH,
urine K* is taken up into the cell by NKCC2, with some recycling
through K* channels in the luminal membrane. Some of the
recycled K* is also reabsorbed through the paracellular pathway,
driven by a lumen-positive transepithelial voltage (Mandon
et al., 1993). The rest is returned to the blood through basolat-
eral K* channels (Kir4.1/5.1) and KCl cotransporters (KCC4)
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contributing to net K* reabsorption (Weinstein and Krahn,
2010).

These processes will normally leave less K* in the urine than
needs to be excreted for K* balance. This problem is corrected by
the secretion of additional K* back to the urine by the distal
segments CNT and CCD. This process entails uptake into the cell
through the Na/K pump and electrodiffusion into the urine
through K* channels in the luminal membrane. Both steps are
coupled to the reabsorption of Na*, enzymatically at the pump
and electrically at the apical membrane. Renal outer medullary K
(ROMK) channels can account for most of K* secretion under
basal conditions and dietary K* challenge (Yang et al., 2021).
However, Ca?*-activated BK channels can contribute to K* se-
cretion, especially under conditions of high urine flow rates
(Woda et al., 2001) or when ROMK channels are genetically
deleted (Bailey et al., 2006).

Regulation of K* excretion

The kidneys are also able to match urinary excretion to a wide
range of dietary K* intake. Transport of Na* and K* is interde-
pendent, and the ability to simultaneously match both Na* and
K* intakes depends on qualitative and quantitative differences in
the coupling of the two fluxes along the nephron. In proximal
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Table 1. Molecular identification of renal transport proteins implicated in Na* and K* homeostasis

JGP

Segment Transporter Gene Pole Function Ref.

PT NHE3 Slc9a3 Apical Na* reabsorption Bobulescu and Moe (2009)
Kir4.2/5.1 Kcnj15/16 Basolateral K* recycling Lin et al. (2022)
TASK-2 Kcnk5 Basolateral K* recycling Warth et al. (2004)

TALH NKCC2 Slc12al Apical K*, Cl- reabsorption Bazua-Valenti et al. (2016)
ROMK Kenjl Apical K* secretion Welling and Ho (2009)
Kir4.1/5.1 Kcnj10/16 Basolateral K* reabsorption Wang and Lin (2022)
KCc4 Slc12a7 Basolateral K*, Cl~ reabsorption Bazua-Valenti et al. (2016)
CLCKb Clenkb Basolateral Cl- reabsorption Teulon et al. (2018)

DCT NCC Slc12a3 Apical Na*, Cl- reabsorption Hoorn et al. (2020)
Kir4.1/5.1 Kcnj10/16 Basolateral K* recycling Wang and Lin (2022)
CLCKb Clenkb Basolateral Cl- reabsorption Teulon et al. (2018)

CD/PC ENaC Scnnl Apical Na* reabsorption Garty and Palmer (1997)
ROMK Kenjl Apical K* secretion Welling and Ho (2009)
Kir4.1/5.1 Kcnj10/16 Basolateral K* recycling Wang and Lin (2022)

CDb/IC pendrin Slc26a4 Apical Cl- reabsorption Wall et al. (2020)
AE1 Sledal Basolateral Cl- recycling Wall et al. (2020)
CLCKb Clenkb Basolateral Cl- reabsorption Wall et al. (2020)
BK Kenmal Apical K* secretion Carrisoza-Gaytan et al. (2016)

CD/PC, principal cells of collecting duct; CD/IC, intercalated cells of collecting duct.

segments (PCT, TALH), K* reabsorption is coupled to Na* re-
absorption. However, in the CNT/CD, K* secretion is coupled to
Na* reabsorption (Fig. 3). This complexity helps the kidney
regulate the two ions at the same time, essentially by allowing it
to simultaneously solve two equations:

[Na* excretion] = [filtered Na* load]
- [proximal Na* reabsorption]

- [distal Na* reabsorption)]. (1)
[K* excretion] = [filtered K* load]

= Qprox[proximal Na* reabsorption]
+ Qgisc[distal Na* reabsorption]. (2)

Qprox and Qg;s¢ are coupling constants relating the net fluxes of
Na* and K*, respectively. The filtered loads are considered to be
constant, while Na* reabsorption rates and the coupling con-
stants are variable. This simple formulation suggests two ways
in which K* excretion can be modulated at constant rates of Na*
excretion. Either the coupling constants can be changed, or the
proportion of Na* reabsorbed in proximal versus distal segments
can be adjusted.

Regulation of Na/K coupling

The coupling of Na* and K* reabsorption in the proximal tu-
bule is presumably roughly constant. Changes in coupling
could, in principle, be accomplished by modulating the ion
selectivity of the paracellular pathway to cations (Giinzel and
Yu, 2013), but there is no evidence that this occurs. Coupling
could also be affected by changes in the transepithelial
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voltage, although it is only a few millivolts, which will alter
paracellular K* flux. Electrogenic Na* reabsorption, for ex-
ample through the Na-glucose cotransporter, will make the
tubular lumen more negative, impeding K* reabsorption.
However, no linkage between proximal tubule voltage and K*
homeostasis has been established.

In the TALH, coupling of Na* and K* transport varies. Mi-
cropuncture measurements showed that an acute K* load de-
creased the reabsorption of K* more than that of Na* in this
segment (Sufit and Jamison, 1983). More dramatically, when
mice are fed a diet with high K* and low Na* contents, the TALH
switches from Na*-coupled reabsorption to Na*-coupled K* se-
cretion (Wang et al., 2017). How this occurs has not been dem-
onstrated, but it could be achieved by decreasing the ratio of
apical to basolateral K* conductances. The apical ROMK con-
ductance in the TALH is not strongly influenced by diet (Lu
et al., 2004). However, if basolateral K* conductance were re-
duced, K* entering the cell through the Na/K pump would tend
to flow out of the cell across the luminal membrane. There are
no direct measurements of basolateral K* conductance in
the TALH under these conditions. However, in DCT, which is the
segment immediately downstream, a high-K* diet reduces the
abundance of putative Kir4.1/5.1 channels in basolateral mem-
brane (Wang et al., 2018).

Coupling can also change in the CNT/CCD. Here, apical K*-
channel activities increase with high and decrease with low
dietary K* intake (Wang et al., 1990; Palmer et al., 1994; Wei
et al, 2001; Frindt et al.,, 2009; Yang et al., 2021). Currents
through ROMK (Kirl.l) channels can change as much as
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Figure 2. Changes in Na* and K* transport by the kidney when dietary Na* intake is low. + symbols indicate increased transepithelial movement of ions.
Solid lines represent well-established signaling systems for regulating transport under these conditions. Dashed lines represent pathways that regulate
transport but have not been shown to be involved in the response to reduced Na* intake. The net result is that urinary Na* excretion is reduced while K*

excretion remains constant.

sevenfold as dietary K* varies from low to high levels. Increasing
apical K* permeability will increase the fraction of reabsorbed
Na* that is balanced by K* secretion rather than by CI-
reabsorption.

As in the TALH, inhibiting basolateral K* channels in the
CNT/CCD might be expected to enhance the coupling of K* se-
cretion to Na* reabsorption; more K* entering the cell through
the pump would exit across the luminal membrane into the
urine. However, basolateral K* conductance increases, rather
than decreases, when dietary K* intake is high (Gray et al., 2005;
Tomilin et al., 2018). In rabbit CCD, high rates of Na* transport
obtained with chronic adrenal steroid administration can pro-
duce basolateral membrane potentials sufficiently large to drive
K* uptake into the cell from the interstitial fluid (Sansom et al.,
1989). Under these conditions, an increase in basolateral K*
conductance could enhance K* secretion through -electro-
diffusion across both basolateral and apical membranes (Gray
et al., 2005).

Regulating Cl- reabsorption can also alter transepithelial Na/
K coupling in the CD. Pendrin is a Cl-/HCO;~ exchanger ex-
pressed on the apical membrane of B-type intercalated cells in
the CCD, where it facilitates HCO5~ secretion into the urine
(Wall et al., 2020). When both H*-secreting and HCO;™-secreting
cells are simultaneously active, pendrin can also participate in
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electrogenic transepithelial CI- reabsorption that can couple to
ENaC-dependent Na* reabsorption (Pech et al., 2007; Fig. 4). In
principle, this system could facilitate NaCl reabsorption while
minimizing K* secretion when both Na* and K* need to be
conserved.

Switching sites of Na* reabsorption

Eqgs. 1and 2 can also be satisfied simultaneously by changing the
relative amounts of Na* reabsorbed in proximal versus distal
segments (Fig. 3). For example, shifting Na* transport from
proximal to distal parts of the nephron can increase K* excretion
at constant overall rates of Na* excretion.

Decreased Na* reabsorption in response to a K* challenge has
been extensively documented in the DCT. This segment trans-
ports little K* itself, at least in the early parts of the segment
where Na* reabsorption is primarily through NCC (Weinstein,
2005). However, decreasing Na* transport through NCC will
balance increased Na* uptake in exchange for K* in the CNT
and CD.

Evidence that this occurs comes largely from measurements
of the phosphorylation state of the NCC cotransporter. Phos-
phorylation by SPAK kinase is essential for activating the
transporter (Subramanya and Ellison, 2014). An acute load of K*
through the diet or IV infusion dephosphorylates NCC (Sorensen
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Figure 3. Changesin Na* and K* transport by the kidney when dietary K* intake is high. + and - symbols indicate increased and decreased transepithelial
movement of ions, respectively. Solid lines represent well-established signaling systems for regulating transport under these conditions. Dashed lines rep-
resent pathways that regulate transport but have not been shown to be involved in the response to increased K* intake. The net result is that urinary K*

excretion is enhanced while Na* excretion remains constant.

et al., 2013; Rengarajan et al., 2014). The mechanism involves a
direct response of the DCT cell to elevations in plasma K*
(Penton et al., 2016; Terker et al., 2016). NCC dephosphorylation
can occur within 30 min of ingestion of a K*-rich meal (Sorensen
et al., 2013), suggesting that it can help maintain Na* and K*
balance over short time periods.

Under more chronic conditions, the overall as well as surface
expression of NCC in the kidney varies inversely with K* intake
(Vallon et al., 2009; Frindt and Palmer, 2010; van der Lubbe
et al., 2013; Vitzthum et al., 2014; Terker et al., 2015; Wade
et al., 2015). The chronic K*-loaded condition is also associated
with decreased NCC function, assessed in mice as the response
to the NCC-blocker hydrochlorothiazide in vivo (Li et al., 2019).
Furthermore, when rats were fed a diet deficient in both Na* and
K*, ENaC activation was reduced relative to depletion of Na*
alone, and NCC expression was strongly upregulated (Frindt
et al,, 2011). This indicates a redistribution of Na* transport
from K*-secreting segments to the DCT.

Inhibition of NKCC2 transport in the medullary TALH may
also contribute to shifting of Na* reabsorption from proximal to
distal segments. This segment is a good candidate for responding
to changes in K* intake because increases in extracellular K* are
amplified in the medullary interstitium by K* recycling, reach-
ing concentrations >30 mM (Battilana et al, 1978). Stokes
showed that variations in this range can impact Na* transport by
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the perfused TALH, with higher concentrations inhibiting NaCl
reabsorption (Stokes, 1982). This could reflect depolarization of
the basolateral membrane, slowing Cl- exit from the cell through
Cl- channels.

Hyperkalemia can also inhibit Na* reabsorption in the PT.
Micropuncture studies in rats showed inhibition of transport
when plasma K* was acutely raised from 4.3 to 6 mM by infusing
KCl in vivo (Brandis et al., 1972). This may result from depo-
larization of the basolateral membrane, slowing HCO;~ efflux,
alkalinizing the cell, and inhibiting NHE3 (Weinstein, 2017).
Under more chronic conditions, dietary K* loading of mice for
1 wk decreased the abundance of NHE3 in mice (Yang et al.,
2018). However, similar results were not observed in rats (un-
published data), raising questions about the generalizability of
this effect.

Any of the above mechanisms may contribute to rebalancing
Na* reabsorption when distal K* secretion is altered. The PT and
the TALH handle larger fractions of filtered Na* than does the
DCT and are therefore potentially more powerful sites of inhi-
bition. Reducing transport in the PT has the additional advan-
tage of increasing fluid flow rates in the K*-secreting segments.
This will limit the accumulation of K* in luminal fluids, main-
taining a cell-to-lumen driving force for K* secretion. It can also
activate luminal BK channels through flow-dependent increases
in cell Ca2* (Woda et al., 2001).
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Figure 4. Transcellular Cl- reabsorption in the CD. Type A ICs secrete H* while type B ICs secrete HCO3™. Transport is powered by H*-ATPase on the apical
and basolateral sides of the cell, respectively. When both are active, the net result is the reabsorption of Cl~ through apical pendrin and basolateral Cl-
channels. Transepithelial Na* reabsorption by the principal cells (PC) can be balanced either by K* secretion of Cl~ reabsorption.

However, these effects will be blunted by enhanced Na* re-
absorption in downstream segments (Palmer and Schnermann,
2015). Furthermore, increased delivery of NaCl to the macula
densa region just beyond the TALH will also trigger a decrease in
glomerular filtration rate through the process of tubuloglo-
merular feedback (Schnermann and Briggs, 2008). This will
diminish the effects of transport inhibition in proximal seg-
ments (Weinstein, 2022). Increased NaCl at the macula densa
can also inhibit renin release, suppressing aldosterone and
compromising the ability of the distal segments to secrete K*
(Schweda, 2015).

In contrast, Na* remaining in the tubular fluid following
inhibition of NCC in the DCT will be directly transmitted to the
K*-secreting segments (CNT and CD). Furthermore, effects on
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NCC can be profound, with decreases in phosphorylated protein
of up to 80% in Sorensen et al. (2013); Castaneda-Bueno et al.
(2014); and Yang et al. (2018). Since the DCT handles only 5-10%
of filtered Na*, this is more than enough to balance even very
large changes in rates of K* secretion.

Inhibition of transport in more proximal segments can, in
principle, drive K* secretion by pushing additional Na* to the
CNT and CD. This is thought to underlie, at least in part, urinary
K* wasting and hypokalemia resulting from diuretic treatment.
However, acute pharmacological inhibition of NCC-mediated
transport using thiazide diuretics does not enhance K* secre-
tion to levels seen with dietary K* loads (Yang et al., 2021) and in
some cases does not acutely increase K* excretion at all (Hunter
et al., 2014). However, proximal inhibition of Na* transport will
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ensure that adequate Na* is delivered to the distal segments to
participate in K* secretion. More fundamentally, it will help
maintain Na* balance by compensating for increased down-
stream Na* reabsorption coupled to K* secretion.

Signaling factors

Regulation of Na* and K* transporters in the kidney involves many
signaling pathways and a complete discussion is beyond the scope
of this Perspective. I will instead focus on what is known about
signals that arise directly from challenges to the maintenance of
Na* and K* balance, especially those that mediate responses to
reduced Na* intake (Fig. 2) and enhanced K* intake (Fig. 3).

Consideration of signaling factors that control these events
starts with the adrenal cortical steroid aldosterone. By activating
ENaC, aldosterone enhances both Na* reabsorption and K* se-
cretion in the CNT and CD. Its production is stimulated by low
salt intake through the renin-angiotensin-aldosterone axis,
with increased circulating levels of both angiotensin II (ang II)
and aldosterone. Aldosterone secretion is also enhanced inde-
pendent of the renin-angiotensin-aldosterone axis by increased
plasma (K*; Spat and Hunyady, 2004). Administration of al-
dosterone mimics the effects of reduced Na* intake or increased
K* intake on the channels (P4cha et al., 1993; Palmer et al., 1994).

ROMK channels are regulated by K* intake independent of
aldosterone as administration of the hormone does not activate
the channels (Palmer et al., 1994; Wei et al., 2005). The factors
that modulate ROMK when dietary K* intake changes are in-
completely understood, although tyrosine kinase pathways are
involved at least in the suppression of the channels with dietary
K" restriction (Wei et al., 2001).

In addition to activating aldosterone secretion, ang II can it-
self stimulate Na* reabsorption in several different segments.
Ang II acutely increases Na/H exchange in the proximal tubule
(Harris and Navar, 1985; Cogan, 1990) and in the DCT (Wang and
Giebisch, 1996). The hormone also induces a rapid translocation
of NCC to the apical membrane from intracellular sites, mim-
icking the effects of dietary Na* restriction on the transporter
(Sandberg et al., 2006; Sandberg et al., 2007). Chronic admin-
istration of ang II increases the abundance of NHE3 in the
proximal tubule (Nguyen et al.,, 2015) and the abundance and
phosphorylation of NCC in the DCT (van der Lubbe et al., 2010;
Castaneda-Bueno et al., 2014; Nguyen et al., 2015). In the setting
of a low-Na* diet, it therefore contributes to increased Na* re-
absorption proximal to the CNT/CD. It can also contribute to the
upregulation of ENaC in the CNT and CCD (Mamenko et al.,
2012; Wu et al., 2020) under these conditions.

Ang II may also change the coupling of K* and Na* transport
in the CNT/CCD. It stimulates pendrin (Pech et al., 2007), en-
hancing CI~ reabsorption. It can also inhibit ROMK channels in
K-depleted animals (Wei et al., 2007), diminishing K* secretion.
In contrast, the hormone can stimulate ROMK when dietary K*
intake is high (Wei et al., 2007). These divergent effects are
thought to be mediated by different receptors—ATIR for inhi-
bition and AT2R for stimulation. However, the identification of
the receptors is uncertain as neither type was found in RNA
sequencing assays of the distal nephron segments (Ransick et al.,
2019; Chen et al., 2021).

Palmer
Na and K balance

JGP

Plasma renin activity is reduced by elevated K* intake in rats
(Sealey et al., 1970), implying lowered ang II. This could come
about because aldosterone secretion by the adrenals is already
stimulated by extracellular K*, obviating the need for ang II
Reduced ang II could enhance K* excretion both by promoting
distal secretion and inhibiting Na* reabsorption in more proxi-
mal segments. However, the role of the suppression of ang II in
promoting K* excretion has not been directly demonstrated.

Shibata et al. (2013) proposed a mechanism of ang II in the
CCD in which the hormone leads to dephosphorylation and ac-
tivation of mineralocorticoid receptors in type-B intercalated
cells, ultimately stimulating pendrin. In contrast, hyperkalemia
leads to phosphorylation and inactivation of the receptors. This
elegant system for controlling Na*/K* coupling was demon-
strated in a heterologous expression system. Using intercalated
cell (IC)-specific mineralocorticoid receptor knockout mice,
Pham et al. (2020) confirmed regulation of pendrin by these
receptors in vivo, although they did not observe a dependence of
this effect on K* intake.

Antidiuretic hormone stimulates ENaC in the CCD (Frindt
and Burg, 1972; Reif et al., 1986; Tomita et al., 1986; Mironova
etal., 2012) and NKCC2 in the TALH (Ares et al., 2011; Bachmann
and Mutig, 2017). In the CCD, its effects are synergistic with
those of aldosterone (Tomita et al., 1985; Reif et al., 1986). The
main role of antidiuretic hormone is to control water balance,
where the stimulus for secretion is plasma hyperosmolarity. It
can also be released in response to decreased plasma volume, but
only when such decreases are large (>10%; Dunn et al., 1973).
Thus, its relevance to the day-to-day management of Na* or K*
balance is unclear.

Extracellular K* serves as a signal to differentially affect Na*
and K* transport along the nephron. As discussed above, hy-
perkalemia per se can directly inhibit Na* reabsorption in the PT
and the TALH, likely through changes in cell membrane voltage.
In the DCT, extracellular K* can also promote the dephospho-
rylation of NCC through direct effects on the tubular cells
(Penton et al., 2016; Terker et al., 2016). This response is me-
diated at least in part by increased cell Cl-, driven by membrane
depolarization. Cl- inhibits the with no lysine (WNK) kinases,
which in turn control SPAK, the kinase that activates NCC
through phosphorylation (for reviews see Subramanya et al.
[2006]; Gamba [2009]; Hoorn et al. [2020]). Engineering mice
with a Cl -insensitive WNK4 abolished the effects of K* deple-
tion and acute but not chronic K* loading on NCC (Chen et al.,
2019). However, other mechanisms likely also contribute to the
effect. Penton et al. (2016) showed K*-dependent dephospho-
rylation of NCC in vitro that was independent of Cl-. Frindt et al.
(2017) reported K*-dependent dephosphorylation of NCC in vivo
that could not be explained by increased cell Cl". In any case, this
response will enhance excretion of an acute K* load, where in-
creases in plasma K* of ~1 mM are sufficient to drive acute in-
creases in excretion in response to a K*-rich meal (Rengarajan
et al., 2014).

To effectively promote K* secretion, these changes must be
accompanied by upregulation of ENaC and/or ROMK channels
in the downstream segments. Such changes have been docu-
mented (Palmer and Frindt, 1999). When they occur over several
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hours, as with the ingestion of a K*-rich meal, activation of ENaC
may be mediated by aldosterone whose secretion is stimulated
by extracellular K*. More acute changes can occur independent
of aldosterone, perhaps also as direct effects of K* on the se-
creting cells (Sorensen et al., 2019; Yang et al., 2020).

It is less clear whether extracellular K* mediates the more
chronic effects of K* intake on NCC and other transporters. After
adaptation to different diets for 1 wk or more, large increases or
decreases in K* excretion are observed without detectable
changes in plasma K* (Chen et al., 2006; Frindt and Palmer,
2009; Wang et al., 2010), and is some cases it can even de-
crease (Chen et al., 2019). The drivers of altered NCC expression
under these conditions have yet to be identified. They may be
related to the factors that control ROMK.

Paracellular mediators may also be involved. In response to
volume depletion, PT cells secrete a-ketoglutarate, which can
activate pendrin-dependent Cl- reabsorption in the distal
nephron (Grimm and Welling, 2017). Chronic increases in K*
intake inhibit NH,* production by the proximal tubule (Tannen
and McGill, 1976). Weinstein (2022) proposed that decreased
interstitial NH,* levels result in alkalinization of the cytoplasm
of the CNT/CD, increasing the activity of both ENaC and ROMK
channels.

Rabinowitz posited a “feed-forward” mechanism in which K*
secretion could be regulated through sensing of ingested K* in
the GI tract (Rabinowitz et al., 1984). The concept is attractive as
it can explain changes in K* excretion in the absence of parallel
changes in plasma K*. Insulin is one possible candidate. This
hormone is secreted in response to increased extracellular K* as
well as glucose (Hiatt et al., 1972; Santeusanio et al., 1973), and
helps maintain constant plasma K* after a meal by promoting
cellular uptake of the ion (Youn, 2013). Exogenous insulin may
also stimulate renal K* excretion (Rossetti et al., 1987), possibly
by activating ENaC (Pavlov et al., 2013) or ROMK (Frindt and
Palmer, 2012). However, a role of insulin in controlling K* ex-
cretion under conditions of elevated K* intake has not been di-
rectly demonstrated. Other kaliuretic factors may be released in
the stomach, but they have not been identified (Youn, 2013).

Summary and perspectives

We have made considerable progress in understanding how the
kidneys keep track of multiple solutes such as Na* and K* and
regulate their excretion independently. This involves both
changes in the ratio of K* to Na* transported within individual
nephron segments and switching of Na* reabsorption from K*-
reabsorbing to K*-secreting segments. Two major challenges
remain. One is to assign quantitative roles to each nephron
segment participating in Na* and K* homeostasis under differ-
ent conditions. This is a daunting task. Although it is possible to
assess levels of mRNA and protein for many different channels
and transporters in the same kidney, these measurements will
not necessarily reflect function. A second challenge is to identify
additional signaling pathways, particularly those affecting K*
secretion under chronic conditions. In particular, the roles of
hormones such as ang II, and putative gut and paracrine factors
need to be elucidated. Answering these questions will require
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combining studies at the cellular and whole-organism levels
with mathematical models of the system.
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