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What FXYDs fix
Michael Habeck and Hanne Poulsen

Cells spend a good part of their energy sustaining ionic gradients
over membranes, most prominently the sodium and potassium
gradients across the plasma membrane that the Na,K ATPases
maintain. These ATP-dependent pumps contain two essential
subunits, a catalytic α subunit, and a β subunit required for
transport and activity, and the pumpmay further associate with
an additional subunit, a FXYD (pronounced fixyd) single span
transmembrane protein (Sweadner and Rael, 2000; Clausen
et al., 2017). In an earlier issue of the Journal of General Physiol-
ogy, Meyer et al. (2020) explore the consequences of coex-
pression of several FXYDs on pump function. Endogenous
pumps purified from pig kidney and shark rectal glands have
been used for crystallographic studies, and they show tripartite
complexes comprising an α, a β, and a FXYD (Fig. 1; Morth et al.,
2007; Laursen et al., 2013; Kanai et al., 2013). The common motif
PFXYD (where X denotes any amino acid) is positioned just on
the extracellular side of the membrane, and the TM helix that
follows is parallel to TM9 of the α subunit. There are seven FXYD
proteins expressed in humans, FXYD1–7, in tissue- and cell-
specific manners. Various FXYDs have been studied before,
but in the previous work (Geering, 2006), subunits from a range
of species have been used and the results reported have some-
times been inconsistent. In their new study, Meyer et al. (2020)
have systematically tested the functional effects of five human
FXYD proteins on human α1-β1 pumps expressed in Xenopus
laevis oocytes, thus offering the first comprehensive comparison
between the effects of different FXYDs on Na,K ATPases with
all-human subunits.

The work of Meyer et al. (2020) reveals that FXYDs affect a
number of pump kinetic parameters, including extracellular and
intracellular sodium and potassium affinities, turnover, and the
voltage dependent E1P-E2P equilibrium. They furthermore ad-
dress whether FXYDs affect pump trafficking and if the effect of
FXYD1 is regulated by PKA.

The most marked differences that Meyer et al. (2020) find
are between FXYD2 and FXYD4. Both are strongly expressed in
the kidney, but appear in nonoverlapping cell types (Shi et al.,
2001). FXYD4 expression is induced by aldosterone, sodium
deprivation, and potassium loading; FXYD4 knockout mice

respond to high potassium with significantly increased urine
production (Aizman et al., 2002). In FXYD2 knockout mice, the
FXYD2-less pumps have higher sodium affinity (Jones et al.,
2005). Together, these previous results suggest roles in tailor-
ing Na,K ATPase ion affinities for different physiological con-
ditions. The observations reported by Meyer et al. (2020)
strongly support this possibility, with FXYD2 elevating potas-
sium affinity and lowering intracellular and extracellular sodium
affinity, while FXYD4 has the opposite effects. Thus, these dif-
ferences in relative affinity for potassium and sodium may
provide a physiological mechanism for the organism to conserve
either ion preferentially depending on its homeostatic need.

The mechanism by which the FXYDs cause differential af-
finity of the pump for the monovalent ions remains an open
question. Mutations in TM9 of the ATPase α subunit abrogate
lowering of potassium affinity by FXYD4 and 7 (Li et al., 2004),
and chimeric constructs of FXYD2 and 4 show that their effects
on sodium affinity depend on the TM helix (Lindzen et al.,
2003). Analogously, the β-subunit TM helix is central for that
subunit’s modulatory effect (Hilbers et al., 2016). For FXYD1,
mutations that affect the interaction of its TM with α TM9 di-
minish its functional effect on pump activity, although the
coimmunoprecipitation suggests that the two subunits remain
physically associated (Khafaga et al., 2012). TM interactions of
FXYD1, 2, and 4 also stabilize detergent-solubilized pumps
(Lindzen et al., 2003), likely because the FXYD facilitates lipid
interactions (Mishra et al., 2011). Pump structures reveal sev-
eral tightly associated lipids, including a cholesterol toward the
extracellular side between FXYD and α’s TM8–10 (Kanai et al.,
2013; Laursen et al., 2013), a phospholipid close to the choles-
terol site (phosphatidylserine modeled in HYT4), and a phos-
pholipid toward the cytoplasmic side between FXYD and α’s
TM2, 6, and 8 (phosphatidylcholine modeled in 3WGU; Fig. 1).
These studies suggest that association of the FXYD TMwith the
α subunit (1) creates hydrophobic binding grooves where spe-
cific lipid interactions stabilize the pump, and (2) affect the
dynamic restructuring of the α TM helices that enable
the catalytic cycle to proceed with binding and release of ions.
The TM helix is the best conserved part of the FXYDs, but,
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except for two glycines facing TM9, all positions show variation
(Fig. 1), and these differences likely explain at least some of the
effects that Meyer et al. (2020) report.

What, then, are the functions of the extracellular and intra-
cellular regions of the FXYDs? The PFXYD motif preceding the
TM is close to the β subunit, and the rest of the N terminus
(16–28 residues except FXYD5, which has a longer N-terminal
region) is probably flexible, since the structures do not show
defined densities. For FXYD5 and 7, O-glycosylation of threo-
nines in the extracellular domain are important for the subunits’
trafficking to the membrane (Moshitzky et al., 2012; Tokhtaeva
et al., 2016). The intracellular region is also disordered in the
structures. The segment just after the TM contains many basic
residues (charge of +4–7 for the first 12 residues) as often seen
for membrane proteins. The region may be intrinsically disor-
dered or in equilibrium between folded and unfolded states, and
it has been proposed to interact with the lipid membrane, pos-
sibly in a manner regulated by phosphorylation (Csizmadia
et al., 2020). Especially for FXYD1, phosphorylation has been
intensely studied. In several muscle tissues, it is the primary
substrate of phosphorylation by the PKA and PKC kinases upon
stimulation (Palmer et al., 1991), and studies with phosphomi-
metic FXYD1 mutants show that, instead of its usual inhibitory

effect, the phosphorylated version can stimulate pump activity
(Mishra et al., 2015). However, the physiological effect of FXYD1
phosphorylation on acute stimulation of pump turnover in
muscle remains elusive since FXYD1 knockout mice exhibit
normal exercise capacity and no change in muscle contractility
or fatigue (Manoharan et al., 2015). In the work reported earlier,
Meyer et al. (2020) found that coexpression with FXYD1 reduces
the outward current produced, but that oocytes injected with
PKA have similar currents regardless of coexpressed FXYD1. As
they discussed, different groups have often reached opposing
conclusions regarding the effects of FXYD1 phosphorylation, and
it remains to be firmly established whether and how the Na,K
ATPase ion affinity, maximal capacity, and membrane transloca-
tion are regulated by FXYD1 phosphorylation. In most of the other
FXYDs, there are also strong candidate positions for phosphoryl-
ation; FXYD2, with a very short intracellular C terminus, is the
exception. Thus, the role of FXYD phosphorylation in regulating
Na,K ATPases remains very much an open question.

The study by Meyer et al. (2020) expands our knowledge of
the mechanistic modulatory functions that FXYDs serve when
interacting with an α1-β1 Na,K ATPase. In future studies, it will
be important to address if the effects that are found also apply
when FXYDs associate with other α and β subunits, and what the

Figure 1. Structure and sequence alignment of FXYD. Top: An overview of the tripartite Na,K ATPase with FXYD (cyan), α (gray), β (blue), and three sodium
ions (red) in the middle of the transmembrane domain. The conserved residues of the PFXYD motif are shown as red sticks. The extracellular side is on the top
and the intracellular side is on the bottom. In the inset, the transmembrane part of the pump is highlighted, and the pump is turned to position FXYD centrally.
Lipid molecules identified in the structure are shownwith spheres (pale cyan). PDB accession no. 3WGU. Bottom: An alignment of the transmembrane domains
and C termini of seven human FXYDs. The conserved residues of the PFXYD motif are shown on red background. The FXYD2 residues resolved in the crystal
structure are cyan. Basic residues in the C termini are purple.
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physiologically relevant combinations are. The results reported
here underscore that the FXYDs can fine-tune the Na,K-ATPase
properties to optimize these essential and highly energy-
demanding pumps for the specific needs of different tissues
and cell types at different times under different conditions.
Single-cell RNA sequencing will reveal how the individual
subunits are expressed in various cell types to identify likely
combinations of α, β, and FXYD isoforms. Furthermore, recent
advances in cross-linking mass spectrometry (e.g., Gonzalez-
Lozano et al., 2020) may help to identify interactions of low
abundant isoform complexes at different developmental stages
or pathophysiological conditions.

The roles played by FXYDs in health and disease are still
being discovered. Mutations in the FXYD1 and 6 genes are
reported to associate with childhood-onset schizophrenia
(Chaumette et al., 2020), and a particular FXYD2 mutation,
G41R, causes dominant hypomagnesemia (Meij et al., 2000;
de Baaij et al., 2015). The residue affected is the second of the
conserved glycines in the FXYD TM, and Meij et al. (2000)
suggested that the mutation hinders the pump from being
transported to the plasmamembrane. In their model, the lack of
Na,K ATPase activity in FXYD2-expressing kidney cells affects
sodium and potassium gradients, and thereby the driving force
for magnesium. An alternative suggestion has been that FXYD2
can form a cation channel, and that the mutation makes the
channel inwardly rectifying (Sha et al., 2008). For several of the
FXYDs, it has been described that expression in Xenopus oocytes
evokes channel-like activity, but the FXYD2 G41R is primarily
poorly expressed and trafficked (Sha et al., 2008). That the disease-
causing effect of the G41R mutation is due to Na,K ATPase defi-
ciency is supported by a later report that somemutations in ATP1A1,
in addition to severe problems in the central nervous system, cause
renal hypomagnesemia (Schlingmann et al., 2018).

So, what is it that FXYDs fix? It is tempting to speculate that
they have evolved to allow an extra level of optimization of the
Na,K ATPase’s kinetic parameters and its transport and regu-
lation. The pump is essential to virtually all animal cells, but it is
also an energetically expensive machine, so rather than relying
only on the once-developed scaffold for a catalytic subunit and
having to add novel handles to it for fine-tuning, the pump
forms complexes with additional subunits, allowing a substan-
tial outcome space of combinations to enable the individual,
specialized cell to express Na,K ATPases with the properties best
suited for its particular needs.
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