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Not so transport incompetent after all: Revisiting a
CLC-7 mutant sheds new mechanistic light on
lysosomal physiology
Alessio Accardi1,2,3

Lysosomes have long been regarded as cellular garbage disposal
compartments; acidic organelles filled with enzymes that break
down and recycle macromolecules into reusable small molecules
(Hamer et al., 2012; Appelqvist et al., 2013). In recent years
however, our understanding of the lysosomes’ roles in physiol-
ogy has evolved as they emerged as central regulators of a wide
range of cellular metabolic pathways. Mutations in lysosome-
specific proteins are associated with >70 recessive genetic dis-
eases, collectively known as lysosomal storage disorders (LSD;
Platt et al., 2018). Optimal function of lysosomal enzymes is
dependent on a highly acidic lumenal environment and on the
precise control of the ionic composition of the intravesicular
compartment (Xiong and Zhu, 2016). While lysosomal acidifi-
cation is mediated by V-ATPases that import protons at the
expense of ATP hydrolysis, the molecular mechanisms main-
taining charge balance and regulating ionic homeostasis remain
poorly understood and controversial. The charge-neutralizing
ion fluxes enabling proton accumulation by the ATPase have
been proposed to be mediated by the CLC-7 transporter (Kornak
et al., 2001; Kasper et al., 2005; Graves et al., 2008), cation
channels (Steinberg et al., 2010), and by a proton-activated
chloride channel (Yang et al., 2019). In a previous issue of the
Journal of General Physiology, Pusch and Zifarelli (2020) evaluate
the currents associated with transport and gating of CLC-7
and their findings challenge past conclusions on the roles of
this transporter in lysosomal physiology (Weinert et al., 2014)
and shed new light into the gating mechanism of CLC-type
exchangers.

Unique among known CLC exchangers, CLC-7 requires as-
sembly with the single-pass membrane protein Ostm1 for traf-
ficking and stability (Lange et al., 2006). Recent structural work
revealed that Ostm1 forms a glycosylated cap, likely to protect
the lumenal face of the transporter from attack by lysosomal
enzymes (Schrecker et al., 2020; Zhang et al., 2020). The

groundbreaking discovery that CLC-7 and the other vesicular
CLCs are 2 Cl−:1 H+ exchangers rather than Cl− channels (Picollo
and Pusch, 2005; Scheel et al., 2005; Graves et al., 2008;
Matsuda et al., 2008; Alekov and Fahlke, 2009; Leisle et al., 2011)
induced a rethinking of their roles in endolysosomal physiology.
This finding was surprising as a Cl− channel might appear better
suited to shunt the activity of the vacuolar proton ATPase than a
Cl−:H+ exchanger, since in the latter Cl− import is coupled to
dissipation of the proton gradient. However, quantitative mod-
els of lysosomal acidification suggest that a 2 Cl−:1 H+ exchanger
can enable the formation of a more acidic intralumenal envi-
ronment than a passive Cl− channel (Weinert et al., 2010; Ishida
et al., 2013; Marcoline et al., 2016), providing a plausible ra-
tionalization of their exchange activity.

Mutations in CLC-7 are associated with multiple genetic
disorders, such as osteopetrosis, neurodegeneration, LSD, and
albinism (Jentsch and Pusch, 2018; Nicoli et al., 2019), and its
genetic ablation in model organisms causes dominant osteope-
trosis, pigmentation defects, and neurodegeneration (Jentsch
and Pusch, 2018). Reduced acidification has been observed in
the osteoclastic resorption lacunas of Clcn7−/− mice (Kornak
et al., 2001). However, there is contrasting data on whether its
defective function is associated with impaired lysosomal acidi-
fication. Some reports showed that lysosomes from Clcn7−/− and
Ostm1−/− mice have normal acidification but altered Cl− levels
(Kornak et al., 2001; Kasper et al., 2005; Steinberg et al., 2010),
leading to the proposal that CLC-7 might use the pH gradient
established by the proton ATPase to increase luminal Cl−. Others
reported that knockdown of CLC-7 leads to lysosomal alkalini-
zation (Graves et al., 2008) and that a CLC-7 gain of function
mutant is associated with lysosomal hyper-acidification (Nicoli
et al., 2019), consistent with the idea that CLC-7 provide the
main shunt conductance for the proton ATPase. Thus, the role of
CLC-7 in lysosomal acidification remains an unanswered riddle.
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The Cl−:H+ exchange mechanism is well-preserved among
CLC transporters from prokaryotes and eukaryotes. Despite low
overall sequence conservation, key residues for H+ transport are
conserved in sequence, function, and structure (Accardi, 2015;
Jentsch and Pusch, 2018). One exception to this evolutionarily
harmonious picture is the role of the so-called “proton-
glutamate,” an intracellular-facing glutamic acid that, in many
CLC transporters, plays a critical role in enabling proton shut-
tling between the intra- and extracellular solutions (Accardi
et al., 2005; Zdebik et al., 2008; Lim and Miller, 2009; Neagoe
et al., 2010; Lim et al., 2012; Guzman et al., 2013). This glutamic
acid is, however, not required for coupling; the algal cmCLC
mediates coupled 2 Cl−:1 H+ exchange despite having a neutral
threonine at this position (Feng et al., 2010), and replacement of
the proton-glutamate with any protonatable side chain pre-
serves partial coupling in bacterial and mammalian CLCs
(Zdebik et al., 2008; Lim and Miller, 2009). Disruption of cou-
pling arises because mutations at the proton-glutamate can
differentially affect the rates of Cl− and H+ transport, depending
on the specific physicochemical properties of the introduced side
chain (Zdebik et al., 2008; Lim and Miller, 2009). In some ho-
mologues, such as the Escherichia coli CLC-ec1, H+ transport is
more strongly affected, such that Cl−:H+-coupling is severely
weakened or abolished (Accardi et al., 2005; Lim and Miller,
2009; Chavan et al., 2020). In contrast, in mammalian CLCs,
including CLC-7, such mutations impair transport altogether
(Zdebik et al., 2008; Neagoe et al., 2010; Leisle et al., 2011;
Guzman et al., 2013). It was thus surprising that CLC-7 knock-in
mice bearing a charge neutralizing mutation at this position
(E312A) exhibit a mixed phenotype of severe osteopetrosis,
like that of Clcn7−/− animals, but milder neurodegeneration
and no pigmentation defect (Weinert et al., 2014). This finding
led to the proposal that the ClC-7–Ostm1 complex might also
have transport-independent functions, such as participating
in a macromolecular complex with other lysosomal proteins
(Weinert et al., 2014). In a previous issue of the Journal of
General Physiology, Pusch and Zifarelli (2020) revisit the bio-
physical properties of the E312A mutant, using a mammalian
expression system in place of the previously used Xenopus laevis
oocyte system (Leisle et al., 2011). Unexpectedly, they find that
in HEK293 cells this mutant mediates currents that are strongly
rectifying, like those of the WT exchanger, but are smaller in
amplitude and have different kinetics than those of the parent
transporter. This finding provides a simple explanation for the
intermediate phenotype of the knock-in animals (Weinert
et al., 2014), as the—presumably H+-uncoupled—residual Cl−

transport could be enough to enable lysosomal acidification
and/or maintain sufficient Cl− levels for function of the lyso-
somal enzymes. The apparent contrast with a previous report
that indicated that the E312A mutant was transport incompe-
tent (Leisle et al., 2011) could be due to different translation
efficiency of the mutant in the two heterologous expression
systems. Alternatively, recent structural work showed that
CLC-7 binds soluble Mg2+ and ATP molecules in the cytosolic
domain and the phosphatidylinositol (3,4,5)-trisphosphate lipid
in the transmembrane region (Schrecker et al., 2020), raising
the possibility that the transporter is regulated by exogenous

factors that might be present at different abundance levels in
the diverse cellular expression systems, possibly accounting for
some of the reported differences with regards to its function.

The second key finding of the work from Pusch and Zifarelli
(2020) is that the transient currents mediated by CLC-7 are
associated with the transport cycle rather than with the ac-
tivation gating process. The activity of most transporters is
controlled by substrate availability and by the rates of substrate-
induced conformational rearrangements that occur during the
transport cycle (Drew and Boudker, 2016). In contrast, mam-
malian CLC exchangers are also regulated by a voltage-
dependent conformational rearrangement that switches them
between a transport-incompetent (inactive) and a transport-
competent (active) conformation (Zdebik et al., 2008; Alekov
and Fahlke, 2009; Leisle et al., 2011; Orhan et al., 2011; De
Stefano et al., 2013; Ludwig et al., 2013). This process is
thought to act on both subunits in the CLC dimer, and it is
reminiscent of the common-pore gatingmechanism that controls
activation of CLC channels (Miller, 1982; Accardi, 2015; Jentsch
and Pusch, 2018). Voltage-dependent activation of endosomal
CLC exchangers, such as CLC-3, -4, and -5, is fast and occurs in a
few milliseconds (Zdebik et al., 2008; Alekov and Fahlke, 2009;
Orhan et al., 2011; De Stefano et al., 2013). In contrast, the lyso-
somal CLC-7 is a slowly activating transporter; its activation is
incomplete after several seconds (Leisle et al., 2011; Ludwig et al.,
2013). In addition to steady-state currents associated with their
exchange activity, CLC-3, -4, and -5 also mediate transient cur-
rents (Smith and Lippiat, 2010; Zifarelli et al., 2012; Guzman
et al., 2013). A priori, these transient currents could arise from
the rearrangements that occur during the transport cycle or
from those associated with voltage-dependent activation gating.
Initial work suggested that transient currents arise from the
movement of a conserved glutamic acid, the so-called “gating
glutamate,” within the Cl− pathway during transport, as mutat-
ing the gating glutamate eliminates these currents (Smith and
Lippiat, 2010; Zifarelli et al., 2012; Guzman et al., 2013). How-
ever, in CLC-3, -4, and -5, the transient currents and activation
gating take milliseconds whereas their transport cycle is thought
to occur on the microsecond timescale (Zdebik et al., 2008;
Zifarelli et al., 2012). This kinetic discrepancy suggested that the
transient currents could arise from rearrangements occurring
during gating, especially since mutations of the gating glutamate
eliminate voltage-dependent activation gating in addition to
coupled exchange (Smith and Lippiat, 2010; Zifarelli et al., 2012;
Guzman et al., 2013). In an elegant series of experiments, Pusch
and Zifarelli (2020) take advantage of the slow activation gating
kinetics of CLC-7 to show that the transient currents are indeed
associated with the transport cycle. First, they find that the
transient currents occur on the millisecond timescale while ac-
tivation requires several seconds. Second, they show the charge
movement associated with these transient currents is indepen-
dent of the fraction of activated transporters. Third, they identify
a mutant with accelerated gating kinetics but WT-like transient
currents. Together, these observations argue that the transient
currents are indeed associated with the transport cycle rather
thanwith gating. Since the transient currents aremediated by all
CLC-7 transporters, regardless of their activation state, they
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conclude that the underlying rearrangements can occur in both
transport-competent and -incompetent conformations. As these
currents depend on the internal chloride concentration (and on
the external concentration in CLC-5) and on the external pH,
Pusch and Zifarelli come to the remarkable conclusion that in-
activation of the transporter entails a rearrangement that spe-
cifically prevents exchange of protons with the intracellular
milieu.

In sum, the work of Pusch and Zifarelli is important for our
understanding of physiology and mechanism (Pusch and
Zifarelli, 2020). It indicates that the physiological role of CLC-
7 is likely just to transport ions in and out of lysosomes, rather
than to serve as a scaffolding platform for interacting partners.
Further, the insight that activation gating in CLC-7 entails
a conformational rearrangement that prevents exchange of
intracellular protons provides a guidelight for the design of
experiments aimed at revealing the structural underpinnings
of CLC activation gating, rearrangements that remain elusive
despite nearly two decades of intense structural scrutiny
(Accardi, 2015; Jentsch and Pusch, 2018).
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