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Pseudoreplication in physiology: More means less
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This article reviews how to analyze data from experiments designed to compare the cellular physiology of two or more groups
of animals or people. This is commonly done by measuring data from several cells from each animal and using simple t tests or
ANOVA to compare between groups. | use simulations to illustrate that this method can give erroneous positive results by
assuming that the cells from each animal are independent of each other. This problem, which may be responsible for much of
the lack of reproducibility in the literature, can be easily avoided by using a hierarchical, nested statistics approach.

Readers will be aware of concerns about the lack of reproduci-
bility of scientific research (Ioannidis, 2005). Perhaps these is-
sues should not be a surprise: research is performed by humans
and will never be perfect. The problem is serious, however, and
a variety of factors contribute, as reviewed previously (Brown
and Ramaswamy, 2007; Loscalzo, 2012; Arrowsmith et al., 2015;
Enserink, 2017; Eisner, 2018). These include fraud, carelessness,
and uncontrolled issues relating to cell lines and animals.
Problems with experimental design and statistical analysis are
also a major concern.

The purpose of this tutorial is to concentrate on one statistical
issue that, although widely discussed (Lazic, 2010; Sikkel et al.,
2017; Lazic et al., 2018), is still a major problem: this is the
subject of pseudoreplication (Hurlbert, 1984) in which data
points are treated as independent biological estimates when they
are really technical replicates. A common example arises in
physiology experiments comparing tissues or cells that come
from two or more groups in order to investigate whether the
groups differ. Often, the groups are different animals. For ex-
ample, a comparison may be between wild type and transgenic,
control and heart failure, or naive and conditioned. Tissue may
also be taken from human subjects: for example, diabetic versus
healthy or pregnant versus control. In tissue culture experi-
ments, comparisons can be made between cells transfected with
active and scrambled siRNAs. In many such projects, the ques-
tion is whether the properties of cells or tissues are different
between the two groups of animals or people. For example, is
Ca?* handling or ion channel kinetics or density different in the
two conditions?

Because of cost and practical issues, it can be difficult to
obtain large numbers of animals or subjects, and therefore many
cells are studied from each of a small number of animals. Con-
sider a typical case in which there are “N” animals in each of two
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groups, with “n” cells (or tissues) being studied from each

animal. Both groups therefore contain “N * n” cells, and such
experiments are often incorrectly analyzed by performing sta-
tistical tests, such as t tests or ANOVA, taking the number of
samples in each group as N * n. One of the critical assumptions of
t tests and ANOVA is that each observation in a dataset is in-
dependent of other observations. Violating this independence
assumption results in an inflated type I error rate (i.e., thinking
you have a difference between conditions when, in fact, no
difference occurs—in other words, a false positive).

The flaw can be seen by considering the limiting case in
which n = 1; a single animal is used in each group. Imagine that
100 cells are studied from each of two animals. The standard
error of the mean is (SD / vnumber of cells), here equal to 0.1 SD.
This very small value will mean that even a modest difference in
the average value of the two animals can result in an apparently
statistically significant difference. This would be equivalent to
addressing the question of whether blood pressure is different in
people who live in London and New York by studying one in-
dividual from each city and measuring her blood pressure
100 times.

While I am sure that most readers need no convincing that it
is invalid to study a single animal, the literature contains many
studies where, say, three animals are used and five cells are
studied from each animal. There are two sources of variation in
such an experiment: (i) variation among animals and (ii) vari-
ation among cells isolated from an individual animal. These can
be represented by their SDs, SDapima and SDcep, respectively.
The variation represented by SDanimar includes not only factors
present in the animals but also those resulting from differences
between different cell isolations. An extreme example can be
considered whereby SD. is 0. Under these conditions, the five
cells studied will give identical values. The 15 cells will be made
up of five identical replicates of three different values. By
chance, these three values (from the three animals) may be
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- - Figure 1. Simulation of the effects of comparing 15 cells

A p=0.15 B p=0.0007 drawn from 3 animals. (A) Values of three selected animals in
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different. While a t test based on n = 3 animals finds no signif-
icant difference, use of n = 15 cells may suggest a spurious sig-
nificant difference.

The problem can be appreciated from the results of the
simulation shown below. Here, we assume that there is no real
difference between two groups of animals and that each has a
mean value of 1.0. The value for a given animal will be normally
distributed with SDapimar- The circles in Fig. 1 A give the values
for the three animals selected randomly in each of groups 1 and
2. An unpaired t test gave a nonsignificant (P = 0.15) value. For
each animal, the program then selected five cells randomly from
another normal distribution with the mean equal to the animal
mean using SDe;. The values for these cells are shown as the
smaller open circles, distributed around the animal mean (Fig. 1
B). An unpaired t test was then performed comparing the 15 cells
in condition 1 with those in condition 2. In this particular trial,
there was a highly significant difference between the cells in the
two conditions. On average, with SDapima and SDpean both equal
to 0.3, the simulation found that P was <0.05 in 29% of trials.
Since there were no real differences in this simulation, these
29% are all false positives.

The likelihood of obtaining a false positive depends on the
animal and cell SDs. Further simulations show that increasing
SD..n1 decreases the probability of finding a significant difference
(Fig. 2 A). In both panels, SD,pimal is 0.3. SDeey is 0.05 in the left
graph and 0.45 in the right. The lower SD.q in the left panel
results in a small spread of cell values and an apparent signifi-
cant difference, while the greater spread in the right means that
no significant difference is seen. On average, an SD.e; of 0.05
produces 47% false positives, whereas an SD of 0.45 only 21%.
As demonstrated in Fig. 2 B, increasing SDapima makes it more
likely that an apparent significant difference will be noted. This
is because the increased variance among the animals increases
the chance of a large difference between the three animals in one
case compared with the other. With a fixed SD. of 0.3, in-
creasing SDapima1 from 0.05 to 0.45 increases the false-positive
rate from 6% to 37%.

Fig. 3 A shows a more complete analysis; 200,000 trials were
performed for each condition with values of SDey and SD,nimal
between O and 0.5. The P value for a t test was calculated for
each trial and the fraction giving a value of P < 0.05, the false-
positive rate, was recorded.

Given that the animals and cells were drawn from identical
populations, one might expect P < 0.05 in 5% of the trials. This
is, however, only seen for a combination of low SD, ;a1 and high
SD.n (point A in Fig. 3 A). Under these conditions, the t test is
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zontal black lines. A t test shows a significant difference.

influenced by a very large variation in the values from the cells.
AS SD,pimal increases and SD.. decreases, the fraction of trials
for which P < 0.05 increases to values of 45%, a very high false-
positive rate (point B). Points C and D show equal SDs for cell
and animal, with both being low for C and high for D. In both
cases, the simulation predicts a false discovery rate of ~35%.

The effects of SD.. were previously highlighted by consid-
ering the intraclass correlation coefficient, or ICC (Sikkel et al.,
2017). A very low SD. corresponds to a maximum (1.0) value of
ICC (i.e., the values of all the cells from a given animal are
identical). In other words, no information is provided by these
multiple cells compared with a single measurement and the
error using a simple t test is large. At the other extreme (when
SDeen is high compared with SD,pima1), the ICC is 0 and there is
no clustering, so the error is much less. Sikkel et al. (2017)
provide a means to calculate the effective sample size in an
experiment in which n cells are studied from each of N animals.
This value is [N x n] / [1 + (n - 1) x ICC]. Only in the trivial case
where ICC = 0 (SD. is large) does this equal the value of n x N
used for a simple t test. As ICC approaches 1 (SDce = 0), the
effective sample size falls to a value of N, the number of animals,
indicating the futility of considering multiple cells from each
animal.

The simulation of Fig. 3 B was designed to investigate how
the number of cells used per animal affects the error. Only when
a single cell is used from each animal does the false-positive rate
equal 5%; as the number of cells per animal is increased, the
false-positive rate increases. Even when only two cells are used
from each animal, the false-positive rate is >10%. It may seem
counterintuitive that increasing the number of cells increases
the false-positive rate. This occurs because the higher the
number of cells, the greater the level of pseudoreplication and
the more flawed the t test is (the same holds for ANOVA). As also
shown by Fig. 3 B, the number of animals used has very little
effect on the error. In summary, irrespective of the number of
animals used, studying more than one cell per animal and as-
suming that cells are independent can dramatically increase the
false-positive rate. In these simulations, each animal provides
the same number of cells, whereas in most papers, the number
of cells studied per animal varies from day to day, further
complicating the issue.

I should make four points clear. (1) There is nothing wrong
with basing statistics on the number of cells in experiments
when one is not comparing between animals. For example,
when studying the effects of a drug on an ion channel, n can be
the number of cells. There is, of course, a different discussion to
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be had about how many animals should be used to ensure that
the sampled population is representative. (2) I have focused
above on studies that base statistical analysis on the number of
cells rather than the number of animals. A further complexity
comes when one makes several measurements from each cell.
One example might be measuring the size of cellular organelles.
Another comes in studies analyzing the properties of calcium
sparks and whether they differ between different groups of
animals. Here, hundreds of sparks are often recorded from each
cell, and the degree of pseudoreplication produced by treating
sparks as independent is enormous when it comes to addressing
questions such as whether the amplitude or spatial spread of
these sparks is altered. It is therefore important to examine the

A

% p<0.05
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1 1 1 1
0.2 0.3 0.4 0.5
SDanimal

0.0 0.1

possibility that many of the reported differences between ani-
mals in, for example, spark amplitude may be artifactual (Sikkel
et al,, 2017). (3) Related problems arise in tissue culture ex-
periments (Lazic et al., 2018). The above discussion has been
couched in terms of animals and cells, but similar problems arise
if wells or dishes taken from the same culture are treated as
independent. (4) Finally, it is important to note that variations in
the properties of cells may reflect not only experimental varia-
tion but also real heterogeneity within the animal. In the latter
case, it is important to quantify this heterogeneity and how it
changes rather than simply assessing the mean value.

Given the above, it is clearly inappropriate to use an analysis
that assumes that different cells from the same animal provide
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Figure 3. Dependence of apparent significance on SD and sample numbers. (A) Effects of SD. SD.e and SD,nmat Were varied from 0 to 0.5 in steps of
0.025. 200,000 trials were done for each condition. The colored areas indicate the percentage of trials which gave a P value of <0.05. Points A-D are referred
to in the text. (B) Effects of numbers of animals and cells. The plots show the effects of altering animal number (x axis) and number of cells per animal (y axis).
The contours and colors indicate the percentage of trials giving P < 0.05. In all simulations, SD,pimat and SDcey were 0.3. 20,000 trials were performed at each

condition.
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independent measures. So, what can be done? One simple so-
lution is to average the values from all the cells taken from a
given animal and do a t test (or ANOVA) with N being the
number of animals. As discussed previously (Sikkel et al.,
2017), the disadvantage of this method is that it makes it
likely that real effects will be missed and also takes no account
of the fact that some animals provide more cells than others. A
better approach is to use hierarchical (nested) analysis or linear
mixed modeling, which takes explicit account of the structure
of the data, specifically how many cells come from each animal.
The reader is referred to a full explanation of this approach as
commonly applied to cell physiology (Sikkel et al., 2017). In
brief, the method makes use of the structure of the data. At one
extreme (corresponding to a low SD.q in the simulations
above), the data provided by all the cells from a particular
animal are clustered together and the error produced by using a
simple t test is large (Fig. 3 A). In this case, the hierarchical
approach uses this clustering to make a large correction. At the
other extreme, when there is less clustering within an animal
(high SDcn), less correction is needed. If such analysis is ap-
plied to the simulations above, the erroneous false positives
disappear.

In the past, the required software was not as readily available
as that for performing t tests, although the major commercial
programs (including GraphPad Prism, SPSS, Stata, and SAD) as
well as open-source data analysis software such as R, Stan, and
Julia, provide it. Data S1 shows, for example, how nested analysis
of the data in Fig. 1 can be performed in GraphPad Prism. Finally,
the use of different-colored symbols in Figs. 1 and 2 makes it
clear how the values from cells from a single animal are clus-
tered. This identification of cells is not normally performed in
the literature and is worth considering to give a graphical im-
pression of the degree of clustering.

As suggested previously, pseudoreplication and inappropri-
ate statistical analysis likely account for considerable lack of
reproducibility in a variety of fields in physiology, including
neuroscience (Lazic, 2010) and cardiac calcium signaling (Sikkel
et al., 2017). Rectifying this will require not only the use of
proper analysis but also often the use of more animals and hu-
man subjects. While this will obviously make research both
more expensive and slower, these steps need to be taken to
ensure that pseudoreplication does not continue to cast a
shadow over physiology.
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Online supplemental material
Data S1 provides a guide to performing hierarchical analysis
using GraphPad Prism.
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Supplemental material

Data S1 is available online and provides a guide to performing hierarchical analysis using GraphPad Prism.
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