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In absolute darkness, the CNG channel current of rod photore-
ceptor outer segments exhibits fluctuations. Some of the fluc-
tuations, occurring about once per 100 s in mammalian rods,
have a time course and amplitude that makes them indistin-
guishable from the single-photon response (SPR)—the electrical
response of the rod to the isomerization of a single rhodopsin
molecule (Baylor et al., 1980, 1984; Pugh, 2018). While the evi-
dence is compelling that these spontaneous “photon-like” events
arise from activation of rhodopsin and consequently photo-
transduction, the physical mechanism of rhodopsin activation is
somewhat controversial. Specifically, recent publications have
proposed the hypothesis that spontaneous ultraweak photon
emission (UPE) in the eye is the mechanism underlying the
photon-like CNG current fluctuations of dark-adapted rods
(Békkon and Vimal, 2009; Wang et al., 2011; Salari et al., 2015,
2016; Li and Dai, 2016). In this issue of the Journal of General
Physiology, Govardovskii et al. provide evidence very important
for resolving this debate.

Bioluminescence is known to be exhibited by diverse or-
ganisms ranging from bacteria to dinoflagellates, angler fish,
and fireflies (Wilson and Hastings, 2013; Thouand, 2014). Less
widely known is that virtually all living tissues, from yeast to
plants and humans, generate low level bioluminescence (Boveris
et al., 1980; Quickenden et al., 1985; Calcerrada and Garcia-Ruiz,
2018). This latter UPE is generally understood to arise from
chemiluminescence that is inherent in various biological redox
reactions, including in particular lipid peroxidation (Boveris
et al., 1981; Niggli, 1992; Sharov et al., 1996; Thar and Kiihl,
2004; Catald, 2006; Rastogi and Pospisil, 2011; Tryka, 2011). As
rod outer segments comprise dense stacks of lipid membranes as
well as the machinery of rod phototransduction, it was reason-
able to hypothesize that UPE from outer segment lipid perox-
idation could underlie the spontaneous photon-like CNG current
fluctuations (Salari et al., 2016; Fig. 1).

Govardovskii et al. (2019) provide compelling evidence and
analysis that reject the hypothesis that UPE is the mechanism of

rod photon-like dark noise in frogs (Rana bidibunda) and sterlets
(sturgeons; Acipenser ruthenus) at room temperature. They do so
by directly measuring UPE in isolated retinas from the two
species, and comparing this with recordings of spontaneous
photon-like events in rods under the same conditions and SPRs
of rods to carefully measured illumination. The total UPE mea-
sured in the experiments from a waveband ranging from 300
nm to 600 nm was ~2,700 photons s™! cm=2 of retina per 4m
steradians, roughly consistent with prior measurements (Fig. 1).
Relatively straightforward calculations, based on the well-
established absorbance of rhodopsin and its measured density
in the rods, then establish that the UPE is ~100-fold weaker than
necessary to account for the measured “photon-like” dark noise
of the rods.

The ability of rods to respond reliably to single photons is an
extraordinary capability—one that clearly expanded the photic
environment in which vertebrates could survive. No doubt this
was achieved by evolutionary selection pressure on the rho-
dopsin molecule itself, on the biochemistry of rod photo-
transduction, and on retinal cell types and circuitry (Pugh,
2018). The findings of Govardovskii et al. (2019) indirectly
lend support to the long-standing idea that the spontaneous
activation of rhodopsin arises from an intrinsic susceptibility of
the rhodopsin chromophore in situ to thermal activation (Luo
et al., 2011), a susceptibility that the evolution of rhodopsin was
unable to eliminate, despite greatly lowering its rate relative to
the rate of thermal isomerization in vitro (Kim et al., 2003).
Amazingly, this greatly reduced thermal isomerization rate still
dictates the absolute sensitivity of night vision by setting a floor
of noise, the Eigengrau, of the entire visual system (Hecht et al.,
1942; Barlow, 1956; Naarendorp et al., 2010). While the work of
Govardovskii et al. (2019) makes it clear that this floor of noise is
not set by the UPE, it nonetheless focuses attention on an in-
teresting, ubiquitous photonic feature of biological systems.
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Figure 1. Photoreceptor outer segments are filled with membranes with polyunsaturated lipids hypothesized to produce ultraweak photon
emission. (A) Schematic of a portion of the photoreceptor layer of the Leopard frog (Rana pipiens) showing four rods and three cones. The outer segments
comprise dense stacks of polyunsaturated lipid membranes; in rods, these membranes are densely packed with the light-absorbing G-protein coupled receptor
rhodopsin and the rest of the molecular machinery of phototransduction. The inner segments are loaded with mitochondria that provide the energy for
maintaining the ion concentrations that support the dark current of the cells, and for the synthesis of proteins and nucleotides. (B) Magnified portion of a rod
outer segment drawn to scale and including eight rhodopsin molecules (purple) in each membrane patch, two trimeric G; proteins (tricolored) and one
phosphodiesterase (PDE cyan). Upon capturing a photon, the rhodopsin chromophore 11-cis retinal is isomerized, triggering a change to a conformation
(Metarhodopsin 1) that serially activates G proteins; the activated G-protein subunit, G,a-GTP, separates from the trimer and activates a PDE. (C) The lamellar
membranes of rod outer segments contain ~65 phospholipids per rhodopsin and are highly polyunsaturated (“PUFAs”)—for example, with a high density of
docosohexanoic acid (22:6w-3), which are subject to peroxidation. Pairs of lipid peroxides (LOO") can undergo a reaction whose excited product (P*) can
release energy via chemiluminescence (hv). Such light could, in turn, be captured by a rhodopsin, triggering phototransduction. For the experiments of
Govardovskii et al. (2019), converting the measured UPE into a full intrinsic (volumetric) unit requires assumptions about the subcellular source. The authors
consider the case most favorable to the hypothesis proposed by Salari et al. (2016) in which lipid peroxidation in the outer segments, where rhodopsin resides,
gives rise to UPE and is the cause of the photon-like current events. The frog rod outer segments are ~40 pm (0.004 cm) in length and account for perhaps
60% of the retinal cross section in their layer. Thus, the measured UPE of 2,700 photons s™! cm=2 would be equivalent to a volumetric source of 6.7 x 10°
photons s™* cm~3. A more likely source based on the UPE literature would be photoreceptor mitochondria, densely concentrated in the inner segments (A). As

these are considerably shorter than the outer segments, the source volume density would be accordingly higher.
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