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How Ca?* influx is attenuated in the heart during a

“fight or flight” response

Maedeh Bazmil® and Ariel L. Escobar?®

L-type Ca2* channels are key actors in the various scenes that
lead to cardiac contractility (Reuter, 1967; Beeler and Reuter,
1970; Benitah et al., 2010). Their activation during the cardiac
action potential allows Ca®* to enter myocytes (Beeler and
Reuter, 1970; Ramos-Franco et al., 2016). This Ca®* influx dur-
ing systole results in an increase in myoplasmic Ca?* concen-
tration that leads to the activation of Ca®* release channels
known as ryanodine receptor 2 (RYR2) channels (Pessah et al.,
1985; Imagawa et al., 1987). RYR2s are mainly located in the
terminal cisternae of the SR (Seifert and Casida, 1986; Inui et al.,
1987; Lai et al., 1988). An increase in the open probability (Po) of
RYR2 promotes Ca?* release from the SR by a mechanism known
as CICR (Ebashi and Endo, 1968; Fabiato and Fabiato, 1975;
Fabiato, 1983). Ultimately, this large increase in myoplasmic
Ca?* concentration results in cellular contraction. In this issue of
JGP, Morales et al. investigate the mechanisms involved in reg-
ulating Ca?* influx during sympathetic stimulation and, in par-
ticular, the role of Ca?*-dependent inactivation.

It has been known for more than 60 years that the autonomic
nervous system modulates cardiac contractility (Lee and
Shideman, 1959; Katz, 1967; Lindemann and Watanabe, 1985;
Cohn, 1989; Henning, 1992). In fact, the sympathetic nervous
system increases contractility by releasing the catecholamines
epinephrine and norepinephrine, which induce a positive ion-
otropic response (Lee and Shideman, 1959; Evans, 1986; Marks,
2013). When catecholamines bind to B-adrenergic receptors,
they promote dissociation of a stimulatory G-protein o subunit
and subsequent activation of adenyl cyclase (Hildebrandt et al.,
1983; Brum et al., 1984). This activation increases the intracel-
lular concentration of cAMP, which promotes dissociation of the
catalytic subunit of PKA (Krebs, 1972; Hayes and Mayer, 1981)
and phosphorylation of multiple intracellular targets in the
myocyte (Collins et al., 1981; Brum et al., 1984; Mundifia de
Weilenmann et al., 1987; Suko et al., 1993; Valdivia et al., 1995;
Fig.1C).

There are two critical proteins that increase cardiac con-
tractility when phosphorylated. One is phospholamban; a pro-
tein that, under basal conditions, inhibits the SERCA2-mediated
uptake of Ca2* into the SR (Collins et al., 1981; Li et al., 1998;
Valverde et al., 2006). Following adrenergic stimulation, phos-
phorylation of phospholamban at serine 16 by PKA (Chu et al.,
2000) and at threonine 17 by CAMKII (Said et al., 2002) relieves
its inhibitory effect on SERCA2. The relief of this inhibition
increases the rate of Ca%* transport from the cytosol to the SR,
thus increasing the Ca?* content of the SR.

A second protein that induces a positive inotropic effect
when phosphorylated by PKA is the L-type Ca2* channel
(Cayl.2), which can be phosphorylated at two sites in the C
terminus of the a, subunit. One site is serine 1928 (De Jongh
et al., 1996; Mitterdorfer et al., 1996; Gao et al., 1997; Oliveria
et al., 2007), located in the distal C terminus. The other site is
serine 1700 (Harvey and Hell, 2013), located in the proximal C
terminus (Fig. 1, A and C). However, the sites for PKA phos-
phorylation are still under discussion.

Interestingly, B subunits can be also phosphorylated. How-
ever, because o,1.2 can interact with different B subunits, all of
which are phosphorylated in different ways, it is unclear if PKA
phosphorylation of  subunits has a major role in L-type Ca%*
channel function (Miriyala et al., 2008; Yang et al., 2019).

In any event, PKA phosphorylation of L-type Ca** channels
increases their Po (Langer, 1983; Bean et al., 1984; Brum et al.,
1984; Sperelakis, 1984). This increase in Po results from a change
in the modal gating of Cay1.2 (Yue et al., 1990; Delcour and Tsien,
1993; Shirokov et al., 1998). Under voltage-clamp conditions, the
increase in Po can be as large as three times (Yue et al., 1990).
Therefore, the myocyte needs to have a mechanism that limits
an excessive influx of Ca2* upon phosphorylation.

There are two negative feedback mechanisms that can limit
the positive inotropic actions of catecholamines. Specifically,
Cayl.2 can reduce its own Po by two different inactivation
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Figure 1. Overview of the molecular regulation of L-type Ca?* currents. (A) The central molecular components of a Cay1.2 channel. The pore-forming
subunit a; and the regulatory subunits ay, 8, and Cay B. The interaction of Cay B and the N terminus of a; are essential in defining the VDI. On the other hand,
CaM binding site at the 1Q motif located at the C terminaus is the protein locus involved in CDI. Interestingly, the PKA phosphorylation sites (S-1700 and
S-1928) are also located at the C terminus. (B) The activation and inactivation of a numerically simulated L-type Ca?* current. (C) The norepinephrine (NE)
activation of the G-protein coupled receptor complex that finally leads to PKA phosphorylation of a;. The scheme illustrates that when a; is phosphorylated,
there will be an increase in the Ca2* current that will promote a local increase in the free Ca®* concentration on the cytosolic face of the channel. This elevation

in Ca2* concentration will increase the probability of binding between Ca2* and CaM, a critical event that promotes CDI. (D) Upon PKA phosphorylation of

the a; subunit, there will be an increase both in the amplitude of the current and in the rate of CDI.

mechanisms; voltage-dependent inactivation (VDI; Cota et al.,
1984; Kass and Sanguinetti, 1984; Lee et al., 1985; Zhang et al.,
1994; Ferreira et al., 1997, 2003) and Ca>*-dependent inactivation
(CDIL Tillotson, 1979; Lipp et al., 1987; Lacampagne et al., 1996;
Peterson et al., 2000). These inactivation mechanisms not only
have physiological importance, but are also critical in preventing
pathological events during -catecholaminergic stimulation
(Zhang et al., 2014). For example, in the absence of these
mechanisms, excessive Ca?* influx leads to SR Ca?* overload in
myocytes. This overload increases the probability of spontane-
ous SR Ca?* release events during diastole. Thus, B-adrenergic
stimulation can induce delayed diastolic depolarizations, which
can trigger extrasystolic action potentials and eventually ven-
tricular tachycardias and arrhythmias (Katra and Laurita, 2005;
Curran et al., 2010; Ko et al., 2017).

VDI is mediated by the interaction between the pore-forming
Cay o, subunit and Cay B subunits (Restituito et al., 2000; Wei
et al., 2000; Kobrinsky et al., 2004; Jangsangthong et al., 2010;
Fig. 1, A and C). On the other hand, CDI is primarily mediated by
the Ca?* sensor calmodulin (CaM; Ziihlke et al., 1999; Peterson
et al., 2000; Pitt et al., 2001). CaM has four helix-loop-helix
domains (EF-hands) grouped within two lobes with low and
high affinity for Ca?* (Chin and Means, 2000). There is a Ca®*-
dependent CaM-binding sequence, the IQ motif, in the cyto-
plasmic C-terminal tail of the channel’s a; subunit, which is
critical for CDI (Peterson et al., 1999; Qin et al., 1999; Ziihlke
et al., 1999; Fig. 1, A and C). Although both inactivation mecha-
nisms are physiologically relevant, there has been controversy
about which of the two mechanisms have the larger impact on
Cayl.2 inactivation during the cardiac action potential (Findlay,
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2004; Grandi et al., 2010). Moreover, a phenomenon that is even
less understood is what happens with the L-type channel inac-
tivation during adrenergic stimulation (Morotti et al., 2012;
Kumari et al., 2018).

In the current issue of JGP, Morales et al. (2019) use a novel
conjunction of molecular biology, electrophysiological approaches,
and mathematical modeling to investigate the mechanisms in-
volved in controlling Ca?* influx during catecholaminergic stim-
ulation. Specifically, the authors test the hypothesis that CDI is the
central mechanism limiting adrenergic stimulation of L-type Ca%*
current. This hypothesis, presented in Fig. 1, postulates that Ca*
ions permeating through L-type Ca2?* channels will locally in-
crease the cytosolic Ca?* concentration and induce a certain
degree of CDI in the absence of a sympathetic stimulus (Fig. 1, A
and B). However, in the presence of a catecholaminergic
stimulus, there will be an increase in current permeating
through the Ca2* channels due to an increase in Cayl.2 Po. This
increase in Ca?* current will not only augment Ca2* influx into
the myocyte, but also will increase the local cytosolic Ca?*
concentration. This local increase in Ca%* will promote more
CaM binding to Ca?*, leading to an increase in CDI. Thus, cat-
echolaminergic stimulation will lead to an increase the ampli-

tude of the Ca?* current and also accelerate the rate of

inactivation of the channel (Fig. 1, B and D).

In their paper, Morales et al. (2019) explore the role of VDI by
overexpressing the Cay B,a subunit, known to dramatically slow
down VDI (Restituito et al., 2000; Wei et al., 2000). In a different
set of experiments, the authors explore the relevance of CDI
by inducing the expression of a mutated calmodulin (CaMs,),
known to abolish CDI (Lee et al., 2003). The role of Cay Ba
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and/or the action of CaM34 are evaluated in experiments per-
formed in neonatal cardiomyocytes. Specifically, myocytes were
voltage clamped using the waveform of a self-action potential
(sAP-Clamp; Banyasz et al., 2011, 2012), recorded from the same
cell in control and isoproterenol-treated conditions.

In control cells, the authors show very nicely that application
of 100 nM isoproterenol shortens the action potential by in-
creasing the rate of inactivation of the L-type Ca®* current re-
corded with sAP-Clamp (Figs. 1 and 2 in Morales et al. [2019]).
This suggests that modifying the rate of inactivation of the
L-type current has a critical effect on the duration of the action
potential. Additionally, in experiments performed in the ab-
sence of isoproterenol, the authors demonstrate that molecular
interventions that alter the rate of inactivation of L-type Ca**
channels dramatically prolong the duration of the action po-
tential and Ca2?* currents. The expression of CaMs, increases
action potential duration by more than five times (Fig. 5 in
Morales et al. [2019]), and overexpression of CaV B,a increases
action potential duration by more than three times (Fig. 6 in
Morales et al. [2019]). These results confirm that the rate of
inactivation of L-type Ca%* currents defines the duration of the
action potential in neonatal rat myocytes.

Figs. 8 and 9 in Morales et al. (2019) show the conclusive
experiment designed to evaluate which of the L-type Ca?* cur-
rent inactivation mechanisms is dominant. The results pre-
sented in Fig. 8 illustrate that, in the absence of CDI induced by
overexpression of CaM,,, isoproterenol has a significantly
smaller effect than when VDI is impaired by the expression of
Cay PBoa. This, along with isoproterenol’s significantly larger
effect in myocytes when CDI is not altered (Fig. 9), clearly in-
dicates that CDI is the main mechanism for L-type Ca?* channel
inactivation during adrenergic stimulation.

As previously stated, these experiments were conducted in
neonatal rat cardiomyocytes, a model that significantly differs
from adult ventricular myocytes (Escobar et al., 2004; Pérez
et al., 2005; Snopko et al., 2007). For example, neonatal my-
ocytes have a reduced expression of Kv 4.X channels (Kilborn
and Fedida, 1990; Wang and Duff, 1997; Kobayashi et al., 2003)
and the regulatory subunit KChIP (Kobayashi et al., 2003; Jia and
Takimoto, 2006). These K* channels define a transient K* out-
ward current (Ito; Guo et al., 1999; Teutsch et al., 2007; Rossow
et al., 2009) that can reshape action potential repolarization.
Thus, because of the presence of Ito, we can expect that both VDI
and CDI will have a smaller effect on action potential duration in
adult myocytes.

Previous studies have also shown that CICR is not critical
for defining intracellular Ca®** dynamics during excitation-
contraction coupling in neonatal cardiac myocytes (Escobar
et al., 2004), primarily because the tubular system is not fully
developed (Di Maio et al., 2007). This reduced SR Ca?* release in
neonatal myocytes further supports the hypothesis presented by
Morales et al. (2019): Ca?* release from the SR would likely
augment the effect of CDI (Lacampagne et al., 1996). Indeed, SR
Ca?* release is dramatically increased during adrenergic stimu-
lation, not only due to a larger triggering signal, but also because
the intra SR Ca®* content is higher. The increase in luminal SR
Ca?* content is mediated by an increase in Ca?* influx into the

Bazmi and Escobar

L-type Ca?* channel inactivation and sympathetic stimulation

JGP

myocyte during each action potential. In addition, SR Ca**
content is further elevated due to phosphorylation of phospho-
lamban, which in turn increases the SERCA2 transport rate.
These findings suggest that the mechanism proposed by Morales
etal. (2019) will be even more relevant in controlling Ca?* influx
during B-adrenergic stimulation in an adult heart.

In summary, Morales et al. (2019) use a novel and powerful
approach to shed light upon a fundamental physiological and
pathophysiological puzzle: how to prevent Ca®* overload, and
the pathological consequences of this overload, during a “fight or
flight” response.
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