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Lattice arrangement of myosin filaments correlates
with fiber type in rat skeletal muscle

Weikang Ma®*, Kyoung Hwan Lee?*®, Shixin Yang?*, Thomas C. Irving'®, and Roger Craig?®

The thick (myosin-containing) filaments of vertebrate skeletal muscle are arranged in a hexagonal lattice, interleaved with an
array of thin (actin-containing) filaments with which they interact to produce contraction. X-ray diffraction and EM have shown
that there are two types of thick filament lattice. In the simple lattice, all filaments have the same orientation about their
long axis, while in the superlattice, nearest neighbors have rotations differing by 0° or 60°. Tetrapods (amphibians, reptiles,
birds, and mammals) typically have only a superlattice, while the simple lattice is confined to fish. We have performed x-ray
diffraction and electron microscopy of the soleus (SOL) and extensor digitorum longus (EDL) muscles of the rat and found
that while the EDL has a superlattice as expected, the SOL has a simple lattice. The EDL and SOL of the rat are unusual in being
essentially pure fast and slow muscles, respectively. The mixed fiber content of most tetrapod muscles and/or lattice disorder
may explain why the simple lattice has not been apparent in these vertebrates before. This is supported by only weak simple
lattice diffraction in the x-ray pattern of mouse SOL, which has a greater mix of fiber types than rat SOL. We conclude that the
simple lattice might be common in tetrapods. The correlation between fiber type and filament lattice arrangement suggests

that the lattice arrangement may contribute to the functional properties of a muscle.

Introduction

The thick and thin filaments of vertebrate striated muscle are
arranged in a double hexagonal lattice, in which each thin fila-
ment lies at the trigonal point between three thick filaments
(Huxley, 1968). Interaction between myosin heads on the thick
filaments and actin subunits of the thin filaments is responsible
for the relative filament sliding that generates contraction
(Steven et al., 2016). EM combined with x-ray diffraction has
shown that the thick filaments are organized in one of two ways
(Huxley and Brown, 1967; Luther and Squire, 1980, 2014; Luther
et al., 1996). In one, all filaments have the same rotational ori-
entation (a simple lattice), while in the other, nearest neighbors
have orientations differing by 0° or 60°, and only next-nearest
neighbors have equivalent orientations (a superlattice). These
different lattices are recognized in the electron microscope by
the orientation of thick filament triangular profiles seen in
transverse sections of the bare region of the thick filaments
(Fig. 1 A; Luther and Squire, 1980, 2014; Luther et al., 1996). This
is the part of the bare zone (Huxley, 1963), just to each side of the
M-line (Fig. S1), which lacks both myosin heads and the M-line
bridges that link thick filaments to each other (Squire, 1981). The

lattices can also be distinguished in x-ray diffraction patterns,
where myosin layer lines, arising from pseudohelical organiza-
tion of the myosin heads (Huxley and Brown, 1967), are sampled
either at the same radial positions as the equatorial reflections
(simple lattice) or in a more complex pattern (superlattice; Fig. 1
B; Huxley and Brown, 1967; Luther and Squire, 2014). EM
analysis has revealed a simple rule for filament orientations in
the superlattice: for any group of three nearest neighbor fila-
ments, in a line or in a triangle, if two have the same orientation,
then the third is generally rotated by 60° (the no-three-alike
rule) and only next-nearest neighbors tend to have equivalent
orientations (Luther and Squire, 1980, 2014; Luther et al., 1996).

The superlattice arrangement was first recognized in x-ray
diffraction patterns of frog skeletal (sartorius) muscle (Huxley
and Brown, 1967) and was confirmed in electron micrographs of
the same muscle (Luther and Squire, 1980), although the specific
filament rotations were shown to be different from those sug-
gested by Huxley and Brown (1967). Other tetrapods (amphib-
ians, reptiles, birds, and mammals) examined since then also
typically exhibit only a superlattice (Luther et al., 1996). The
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Figure 1. Simple and superlattice models. (A) Simple (left)
and superlattice (right) models of transverse sections of thick
filament bare regions in electron micrographs. (B) Sampling of
intensity on myosin layer lines of x-ray diffraction pattern. 10,
11, etc. show positions of reflections on equator. 43.0, 21.5, and
14.3 nm show positions of first, second, and third myosin layer
lines. In the simple lattice, note alignment of layer line sampled
spots with corresponding equatorial reflections; in the case of
the superlattice, the sampling is more complex. Based on Luther
et al. (1996) and Harford and Squire (1986), with permission.
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superlattice is generally not very well ordered and extends over
only a small number of unit cells, leading to its description as a
“statistical” superlattice (Luther and Squire, 1980). The simple
lattice is observed specifically in fish, particularly teleosts (the
predominant group of bony fish; Luther et al., 1981, 1996; Luther
and Squire, 2014). However, some primitive fish (e.g., hagfish,
lampreys, sharks, and rays) have been shown to have a super-
lattice, suggesting that this form evolved earlier (Luther et al.,
1996; Luther and Squire, 2014). Interestingly, sharks and rays
exhibit simple and superlattices in the same animal, where they
correlate with muscle type, the simple lattice being present in
red (slow) fibers and the superlattice in white (fast) fibers
(Luther et al., 1996; Luther and Squire, 2014).

Here we study the thick filament lattice arrangement in a
mammal (rat) and determine whether it differs between the fast
and slow muscles. Most mammals have a mixture of fast and
slow fiber types in individual muscles, complicating such
analysis. The rat is unusual in that its soleus (SOL) and extensor
digitorum longus (EDL) muscles have a relatively homogeneous
population of fiber types. The SOL contains 85-95% slow type
1 fibers, with 5-15% fast IIA (Wigston and English, 1992; Li et al.,
2019), while the EDL contains ~100% fast fibers (types IIA, IIB,
and IID/X; Eng et al., 2008; Li et al., 2019). Thus it is possible to
get relatively pure (i.e., fast or slow muscle) x-ray diffraction
patterns and EM images from entire anatomic muscles. The
mouse, in contrast, is ~100% fast in EDL (types IIB/DB/AD,X;
Augusto et al., 2004; Luedeke et al., 2004), but in the SOL it is
~35-40% slow (type I) and 55-65% fast (IIA/D/B/X; Totsuka
et al., 2003; Augusto et al., 2004; Luedeke et al., 2004). Our
results from rat muscle show that slow fibers have a simple
lattice, while the fast fibers have a (relatively poorly ordered)
superlattice. This correlation suggests that the specific rotational
arrangement of myosin filaments may be one of the
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determinants of muscle fiber functional properties (e.g., level
of tension) in mammals (Luther et al., 1996; Luther and Squire,
2014).

Materials and methods

Muscle preparation

Rats (Sprague-Dawley, 276-300 g, male) and mice (C57BL/6],
25-30 g, 10-15 wk, male) were euthanized by CO, asphyxiation
followed by cervical dislocation according to Institutional Ani-
mal Care and Use Committee-approved protocols of the Uni-
versity of Massachusetts Medical School and Illinois Institute of
Technology. The skin was removed, and the hind limbs were
separated. The hind limbs were placed in a dish with Ringer’s
solution (145 mM NaCl, 2.5 mM KCl, 1.0 mM MgSO,, 1.0 mM
CaCl,, 10.0 mM HEPES, and 11 mM glucose, pH 7.4) and perfused
with 100% oxygen. For intact muscle experiments, EDL and SOL
muscles were rapidly dissected and tied with one suture on each
end of the muscle. For skinned muscle experiments, EDL and
SOL muscles were pinned to a Sylgard substrate at approxi-
mately physiological length during skinning overnight at 4°C
with gentle agitation in skinning solution (40 mM N,N-bis(2-
hydroxyethyl)-2-aminoethanesulfonic acid, 10 mM EGTA,
6.56 mM MgCl,, 5.88 mM Na-ATP, 46.35 mM K-propionate,
15 mM creatine phosphate, and 1% Triton X-100). The muscle
was rinsed in relaxing solution (skinning solution lacking de-
tergent) before being placed on the x-ray diffraction apparatus.

X-ray diffraction

Intact or skinned muscles were placed in a specimen chamber
containing Ringer’s or relaxing solution and exposed to a colli-
mated x-ray beam of wavelength 0.1033 nm at the BioCAT
beam line at the Advanced Photon Source, Argonne National
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Laboratory (Lemont, IL; Fischetti et al., 2004). All experiments
were performed at room temperature (23°C). One suture was
attached to a hook inside the chamber, and the other to a dual-
model motor/force transducer lever (Aurora Scientific;
300_LR). The muscles were adjusted to optimal length (the
length for generating maximal force) by an X-Y-Z positioner
attached to the motor/force transducer. For intact muscle ex-
periments, the experimental chamber was oxygenated
throughout the experiment. The rat muscle diffraction patterns
were recorded on a Mar 165 charge-coupled device detector
(Rayonix), and the mouse diffraction patterns on a Pilatus 3 1M
detector (Dectris). The diffraction patterns were quadrant folded
and background subtracted using the MuscleX software package
developed at BioCAT (Jiratrakanvong et al., 2018). The contrast
and brightness of the patterns were adjusted in ImageJ (National
Institutes of Health) to optimally reveal features of interest. The
strong equatorial reflections are shown on a reduced scale for
clarity.

EM

Live muscles tied to sticks at rest length were fixed for 1 h at 4°C
in 3% paraformaldehyde/0.1% glutaraldehyde followed by 2.5%
glutaraldehyde (both in 0.1 M phosphate buffer, pH 7.4), post-
fixed in 1% OsO, in 0.1 M sodium cacodylate, dehydrated in an
ethanol series, and embedded in Epon. Transverse sections 65
nm thick were cut on a diamond knife using a Leica UC7 ul-
tramicrotome. Sections were stained with uranyl acetate and
lead citrate and examined at 120 kV in a Tecnai Spirit trans-
mission electron microscope. Images from myofibrils sectioned
in the bare region of the thick filament (Fig. S1) were recorded
with a pixel size of 0.41 nm on a Gatan Erlangshen charge-
coupled device camera.

Image analysis

To determine thick-filament rotational orientation objectively,
an approach was developed based on single-particle analysis
methods currently widely used in cryo-EM studies (Frank,
2006). Each triangular filament profile in the transverse image
of a bare region was treated as a single particle. Particles were
manually selected, boxed, and subjected to 2D classification, and
then a class average was computed for each class, all using RE-
LION software (Scheres, 2012). SPIDER software was used for
subsequent image processing (Frank et al., 1996). The best 2D
class average for each micrograph was used as a reference for
projection matching to all the filaments in an image. The rota-
tional angle of a filament that best matched the reference was
determined by cross-correlation. This angle defined the rota-
tional orientation of each filament. A triangle was then super-
posed on each filament in the original image with the
determined orientation (Fig. 3, C and E). Finally, the superposed
triangles representing each filament were transferred to an
empty background to clearly reveal each filament orientation
(Fig. 3, D and F).

To determine the lattice type, a statistical analysis of the
orientations of the triangles in each image was performed. The
relative orientations of the triangles in any hexagon of the lattice
were determined by selecting one triangle as the central
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filament and calculating the distance between this triangle and
the others in the same image. The nearest-neighbor surrounding
filaments were selected as those within a threshold distance of
40 nm (slightly greater than the center-to-center distance of two
adjacent triangles), ensuring that only nearest-neighbor fila-
ments of a hexagon were selected. The average deviation angle
between a central filament and its six surrounding neighbors
(green circles, Fig. 3, D and F) was calculated using the azimuthal
angle from the orientation determination above. The sign of the
deviation angle was not taken into account. This step was re-
peated for each triangle in the image, and the distribution of
deviation angles was plotted as a histogram. A second distribu-
tion was also calculated: the pairwise deviation between one
filament and the adjacent filament. To automatically select fil-
aments for this measurement, the distance between the one
filament and its neighbor had to be less than the threshold of 40
nm. The deviation between filaments of a pair was then calcu-
lated using the orientation angle for the two filaments.

Online supplemental material

Supplemental results and discussion describes x-ray and EM
analysis and interpretation of thick filament lattices in mouse
SOL and EDL. Fig. Sl illustrates how sections were cut to analyze
the bare region of the thick filament by EM. Fig. S2 shows x-ray
diffraction of skinned rat and EDL muscles. Fig. S3 shows in-
tensity plots along MLI of rat SOL and EDL. Fig. S4 is a com-
parison of superlattice reflections in x-ray patterns of frog
sartorius and rat EDL muscles. Fig. S5 is an analysis of thick-
filament orientations in rat SOL and EDL (all data). Fig. S6 is a
comparison of x-ray diffraction patterns of mouse and rat SOL
and EDL. Fig. S7 is a comparison of x-ray diffraction patterns of
mouse SOL: wild type, blebbistatin treated, and nebulin defi-
cient. Fig. S8 is a comparison of intensity plots of MLI in rat and
mouse SOL and EDL. Fig. S9 is an analysis of thick-filament
orientations in mouse SOL fast and slow fibers. Fig. S10 shows
thick-filament orientations in type I/IIA fibers of mouse SOL.

Results

X-ray diffraction

Axial x-ray diffraction patterns were recorded from both intact
and freshly skinned rat SOL and EDL muscles under relaxing
conditions. Results were similar for both (Figs. 2 and S2), and we
describe only intact muscle below. The equator of the patterns
showed the typical strong 1,0 and weaker 1,1 reflections of re-
laxed muscle, consistent with the close association of myosin
heads with the thick filament backbone and minimal interaction
with actin (Huxley, 1968; Fig. 2). At higher exposure, weaker
reflections (e.g., 20, 21; Fig. 1 B) were observed further out on the
equator (not visible when scale adjusted for clear 1,0 and 1,1
reflections). The positions of these equatorial reflections reflect
the hexagonal arrangement and spacing of myosin filaments,
with interleaving actin filaments, but do not provide informa-
tion on the relative orientations of the myosin filaments. In
addition to the equator, the patterns also showed a series of layer
lines (ML1-6) indexing on a repeat of 430 A, reflecting the
pseudohelical organization of the myosin heads on the thick
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Figure 2. X-ray diffraction patterns of rat SOL (A) and EDL (B) intact muscles. ML1-6 indicate positions of myosin layer lines (repeat 43 nm), and ALL
indicates the position of the 5.9-nm actin layer line. Horizontal inserts on equator show shorter exposures to reveal the high-intensity equatorial 1,0 and 1,1 and
Z-line reflections. Prominent lattice sampling is seen in SOL at the same positions as equatorial reflections (vertical rectangles aligning with 1,0 and 1,1 re-
flections). This indicates a simple lattice of myosin filaments. Lattice sampling is largely absent in EDL, except for weak superlattice spot circled. The pattern

suggests a local superlattice with disorder. Scale at left is intensity in arbitrary units (upper, equator; lower, rest of pattern).

filaments (Fig. 2, A and B; cf. Fig. 1 B; Huxley and Brown, 1967).
The distribution of intensity along the layer lines was quite
different between SOL and EDL. In SOL, lattice sampling pro-
duced intensity that was strongest at radial positions corre-
sponding to those of the equatorial reflections (Fig. 2 A). This
was most obvious on the first layer line but also evident on
higher-order layer lines (Fig. 2 A, rectangular boxes; Fig. S3).
This lattice sampling appeared similar to that in the simple
lattice x-ray patterns from fish muscle (Squire et al., 2004;
Luther and Squire, 2014). In the EDL, the distribution of inten-
sity on the first layer line was relatively continuous, with little
sign of lattice sampling, suggesting a rotationally less coherent
lattice of thick filaments (Fig. 2 B). Careful inspection, however,
revealed weak lattice spots on MLI that did not align with the
equatorial reflections and looked similar to the pattern first
described for frog skeletal muscle, which has a superlattice (Fig.
S4; Huxley and Brown, 1967; Squire, 1981; Luther and Squire,
2014). Intensity distribution was different on the higher layer
lines. We conclude that the SOL and EDL have simple and su-
perlattice thick-filament arrangements, respectively, and that
these may be due to the different fiber types (slow and fast) that
predominate in these muscles in the rat. The weakness of the
superlattice reflections on MLI in the EDL pattern suggests that
the superlattice is significantly disordered (Luther and Squire,
1980, 2014).

EM

Rat SOL and EDL muscles were fixed, embedded, and trans-
versely sectioned for examination by transmission EM. Sections
were studied in the bare region of the thick filaments, just to
each side of the M-line (Fig. S1), where both myosin heads and
M-line bridges are absent (Squire, 1981). This region therefore
provides the clearest visualization of filament rotational
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orientation, recognized by the triangular profiles of the thick-
filament backbones that reflect their threefold symmetry (Figs.
1 A and 3, A and B; Luther and Squire, 1980). The relative ori-
entations of these profiles provides a direct visualization of the
type of filament lattice (Fig. 1 A). However, even with the thin
(65-nm) sections that we used, some portion of the M-line
bridges and/or myosin heads will be included, as the bare re-
gion on each side of the M-line is only ~30 nm long. The M-line
and/or myosin heads presumably account for the additional,
low-density material surrounding the thick filaments, which can
diminish the clarity of the triangular profiles (Fig. 3, A and B).

In rat SOL, neighboring thick filaments in well-contrasted
bare regions typically had approximately the same rotational
orientation (Fig. 3 A). This was apparent to the eye by comparing
the group of six peripheral and one central filament in a hexagon
(Fig. 3 A, circle), or by comparing filament orientation along the
rows of filaments in any one of the three lattice directions (Fig. 3
A, arrows). The filament lattice in EDL had a distinctly different
appearance, showing nearest neighbors with varying ori-
entations (Fig. 3 B). To provide an objective assessment of fila-
ment orientation and to quantify the relative orientations, the
rotational angle of each filament was determined computation-
ally using a projection-matching approach (see Materials and
methods). A triangle with the orientation thus determined was
then superposed on each filament in the image (Fig. 3, C and E).
To most clearly visualize filament orientations, the triangles
were then displayed without the original micrograph (Fig. 3, D
and F). The results confirmed the visual appearance in Fig. 3 (A
and B). SOL showed triangles with similar orientations in all
three planes (red rectangles, Fig. 3 D) and within individual
hexagons (circle; Fig. 3 D), while EDL revealed triangles with
varying orientations, which tended to follow the no-three-alike
rule (Fig. 3 F; Luther and Squire, 1980, 2014).
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Figure 3. Transverse sections of bare region of rat SOL and EDL re-
vealing lattice type. (A) SOL shows triangular filament profiles pointing in
approximately the same direction along all three lattice planes (arrows) and
within a hexagon (circle). This suggests a simple lattice. (B) EDL shows tri-
angular profiles with variable orientations, which are analyzed below.
(C-F) SOL and EDL sections at higher magnification analyzed by projection
matching. (C and E) Raw images with superposed white triangles repre-
senting orientation determined by projection matching (see text).
(D and F) Triangles extracted from C and E reveal orientations most clearly.
(D) Triangles with similar orientations in all three planes (red rectangles)
and in hexagon (circle). (F) Triangles with varying orientations, mostly fol-
lowing the no-three-alike rule. Scale bars, 200 nm (A and B); 100 nm (C-F).

The relative orientations of neighboring filaments were then
analyzed statistically by calculating the difference in angle be-
tween each filament and its six nearest neighbors and plotting
the results as a histogram (Fig. 4). In a simple lattice, all six
filaments have the same orientation as the central filament
(mean deviation angle 0°; Fig. 4 A). The histogram for the SOL
micrograph used in Fig. 3 C showed a peak at ~12° for the av-
erage deviation of the six filaments in a hexagon (Fig. 4 B) and a
peak at 0° when considering filaments pairwise (Fig. 4 C). This
supports a simple lattice. In a no-three-alike superlattice
(Fig. 4 D), two of every three adjacent filaments have the same
angle, and the third is rotated by 60°. The predicted mean de-
viation angle is therefore 30°. The histogram for the EDL mi-
crograph used in Fig. 3 E showed a peak close to 30° for the
average deviation of the six filaments in a hexagon (Fig. 4 E),
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consistent with a no-three-alike superlattice. When considered
pairwise, the distribution showed two peaks of similar height,
centered near 0° and 60° (Fig. 4 F), exactly as predicted for the
no-three-alike superlattice, where a filament has either the
same orientation as its neighbor or differs from it by 60°.

A similar comparison of filament orientations was performed
in eight micrographs for SOL (3,959 filaments) and eight mi-
crographs for EDL (2,850 filaments). Micrographs were selected
for the best visibility of bare-region triangular profiles. The
aggregate results are shown in Fig. S5 and support the con-
clusions from the individual micrographs shown in Fig. 4. Thus,
EM supports the simple lattices and superlattices suggested by
the x-ray diffraction patterns of the rat SOL and EDL muscles,
respectively.

Discussion

Previous EM and x-ray studies showed that vertebrate skeletal
muscles have one of two types of thick filament lattice: simple or
super. Comparison of different species suggested that tetrapods
had only superlattices and that simple lattices were confined to
fish (Luther et al., 1996; Luther and Squire, 2014). Our ob-
servations show that the soleus muscle of the rat (a tetrapod)
also has a simple lattice. They also suggest that this is related to
the slow fiber type that predominates in this muscle, as the EDL
(a fast muscle) has a superlattice. It will be interesting to see
whether other muscles of these rodents also show a correlation
between fiber type and lattice type, and whether this association
applies to other mammals and to the other tetrapod groups
(amphibians, reptiles, and birds).

Why has a correlation between fiber type and lattice type not
previously been recognized in tetrapods? The main reason is
probably the limited number of tetrapod skeletal muscles that
have been examined by x-ray diffraction, primarily frog sarto-
rius (Huxley and Brown, 1967; Reconditi, 2006; Linari et al.,
2015) and rabbit psoas (Xu et al.,, 2003), both fast muscles
(Gutmann, 1966; Salviati et al., 1982; Himaldinen and Pette,
1993; Lutz et al., 1998). To our knowledge, only three “pure”
tetrapod slow muscles have previously been examined by x-ray
diffraction (most muscles are not pure, but have a mixture of
fast and slow fibers; Schiaffino and Reggiani, 2011). A study of
rat SOL and EDL, under conditions designed to phosphorylate or
dephosphorylate the regulatory light chains, showed little to no
lattice sampling on MLI1 of SOL, and made no conclusion about
the type of myosin filament lattice present (Yamaguchi et al.,
2016); the conditions used for these experiments may have
caused significant disordering of the myosin heads, thus weak-
ening the myosin layer lines and their sampling. A comparison
of rat SOL and psoas muscles focused on cross-bridge behavior
and made no mention of lattice structure (Horiuti et al., 1997).
Likewise, a comparison of chicken slow (anterior latissimus
dorsi) and fast (posterior latissimus dorsi) muscles centered on
myosin head proximity to thin filaments but did not study
myosin layer lines or comment on the type of filament lattice
(Matsubara et al., 1991). Given this paucity of x-ray data on fast
and slow muscles, and the focus on other aspects of structure
when they have been studied, it is possible that a correlation
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Figure 4. Analysis of filament orientations in one micrograph each of SOL and EDL. (A and D) Filament orientations in simple lattice (A; all filaments have
same orientation; mean deviation angle = 0°) and no-three-alike superlattice (D; in any group of three filaments, in a line or forming a triangle, one filament is
rotated by 60° with respect to the other two, which are identical; mean deviation angle for any three adjacent filaments = 30°). (B) Histogram for SOL
micrograph showing mean deviation angle for the six filaments surrounding the central filament in a hexagon. The histogram peaks near 10°, close to the
expected 0° for a simple lattice. (C) Deviation angle for adjacent filaments in SOL considered pairwise. The histogram peaks near to 0°, as expected for a simple
lattice. (E) Mean deviation angle for the six filaments surrounding the central filament in a hexagon for EDL micrograph. The peak is close to 30°, as expected
for a no-three-alike superlattice. (F) Deviation angle for adjacent filaments in EDL considered pairwise. There are two peaks, close to 0 and 60°, as expected for
a no-three-alike superlattice (see D). Note: The relatively broad spread of the angle data is due partly to imperfections in the filament lattice, as seen in bending
of the lines of filaments (Fig. 3), and partly to imperfections in particle picking due to thin filament proximity to thick filaments. Both factors affected the
accuracy of angle determination. See also Fig. S5.

between fiber and lattice type is common but has simply been simple/superlattice dichotomy might relate to fiber type,
missed. The relatively pure composition of the rat SOL (~90% as our results suggest, rather than animal group (mammal vs.
slow) and EDL (~100% fast), however, made the lattice/fiber amphibian).
type correlation immediately obvious in our x-ray patterns While rat SOL and EDL are typically regarded as slow and fast
(Fig. 2). muscles, respectively, there is still some fiber type mixing. Does
The importance of a pure fiber composition for detecting the interpretation of our x-ray results hold, given this added
lattice type is supported by a previous x-ray study, which was layer of complexity? Rat SOL and EDL have been analyzed for
designed to compare the structures of the skeletal muscles of both myosin heavy chain and fiber type. Labeling with anti-fast
amphibia and mammals (Iwamoto et al., 2003). The muscles and anti-slow myosin antibodies yielded a ratio of 90% slow and
chosen were frog sartorius and mouse diaphragm. Mouse dia-  10% fast in the SOL of young rats (~12 wk) and 95% slow and 5%
phragm is thought to consist almost entirely (98%) of fast-twitch ~ fast fibers at 1 yr old (Wigston and English, 1992). This is roughly
fatigue-resistant (FFR) type IIA fibers (Coirault et al, 1995). consistent with myosin heavy chain type determined by SDS-
While frog sartorius showed a superlattice, as previously found PAGE, which yielded 80% type I (slow) and 20% type IIA (fast)
(Huxley and Brown, 1967), the mouse diaphragm showed evi- fibers at ~12 wk (Eng et al., 2008). Similar results are obtained
dence for a simple lattice (the only other tetrapod muscle re- based on myosin ATPase activity and immunocytochemistry
ported to have shown this), with lattice sampling similar to that  (Soukup et al., 2002). By mass spectrometry, rat SOL (age not
in rat SOL (Fig. 2 A) and fish (Luther and Squire, 2014). This reported) had 88% type I fibers and 12% type IIA fibers (Li et al.,
finding suggests that the simple lattice may correlate not spe-  2019). Overall, these data imply that rat SOL has 80-95% slow,
cifically with slow muscle, as we initially hypothesized based on  5-20% fast IIA fibers, and no fast IIB/X/D fibers. Assuming that
our rat studies, but with fatigue-resistant fibers, which includes  type I and IIA fibers both have a simple lattice, as discussed
both FFR and slow muscles (Schiaffino and Reggiani, 2011). Be-  above, the lattice sampling from this mixed muscle is consistent
cause other mouse muscles were not included in their compar-  with our x-ray data. The rat EDL also has a mixed fiber content:
ative study (Iwamoto et al., 2003), it was not recognized that the = 64% IIB, 25% IIX, and 11% IIA (from myosin type by SDS-PAGE;
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Eng et al., 2008); 76% IIB, 19% IIA, and 5% type I (Soukup et al.,
2002); and 70% 11B, 24% IID/X and 5% IIA by mass spectrometry
(Li et al., 2019). IIB/X/D are all considered to be fast fibers
(Schiaffino and Reggiani, 2011). With only ~10% or less IIA fi-
bers, the expected small amount of simple lattice sampling
would be difficult to detect in EDL, consistent with our x-ray
data. We conclude that our rat diffraction data are consistent
with the idea that slow type I and fast type IIA fibers have a
simple lattice while fast fibers (IIB/X/D) have a superlattice.

The dearth of x-ray data on tetrapod lattice types is mirrored
by a lack of EM data. To our knowledge, no previous EM study
has addressed the thick filament lattices present in the different
fiber types of tetrapods, and a simple lattice has not previously
been observed by EM in any tetrapod (the study of mouse dia-
phragm (Iwamoto et al., 2003) did not use EM, and it will be
important to confirm the x-ray interpretation of the lattice in
this muscle by direct EM observation). It is therefore possible
that a simple lattice structure in slow and FFR fibers has simply
been overlooked. Early EM studies of fish muscle were similarly
limited (to teleosts, the predominant group of bony fish) and
revealed only simple lattices (Luther et al., 1981). When com-
parison was widened to include other, more primitive groups of
fish (e.g., hagfish, lampreys, sharks, and rays) superlattices were
found to be common (Luther et al., 1996; Luther and Squire,
2014). A comparable, more detailed survey might show that
simple lattices are common in tetrapods.

Our combined EM and x-ray data suggest that the type of
thick-filament lattice is related to muscle fiber type in the rat.
Further work will be necessary to determine whether this cor-
relation extends to other rodents and other tetrapods (including
other mammals). We have made a first step to answer this
question by studying the SOL and EDL muscles of the mouse.
Overall, there is reasonable agreement with the conclusions
from the rat (see Supplemental results and discussion and Figs.
S6, S7, S8, S9, and S10). However, the results are less definitive
due to the mixed fiber content of mouse SOL, the difficulty of
identifying different fiber types in the SOL by EM, and the ap-
parently greater disorder of the mouse lattices compared with
rat. Nevertheless, the mouse data are broadly consistent with
the conclusion that low-fatigue fibers (type I and IIA) have a
simple lattice while fatigable fibers (type IIB, D, X) have a su-
perlattice. In no case is the lattice perfect, but in both SOL and
EDL it is substantially disordered (i.e., of limited extent).

Strikingly, sharks and rays in which white and red fibers
were compared by EM showed a lattice/fiber type correlation
(Luther et al., 1996; Luther and Squire, 2014) similar to that in
the rat. Red fibers (slow) had a simple lattice while white fibers
(fast) had a superlattice. This supports the notion that lattice
type is connected to fiber type, and suggests that it may occur
over a range of vertebrates, including tetrapods as well as fish.
However, the correlation is not perfect, as no such connection is
found in teleosts, where red and white fibers both have simple
lattices (Luther et al., 1995, 1996).

Differences in the physiology of slow and fast fibers have a
profound impact on the functioning of skeletal muscle. Slow
(type 1) fibers play an essential role in postural muscles and
muscles that function continuously, without break, for the life of
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the organism (e.g., respiratory muscles of larger species; Polla
et al., 2004; Schiaffino and Reggiani, 2011). They contract more
slowly and generate less tension than fast fibers but are highly
resistant to fatigue (Schiaffino and Reggiani, 2011). Fast, fatiga-
ble fibers (IIB/D/X) are complementary, adding to muscle re-
sponse when brief but powerful contractions are required
(Rome et al., 1988; Schiaffino and Reggiani, 2011). Fast, fatigue-
resistant fibers (type IIA) have intermediate properties
(Schiaffino and Reggiani, 2011); although classically described as
fast, they are in many ways more akin to slow fibers and quite
distinct from IIB/D/X (Schiaffino and Reggiani, 2011). Differ-
ences in mitochondrial content (and the oxidative metabolism
that this supports), and in myosin heavy and light chain iso-
forms (with associated differences in actin-activated myosin
ATPase activity) underlie much of this diversity in function. Our
results raise the possibility that the structural organization of
the myosin filaments might also contribute to the different
contractile properties. The proper functioning of relatively
slowly contracting/fatigue-resistant muscles (types I, IIA),
designed for prolonged activity, may depend in part on high
mechanical efficiency of contraction (Schiaffino and Reggiani,
2011). The arrangement of thick filaments in simple or super-
lattices will affect the ease with which myosin heads attach to
actin filament target zones, which could impact the contractile
properties (e.g., speed, tension) of a fiber (Luther et al., 1996;
Luther and Squire, 2014). Thus the 3D geometry of actin-myosin
interactions defined by the simple lattice might favor efficiency,
while the superlattice may enable a greater number of actin-
myosin interactions, contributing to the greater force produc-
tion of fast, fatigable fibers (Luther et al., 1995, 1996; Squire
et al., 2006; Luther and Squire, 2014).

What is responsible for generating the two lattice types found
in the different fiber types of rats and mice (and possibly other
tetrapods)? Thick-filament cross-linking proteins, such as those
of the M-line, are likely to be involved, as these provide a means
of setting thick filaments with specific orientations relative to
each other. M-line proteins specific to particular fiber types may
interact differently with thick filaments to generate one or an-
other type of lattice (Schoenauer et al., 2008; Luther and Squire,
2014; Lange et al., 2019). For example, M-protein, primarily
responsible for the central stripe of the M-line (M1) and present
only in fast (type IIB) fibers (Obermann et al., 1996), could be the
linker that defines relative thick-filament orientation in a su-
perlattice. When absent, as in slow and type I1A fibers, the thick
filaments may default to a simple lattice arrangement. Alter-
natively, the lattice type could be dependent on the type of
myosin present in the thick filament, which is known to vary
with fiber type, as discussed earlier. In this case, the thick-
filament bridging proteins of the M-line may be the same in
different fibers (e.g., myomesin is present in the M-lines of all
fiber types; Schoenauer et al., 2008; Lange et al., 2019), but in-
teract differently with the thick filaments (Pask et al., 1994),
depending on their myosin heavy chain type. Another thick
filament structural protein with isoforms specific to different
fiber types is myosin binding protein C (MyBP-C). Slow MyBP-C
occurs in both fast (IIA and IIB) and slow (type I) fibers, while
fast MyBP-C is present only in fast type IIB fibers (and absent
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from fast type IIA fibers; Li et al., 2019). MyBP-C has been ob-
served to bridge thick filaments to neighboring thin filaments
(Luther et al., 2011), and thus can indirectly link thick filaments
to their neighbors. The different forms of MyBP-C in different
fiber types might link filaments differently, contributing to
formation of the two types of lattice. If so, this would represent a
novel function of MyBP-C, a protein whose role in skeletal
muscle is not yet well understood (Wang et al., 2018; Li et al.,
2019; Robinett et al., 2019). MyBP-C is in fact long enough to
directly link thick filaments, which could more directly influ-
ence lattice formation, although there is so far no evidence that
such connections exist in the myofibril (Luther et al., 2011). If
this speculation is correct, disease mutations in skeletal MyBP-C
and M-line proteins could affect phenotype at least in part
through their putative role in defining filament lattice type.
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