Research Article

Estimating kinetic mechanisms with prior knowledge II: Behavioral

constraints and numerical tests

Marco A. Navarro,* Autoosa Salari,* Mirela Milescu, and Lorin S. Milescu

Division of Biological Sciences, University of Missouri, Columbia, MO

Kinetic mechanisms predict how ion channels and other proteins function at the molecular and cellular levels.
Ideally, a kinetic model should explain new data but also be consistent with existing knowledge. In this two-
part study, we present a mathematical and computational formalism that can be used to enforce prior knowl-
edge into kinetic models using constraints. Here, we focus on constraints that quantify the behavior of the
model under certain conditions, and on constraints that enforce arbitrary parameter relationships. The penal-
ty-based optimization mechanism described here can be used to enforce virtually any model property or be-
havior, including those that cannot be easily expressed through mathematical relationships. Examples include
maximum open probability, use-dependent availability, and nonlinear parameter relationships. We use a sim-
ple kinetic mechanism to test multiple sets of constraints that implement linear parameter relationships and
arbitrary model properties and behaviors, and we provide numerical examples. This work complements and
extends the companion article, where we show how to enforce explicit linear parameter relationships. By in-
corporating more knowledge into the parameter estimation procedure, it is possible to obtain more realistic
and robust models with greater predictive power.

INTRODUCTION

To understand how ion channels and other proteins
function at the molecular and cellular levels, one must
decrypt their kinetic mechanism, defined as a set of in-
terconvertible structural conformations, with transitions
quantified by rate constants that depend on external
variables (e.g., membrane potential, ligand concentra-
tion, etc.). Modeling molecular kinetics is not trivial,
but sophisticated algorithms have been developed that
can extract the rate constants for a given model from a
variety of experimental data types, such as single-chan-
nel or whole-cell voltage-clamp currents (Colquhoun
and Hawkes, 1982; Colquhoun and Sigworth, 1995; Qin
etal., 1996, 2000; Venkataramanan and Sigworth, 2002;
Colquhoun et al., 2003; Milescu et al., 2005; Csanady,
2006; Stepanyuk et al., 2011, 2014), single-molecule
fluorescence (Weiss, 2000; Milescu et al., 2006a,b; Liu et
al., 2010), or even current-clamp recordings (Milescu et
al., 2008). Automated algorithms that can identify the
model itself have also been attempted (Gurkiewicz and
Korngreen, 2007; Menon et al., 2009). This abundance
of data and analysis algorithms is great, but it raises an
important issue: how do we make sure that a model is
consistent with all these data, new and old? In other
words, how do we extract a model that explains new ex-
perimental data but also satisfies existing knowledge?
In the first part of this study (see Salari et al. in this
issue), we discussed the general principles of enforcing
prior knowledge using model constraints. We identified

*M.A. Navarro and A. Salari contributed equally to this paper.
Correspondence to Lorin S. Milescu: milescul@missouri.edu

The Rockefeller University Press '.)
J. Gen. Physiol. 2018 Vol. 150 No. 2 339-354 Check for
https://doi.org/10.1085/jgp.201711912 updates

two main types: parameter constraints and behavioral
constraints. Parameter constraints represent explicit
mathematical relationships between model parameters,
which include the pre-exponential and exponential rate
constant factors, allosteric and other multiplicative fac-
tors, and any external variables that describe the exper-
imental data and the recording conditions. In part one,
we presented a unified mechanism that handles both
equality and inequality linear parameter constraints,
using relatively simple linear algebra methods that con-
vert the interdependent parameters of the model into
a reduced set of independent (“free”) parameters that
can be passed to the optimization engine. Linear rela-
tionships can implement a surprisingly broad range of
constraints, particularly after some model parameters
are first transformed by the logarithm function. For
example, one can scale one rate to another, parame-
terize allosteric relationships, enforce microscopic re-
versibility, restrict a parameter to a range of values, etc.
Nevertheless, linear parameter constraints are not a
universal solution.

We present here a complementary modality for en-
forcing prior knowledge, which can be used to enforce
any type of model behavior, as well as arbitrary parame-
ter relationships. For example, one can fit stationary sin-
gle-channel data using a maximum likelihood method
but simultaneously use constraints to enforce voltage de-

© 2018 Navarro et al. This article is distributed under the terms of an Attribution—
Noncommercial-Share Alike-No Mirror Sites license for the first six months after the
publication date (see http://www.rupress.org/terms/). After six months it is available under
a Creative Commons License (Attribution-Noncommercial-Share Alike 4.0 International
license, as described at https://creativecommons.org/licenses/by-nc-sa/4.0/).

339

920z Areniged 60 uo1senb Aq 4pd-zL61 1210z dBl/0EY26.1/6€€/2/0G L /4pd-ajonie/dbl/Bio sseidny//:dpy wouy pepeojumoq

http://crossmark.crossref.org/dialog/?doi=10.1085/jgp.201711912&domain=pdf
http://www.rupress.org/terms/
https://creativecommons.org/licenses/by-nc-sa/4.0/
mailto:

Table 1. Model parameters and properties

Parameters Properties

By (s7) kg mV™) k5 (s7 ks V™) Ky (s ks (s™) kis (mV™") a Ne Po i
True 100.00 -0.13 5,000.00 0.02 3,000.00 5.00 —0.01 2.0 5,000 0.4175 0.4292
Initial 100.00 —0.075 1,500.00 0.05 1,500.00 20.00 —0.10 3.0 3,000 0.3198 1.0
Run I 77.08 —0.14 4,841.62 0.02 3,102.51 11.75 0.01 1.99 5,073 0.4062 0.1843
Run II 91.18 —0.13 4,460.68 0.02 3,458.43 9.64 0.00 2.22 5,667 0.3723 0.3946
Run III 82.75 -0.13 3,976.55 0.02 4,129.05 7.24 0.00 2.05 6,623" 0.3125 0.3543
Run IV 95.39 —0.13 6,056.44 0.02 2,414.50 7.52 0.00 1.90 4,061 0.4992° 0.3186
Run V 98.88 -0.13 5,039.69 0.02 3,001.74 2.562 —0.03 1.81 4,919 0.4135 0.7991°
Run VI 112.61 -0.13 6,280.71 0.02 2,416.81 1.88 —0.04 1.72 4,055 0.4995" 0.7998"

The quantities refer to the kinetic model shown in Fig. 2 A. k,(]' and ki; represent rate constant parameters, as defined by Eq. 1 from the companion paper (Salari et

al., 2018; rate constant k; = kj x el

), a is an allosteric factor, and N is the channel count. P, and f represent model properties, as defined in Fig. 2 B. The “true”

parameter values were used to simulate the data shown in Fig. 3. The “initial” and the “run” values refer to the starting and the ending of optimization, respectively,
as plotted in Figs. 4 and 5. Some rate constant parameters are not shown, because they are defined by constraints (e.g., k9 = a; x kY3) and can be easily derived.
*Optimization runs where model parameters and properties were constrained away from the true values.

pendence or other nonstationary behavior, as obtained
from other types of data or from the literature. The basic
idea s to calculate for each applied behavioral constraint
a penalty that represents the degree by which the model
deviates from that constraint. The penalty is then added
to the cost function that measures the error between the
data and the prediction of the model. As the optimizer
minimizes the cost function in search for an optimal
solution, it will generate a model that will not only fit the
data but will also satisfy all the prior knowledge.

We illustrate here the two types of model constraints
(linear parameter constraints and behavioral con-
straints) and test their respective computational pro-
cedures with a simple ion channel modeling example.
First, we simulate stochastic macroscopic data in re-
sponse to a typical voltage-clamp protocol. Then, we fit
these data while enforcing different combinations of
model constraints. The calculations are explained step
by step, and detailed numerical examples are given. All
computational procedures were implemented in our
freely available software (Milescu, 2015).

MATERIALS AND METHODS

All the mathematical and computational algorithms de-
scribed in this study, as well as the simulation, data pro-
cessing, and model optimization, were implemented,
tested, and performed with the freely available MLab
edition of the QuB program, running under the Micro-
soft Windows operating system.

Model parameters

To simulate the test data, the model shown in Fig. 2 A
was tweaked by hand to generate macroscopic cur-
rents resembling voltage-dependent sodium currents
(Fig. 3). The simulated data were fitted in multiple
runs, with different sets of constraints applied to the
model (Fig. 2 B). The model parameter values (true,
initial, and estimated) are listed in Table 1.

340

Stochastic simulations

Ion channel macroscopic traces were simulated stochas-
tically under the voltage-clamp paradigm, using estab-
lished procedures (Milescu etal., 2005). To approximate
the properties of sodium currents, the single-channel
conductance was 10 pS and the reversal potential was
+60 mV. Random Gaussian noise with zero average and
5-pA standard deviation was added to each trace to ap-
proximate whole-cell recording noise. To generate the
activation/inactivation time course (Fig. 3 A) and acti-
vation/availability steady-state curves (Fig. 3 B), we used
a typical voltage-clamp protocol: the channels were first
equilibrated at =120 mV and then subjected to a 200-
ms conditioning step at potentials ranging from —120
mV to +40 mV, followed by a 50-ms test step at 0 mV.
The peak current from each conditioning step was
extracted and converted to conductance (assuming a
linear relationship), and the obtained values were used
to construct the activation curve. Similarly, the peak
current from the test step was extracted and used to
construct the availability curve. Together, the currents
evoked during the first 5 ms of the conditioning step
in the =50 mV to +40 mV range (Fig. 3 A) and the ac-
tivation and availability curves (Fig. 3 B) were used for
model optimization.

Model optimization

The algorithms were tested by fitting the data shown
in Fig. 3. Optimization trials were run on a dual eight-
core 3.3 GHz Intel Xeon processor computer, running
Windows 7 (64 bit). Each optimization run took less
than 20 min to complete. The model was optimized
by minimizing the cost function with a modified ver-
sion of the Davidon-Fletcher—Powell optimizer (dfp-
min; Fletcher and Powell, 1963; Press et al., 1992).
For efficiency, the cost function was coded for parallel
computation. The cost function was calculated as the
sum of square errors between the data and the predic-
tion of the model, normalized to the total number of

Behavioral constraints in kinetic models | Navarro et al.

920z Areniged 60 uo1senb Aq 4pd-zL61 1210z dBl/0EY26.1/6€€/2/0G L /4pd-ajonie/dbl/Bio sseidny//:dpy wouy pepeojumoq

points, plus a penalty term for those optimization tri-
als involving a behavioral constraint, as detailed in Re-
sults. The gradients of the cost function with respect
to the free parameters were calculated numerically.
The prediction of the model for a given set of param-
eters was obtained by simulating the deterministic re-
sponse of the model to the same stimulation protocols
as used for simulation. Then, the resulting traces were
processed to extract the time course and the activa-
tion and availability curves, following the same pro-
cedure as for the simulated test data (Milescu et al.,
2010; Salari et al., 2016).

RESULTS

Implementing prior knowledge with model constraints
A theoretical background was given in part one of this
study (Salari et al., 2018), where we briefly introduced a
few prerequisite topics (kinetic mechanisms, model to-
pology, and parameter estimation). Then, we presented
a mathematical formalism and computational proce-
dure for enforcing linear parameter constraints. Here,
in part two, we continue with a mechanism for enforcing
model behavior and arbitrary parameter relationships.
Then, we give a step-by-step numerical example that il-
lustrates the implementation of all types of constraints.
Because we will make multiple references to the first
part, the equations introduced here are numbered in
continuation of those in part one. The mathematical
symbols that are not explicitly defined here have been
introduced in part one.

Behavioral constraints and arbitrary parameter relation-
ships. A good amount of prior knowledge about the
channel can be expressed as linear relationships be-
tween model parameters, resulting in constraints that
can be handled with relatively straightforward linear al-
gebra methods. However, some channel behaviors and
properties cannot be easily formulated as explicit func-
tions of model parameters or they need nonlinear func-
tions that are not so easily tractable. For voltage-gated
channels, examples of important functional behavior
include the open probability (Po), the voltage depen-
dence of activation or inactivation, or the use-depen-
dent availability. These properties cannot be easily
formulated as functions of rate constants, except for
very simple kinetic mechanisms. Furthermore, they
must be prescribed in the context of a specific experi-
ment (e.g., a voltage-clamp step protocol).

Expanding the cost function. Without explicit parame-
ter relationships, we cannot solve behavioral constraints
simply by converting model parameters into free pa-
rameters, as we did for linear parameter constraints.
Likewise, we cannot use that formalism to solve any pa-
rameter constraint that cannot be written as a linear re-

JGP Vol. 150, No. 2

lationship between the transformed model parameters,
as captured by the generalized linear constraint Eqs. 32
and 33 (Salari et al., 2018). Instead, the solution we pro-
pose here for handling behavioral constraints and arbi-
trary parameter relationships is to include them into
the cost function. Thus, the cost function F, which is
minimized by the optimizer in search for an optimal
solution, can be expanded to include multiple compo-
nents, one for each set of experimental data and one
for each constraint:

F= ol 1) + (o <), (60)

where F' represents the cost of data component i and
FC represents the cost of behavioral constraint j. The a
quantities are relative weighting factors that multiply the
cost function components. Including multiple compo-
nents in the cost function is known in the optimization
literature as multi-objective fitting (Druckmann et al.,
2007; Bandyopadhyay and Saha, 2013; Fletcher, 2013).
For example, F' could stand for newly acquired volt-
age-clamp data (e.g., the time course of activation and
inactivation at different membrane potentials), whereas
FC could be data from the literature (e.g., steady-state
activation and inactivation curves) or a hypothesized
property (e.g., the open probability Pp). The cost func-
tion components that denote constraints should be
formulated in such a way that they take a value of zero
when the underlying constraint is satisfied, and a very
large value (relative to the data cost components) when
the constraint fails, as explained further.

Formulating behavioral constraints and arbitrary param-
eter relationships. Some behavioral constraints can be
formulated as mathematical relationships involving sim-
ple properties of the channel. For example, we could
constrain the maximum open probability reached
during a depolarization step to take certain values or to
fall within a range:

Py = 0.5, or
Py < 04, or (61)
0.3 < P, < 0.7.

An example of a parameter constraint that cannot be
processed with the formalism developed in part one is
restricting a rate constant pre-exponential factor &f to a
range of values:

1,000 < K < 10,000. (62)

This range constraint cannot be handled as two lin-
ear inequality relationships, because they would be
mathematically redundant, where both cannot be si-
multaneously satisfied. Another example is parame-
terizing an exponential factor kj as a product of more
than one variable:

341

920z Areniged 60 uo1senb Aq 4pd-zL61 1210z dBl/0EY26.1/6€€/2/0G L /4pd-ajonie/dbl/Bio sseidny//:dpy wouy pepeojumoq

ki = Cxaxb, (63)

where a and b could stand for the &; and z; parame-
ters in Eq. 2 (Salari et al., 2018) and C is a constant
equal to F/ (R x T). Likewise, this equation cannot be
handled with the formalism from part one because
it is nonlinear.

Algebraically, any equality or inequality relationship
can be converted to "=0" or ">0," respectively. Thus, the
above constraints could be rewritten as follows:

P5-05 =0,
0.4-PFo 2

0,
{PO—O.S >0
07-P5>0)J’

k{1,000 = 0
10,000 - %) = 0’

ki-Cxaxb=0.

(64)

The cost function components F¢ that correspond to
the above equality and inequality relationships can be
formulated as follows:

F¢ = ax (Py-0.5)%

FC = ax (0.4-Po)?

1€ = ax[(Po-03)%+ (0.7- Po)?].

= ax [(;qg’fl,ooo)ﬂ(10,0004,-?)2], and (65)
e = (xx(ki}—Cxaxb)(z,

where o is a weighting factor with the following
properties:

a > 0, for equality constraints, (66)

and

{ot = 0 ifconstraint > 0

. . , for inequality constraints,
o > 0 ifconstraint < 0} 1 Y

(67)

where “constraint” refers to the left-side term of a con-
straint equation (Eq. 37; Salari et al., 2018). Thus, these
cost function components are equal to zero when the
underlying constraints are exactly satisfied but take a
positive and quadratically increasing value when the
constraint relationships are not satisfied.

Nonparametric behavioral constraints. In principle, the
same logic can be applied to any other model property.
However, some model behaviors cannot be reduced to a
single value or cannot be easily calculated theoretically.
For example, many functional aspects, such as the re-
covery from inactivation or the use dependence, can be
empirically fitted by one or two exponentials. Unfortu-
nately, these apparent time constants cannot be directly
and easily calculated from the model, which actually

342

predicts a larger number of exponentials, equal to the
state count minus one (Milescu et al., 2005; Salari et al.,
2016). Likewise, the voltage-dependent activation curve
can be well approximated and fitted by a Boltzmann
equation with only two parameters, but calculating the
half-activation and the sensitivity values directly from
the model is generally not practical.

In cases like these, it is simpler to simulate the re-
sponse of the channel to the same stimulation protocol
as was used to obtain the experimental (or hypothe-
sized) data. Then, a cost function component can be
calculated as the sum of square differences between the
simulated and the experimental data:

Fo= ax L3 (y-x)% (68)

where y; and x; are experimental and simulated data
points, respectively, and N is the number of data
points. In the above equation, one could use the
raw data directly, point by point, or one could ex-
tract some properties from the raw data and use the
points on that property curve. For example, when
the stimulation protocol is designed to extract the
time course of a macroscopic current, one would fit
the raw data directly. In contrast, when the stimu-
lation protocol is designed to extract a behavior,
such as the recovery from inactivation, one would fit
the property curve. Although extracting a property
curve involves additional computation, it has the
substantial benefit of concentrating the information
on a very specific aspect of channel behavior. For ex-
ample, in a curve that represents the recovery from
inactivation, every data point informs directly on the
apparent time constants of inactivation. Likewise,
every data point in a voltage-dependent activation
curve informs directly on the two parameters of the
Boltzmann equation.

Whether the cost function for these nonparametric
behavioral constraints is calculated from raw data or
from property curves or is based on hypothetical values,
one must consider the presence of random noise and
other artifacts that contaminate the experimental data.
Thus, even a perfect model would not generate zero
cost for the constraints, which may confuse the optimi-
zation engine. A simple solution is to reformulate the
problem as an inequality:

1

NZi (yi'xi)Q < g, (69)
where € is a positive constant proportional to the noise
content of the data. Then, the cost function component
can be written as follows:

F¢ = ax [s—]l—vzi (yi—xi)2] 2, (70)

where a is a weighting factor with the following property:

Behavioral constraints in kinetic models | Navarro et al.

920z Areniged 60 uo1senb Aq 4pd-zL61 1210z dBl/0EY26.1/6€€/2/0G L /4pd-ajonie/dbl/Bio sseidny//:dpy wouy pepeojumoq

1 g
a=20 1fﬁzi(y;-xi)2 < e

1 (: (71)
a >0 1fNZ,(yl—xl)z > €

Thus, if the sum of square errors between the simu-
lated and the experimental data is less than g, then the
underlying constraint is considered to be satisfied. In
other words, the model only needs to explain the con-
straining data components “well enough,” as warranted
by the inevitable noise and artifacts.

A computational framework for solving behavioral
constraints and arbitrary parameter relationships. We
presented above some examples of behavioral con-
straints and arbitrary parameter relationships. In
general, the problem we must solve is to find a model
that not only best explains the experimental data but
also satisfies a set of equality or inequality constraints.
Mathematically, the problem can be formulated as
the minimization of a function subject to a set of non-
linear constraints:

minimize F(X)
such that: 4(X) = 0,7 = 1...M; (72)
§(X) 20,5 =1..N,

where X and F(X) are the vector of free parameters
and the cost function, respectively, as defined in part
one, and #(X) and g(X) are two sets of Ny equality
and Nj inequality constraints, respectively. In the case
of maximum likelihood methods, instead of maxi-
mizing the log-likelihood, one can equivalently mini-
mize its negative.

As discussed in the previous section, one possible
solution to this constrained function minimization is
to add the constraints to the cost function (Eq. 60).
This approach is equivalent to the method of penalties
(Fletcher, 2013), which reformulates the problem as an
unconstrained optimization, by adding a penalty term
to the cost function F(X). Thus, the objective becomes
minimizing a penalized cost function F (X, a):

\Y

PXa) = FX)+ax B[hX)]*+ Zi{ B x [¢(X)]*),
(73)

where o and P are penalty factors with the fol-
lowing properties:

a >0,
_JOifg(X) 20 (74)
o {0(if g(X) < 0}'
Formulating the h; and g; expressions that correspond
to any of the equality and inequality constraints above
is straightforward. For example, the first two Py con-
straints given above (Eq. 64) become:

hi = P0*0.5,

g = 0.4-Po. (75)

JGP Vol. 150, No. 2

The gradients of the penalized cost function might be
required by the optimization engine. These could be
calculated analytically, as follows:

(xxzi[hi()_() xa}gf_f)]+

% [Bj x g(X) x ag‘f)]

F(Xa) IFX)
oxX, Oy

+2x (76)

The derivatives of h; and g;j with respect to a free param-
eter X, depend on the specific constraints used, and one
may need to calculate them using the chain differentia-
tion rule, as in the case of linear constraints. Ultimately,
if the constraint functions are too complicated, the gra-
dients can be approximated numerically. Whether the
gradients are calculated analytically or numerically, one
should keep in mind that inequality penalties are only
semidifferentiable and may throw off the optimizer. If
this is the case, then one possibility is to approximate
the penalty into a differentiable function (Bertsekas,
1975). The variance of the estimates can also be calcu-
lated using the procedure described in part one.

The main advantage of the penalty method is that
it can be used with any optimization algorithm that
was originally designed for nonconstrained problems.
The main issue, however, is the choice of the penalty
parameter o. On the one hand, if o is too small, then
the solution found by the optimizer will be pulled to-
ward F(X) and the constraints defined by 7(X) and
g(X) may not be exactly satisfied. On the other hand,
if o is very large, then the solution will satisfy the con-
straints (in principle). However, the optimizer engine
may have a difficult time finding that solution, be-
cause the penalized cost function F (X, a) may change
very abruptly in the n-dimensional parameter space.
Thus, although it is conceptually and computationally
very simple, using the penalized cost function is not
exactly a plug-and-play solution, as in the case of lin-
ear constraints.

A possible strategy is to find the solution iteratively,
starting with a relatively small @, and increasing it until
some convergence criteria are satisfied (Himmelblau,
1972). This is the approach we are taking here, as sum-
marized in Fig. 1. Once a model topology is chosen,
the workflow starts with defining the linear parame-
ter constraints and the behavioral constraints (if any),
including any other arbitrary parameter constraints.
The next step is to define the cost function and the
penalized cost function, according to the specific ap-
plication (e.g., macroscopic fitting, single-channel
maximum likelihood, etc.). Then, we choose a set of
model parameters as the starting point, K,. Mathemati-
cally, these parameters do not need to satisfy either set
of constraints (parameter or behavioral), but starting
as close as possible is recommended. From the initial
model parameters K,, we then calculate the initial set
of free parameters, X,. Finally, we initialize the penalty

343

920z Areniged 60 uo1senb Aq 4pd-zL61 1210z dBl/0EY26.1/6€€/2/0G L /4pd-ajonie/dbl/Bio sseidny//:dpy wouy pepeojumoq

parameter o to o, equal to a small positive number. In
practice, this value can be chosen so as to make the data
and the penalty components of the overall cost function
be approximately equal.

Once these quantities are defined and initialized, we
start the optimization procedure, which involves two
embedded loops, as shown in Fig. 1. An outer loop,
indexed by p, handles the schedule for updating the
penalty parameter «, that is used to calculate the penal-
ized cost function F ()_(, (xp) ,and an inner loop, indexed
by k, handles model optimization for a given «,. The
penalty parameter o, is progressively increased at each
outer loop iteration, to increase the relative weight of
the penalty component in F()_(,ocp). Thus, the behav-
ioral constraints may be only loosely satisfied at the end
of the first outer loop iteration, but they will get tighter
each time «, is increased. The outer loop can be run
for a predefined number of iterations or can be termi-
nated when the behavioral constraints are satisfied, if
at all possible.

In principle, any type of optimization engine can be
used in the inner loop. As explained, the optimizer is
completely model and penalty blind. Essentially, the op-
timizer solves an unconstrained minimization problem,
operating with a set of free parameters X. However, as it
explores the free parameter space in search for a mini-
mum, the optimizer will require, for a given X,, the pe-
nalized cost function F (X, «,) and possibly its gradients.
For this, the transformed model parameters Ry are cal-
culated from X,, and then the model parameters Ky are
calculated from Ry, as outlined in Fig. 3 of the compan-
ion article (Salari et al., 2018). The model optimization
in the inner loop can be run for a predefined number
of iterations or can be terminated when some conver-
gence criteria are satisfied. Typically, convergence re-
quires that there be no substantial changes in the free
parameter values and in the cost function (and its gra-
dients be close to zero) from one iteration to the next.

Testing the algorithm

To clarify the computational procedures described in
both parts of this study, we give a step-by-step numerical
example. For illustration purposes, we chose the model
shown in Fig. 2 A, which is complex enough to accom-
modate an allosteric factor (Fig. 2 A, a;), an external
parameter representing the number of active chan-
nels in the recording (Ng), and several parameter and
behavioral constraints. At the same time, the model is
small enough to allow us to print the vectors and matri-
ces used in the numerical computation. Readers who
wish to implement their own code can use these exam-
ples for verification. Briefly, we tested the algorithms
by fitting a stochastically simulated set of macroscopic
data, generated in response to a typical voltage-clamp
step protocol. We intentionally chose a relatively small
dataset (the time course of activation and inactivation

344

Define linear parameter
constraints

Define behavioral & arbitrary
parameter constraints

'

Define cost function &
penalized cost function

1
Initialize model parameters
KO
'
Initialize free parameters
K, > X,
'

Initialize penalty parameter
Oy

Penalty cycle

Behavioral & arbitrary constraints

Model optimization

Linear parameter constraints

Calculate model parameters
X, > K,
v

A

Calculate penalized cost
function F'(X,,a,)

Figure 1. Optimizing a constrained model. The flowchart
summarizes the computational steps needed to optimize a ki-
netic model, subject to parameter and behavioral constraints.
Linear parameter constraints are implemented via linear alge-
bra transformations between the model parameters K and the
free parameters X, whereas behavioral constraints or arbitrary
parameter relationships are handled by a penalized cost func-

tion F'()_(k,(xp) that measures the overall error of the model rel-

ative to the data and the constraints. The K - X and X - K
transformations are detailed in Fig. 3 in the companion paper
(Salari et al., 2018). To calculate the cost function, one needs
to generate the response of the model (e.g., probability dis-
tributions and macroscopic currents) to the same stimulation
protocols used to generate the experimental data and formu-
late the behavioral constraints. The inner computational loop,
indexed by k, optimizes the model for a given penalty factor
a,, whereas the outer loop, indexed by p, gradually increases
a,, to more tightly satisfy the behavioral and arbitrary parame-
ter constraints.

Behavioral constraints in kinetic models | Navarro et al.

920z Areniged 60 uo1senb Aq 4pd-zL61 1210z dBl/0EY26.1/6€€/2/0G L /4pd-ajonie/dbl/Bio sseidny//:dpy wouy pepeojumoq

A (a1x ky3)

kip ks k34
C1 — CZ — 03 — |4
ka1 k3o ka3
(a1x ky3)

B Runli Run I Run 11l
k1,2=a1><k23 Run I + RUI’] ” +
k3’2 =aX kZ,l]ClﬁSO 6,000SNC
ksy = by s ky, 2-0.15 | N.<8,000

Run IV Run V Run VI

Run Il + Run Il + Run Il +

R =05 fr=08 R =05
P

0.54 max P, 0.5 fR:Pi’2 fr=08

-0 <« Po;
5 Po,

A —»
Po,zl

< 0.0- 0.0

z 0 07 q

g &oOms

2 120+ . -804 ,

> 0 5 0 75

Time [ms] Time [ms]

Figure 2. A test model with different sets of constraints. (A)
A simple kinetic mechanism that generates voltage-gated so-
dium channel-like currents (see Fig. 3). All rate constants are
as described by Eg. 1 in the companion paper (Salari et al.,
2018; k; = kf-jj- x e""%: a, is an allosteric factor, and Nc is the
number of channels. (B) Six sets of constraints were applied to
the model to test the algorithms (see Figs. 4 and 5). Runs | and
Il test linear parameter constraints implemented with linear al-
gebra-based methods that convert model parameters into free
parameters, and vice versa. Run | implements only linear rela-
tionships, whereas run Il adds two inequalities. Runs Ill through
VI test arbitrary parameter constraints and behavioral con-
straints implemented with the penalty mechanism. Run Il tests
a parameter range constraint, whereas runs |V through VI test
constraints that enforce model properties and behavior: the
maximum open probability during a depolarization step (Po,
run IV and VI) and the recovered fraction of available channels
at 50 ms after a 5-ms inactivation step (fz, runs V and VI). The Py
and f; quantities are obtained as shown.

at different voltages and the voltage-dependent steady-
state activation and inactivation curves, as shown in
Fig. 3) to illustrate potential parameter identifiability
issues and the effect of constraints. The data were fitted
in multiple runs, with each run enforcing a different set
of constraints, as outlined in Fig. 2 B. The simulation,
data analysis, and fitting procedures are explained in
Materials and methods.
We define the following set of model parameters K:

K=
{k(l),Q’ k11,2, ké),l, kel,l, ké),s, k»zlz, k:‘%)z, k%z, kg,aﬂ k§,4, ki),s, kﬁl,s, ap, qi } s (77)

JGP Vol. 150, No. 2

A Time course of activation/inactivation

Current [pA]

Initial parameters

-1500-

Current [pA]

Fit parameters

-1500 r T . T - T . T .)
0 1 2 3 4 5
Time [ms]
B g PVailapilty __Jotivation
0.754

C
i)

8 0.501 Initial parameters
e

0.251 Fit parameters

0.00¢—e—o—o o o o s—2-2"_ Pra-a.
-80 -60 -40 -20 0 20
Voltage [mV]

Figure 3. Test data and model predictions. (A and B)
Whole-cell currents were simulated stochastically with the
test model in Fig. 2 A, using a standard activation/inactivation
protocol. The data were processed to extract the time course
of activation/inactivation (black traces in A) and the steady-
state activation and availability curves (black symbols in B).
The time course and steady-state curves were fitted together
(see Fig. 4). The predictions of the model at the beginning
and at the end of optimization are shown by the blue and
red traces, respectively. The fit curves correspond to run | in
Fig. 2 B, but all runs resulted in virtually identical fits. The true,
initial, and estimated parameters and properties of the model
are shown in Table 1.

where a, is the allosteric factor and q; is the channel
count. Thus, we have a total of 14 model parameters,
with numerical values given in Table 1. The corre-
sponding vector of transformed model parameters
R is:

R-=

{ 9(1),2, k11,2, 93,1, k21,1; 93,3, k21,3, Sg,z k%z, 9‘3),4, k§,4, 92,3, k‘l,%a b1, (Pl},

(78)

where

345

920z Areniged 60 uo1senb Aq 4pd-zL61 1210z dBl/0EY26.1/6€€/2/0G L /4pd-ajonie/dbl/Bio sseidny//:dpy wouy pepeojumoq

¢1 = In(a), (79)

Applying linear parameter constraints. The test model
has allosteric relationships that require two sets of lin-
ear parameter constraints. The first set applies to the
forward transitions C; to Gy and Gy to Cs:

ko = a1 % kys. (80)

As explained in part one (Salari et al., 2018), we apply
the logarithm on both sides of Eq. 80 and obtain a set of
two equality relationships:

ln(ki)’g) = ln(a1)+1n(k;23)) (81)
kiz = hy

The backward transitions Cs to Cy and Cy to C; have a
similar allosteric relationship, which results in another
set of two equality relationships:

ln(kfgi) = ln(dl) + ln(kfgl)
Ko = ki ’

(82)

Altogether, we have a set of four linear mathemat-
ical relationships between the transformed model
parameters in R:

8(1),2—83,3—(1)1 =0
ng—eg,l—d)l =0
kio—his = 0
k:%,z—kle,l =0

(83)

Together, these four equations reduce the number of
free parameters by four, from 14 down to 10. We must
point out that the same allosteric relationships could
be implemented just as well without the explicit use of
an allosteric factor. Thus, we could write the following
constraint equation:

kl 2 k% 2

o222 4

Ry = T (84)
Again, after taking the logarithm, we obtain a set
of two equations:

{ln(ko) —In(ks) = In(kfy) —In(k) } (85)
Ka= s = ko= k) -
The first equation in the set enforces the allosteric rela-
tionships at V= 0. However, the second equation is not
sufficient to enforce the allosteric relationships at any
arbitrary voltage. To do so, we must add either one of
the following two equations:

346

kll,Q = k21,37 or

ki‘%i = kle,l-
Altogether, this is equivalent to having a set of three
mathematical relationships:

(86)

ln(k?yz) —ln(klgy?,) = ln(kgg) _ln(kgyl)
kis = ks ; (87)
ke = ko

with the final form:

8(1),2 + 88,1 - S(z)% - 82,2 =0
kio—his = 0 . (88)
kyo—hiy = 0

This result can be easily verified: the same set of equa-
tions can be obtained by eliminating ¢, between the
first two equalities in Eq. 83. Without the explicit use
of an allosteric factor, the model would have only 13
model parameters. However, there would be only three
constraint equations in that case, which means that the
number of free parameters would still be the same:
10. In conclusion, adding an allosteric factor does not
necessarily increase the number of free parameters of
a model. Instead, it provides a more intuitive way of
formulating the relationships that may exist between
rate constants.

Another assumption that we made about our test
model is that the Oj to 14 transition has the same voltage
sensitivity as the Cy to Os transition. This results in one
mathematical relationship:

k§q—kyg = 0. (89)

With this relationship, the number of free parameters
is down to nine. We note that this relationship follows
from the actual model parameters used to simulate the
data. However, even if the true model parameters were
unknown, the savvy investigator would still enforce this
constraint, motivated by the shape of the activation
curve, which reaches a constant value toward the more
positive voltages (Fig. 3 B). For this particular model,
this aspect of the activation curve suggests that the rates
of activation and inactivation increase by approximately
the same factor with voltage. If, for example, the inacti-
vation rate had a stronger voltage dependence than the
activation rate (k§,4 > le,g), the activation curve would
start turning down at more positive potentials.

The final assumptions we made involve inequality
constraints. Thus, we constrained the rate of recovery
from inactivation (I; to Os) to have negative voltage de-
pendence and the deactivation rates (Os to Gy and Cy to
C)) to have a voltage sensitivity greater than —0.15 mV™":

IN

k‘l,s O:

90
ks, > -0.15. (90)

Behavioral constraints in kinetic models | Navarro et al.

920z Areniged 60 uo1senb Aq 4pd-zL61 1210z dBl/0EY26.1/6€€/2/0G L /4pd-ajonie/dbl/Bio sseidny//:dpy wouy pepeojumoq

Because the k3o and k3, factors are already constrained to
be equal, we apply the inequality constraint only to k3,
to avoid redundancy. To handle these two inequality
constraints, we add two slack variables, 7z and z, and
write two equality relationships:

0.0 - Z1 2,
~0.15 + 22

kis
k.

1

Thus, although we added two constraints, we also added
two slack variables. As a result, the number of free pa-
rameters remains the same: nine.

We summarize here all the constraint equations:

|
(=}

(.0 0
glo—€r5—P1 =

0 0 _
g39—€91-P1 = 0

kllz—kql,s =0

Skio—kiy =0 .. (92)
kis—his = 0
kis = 0.0 —z?

kley] = —0.15+Z22 J

Linear algebra calculations. We can now formulate the
constraint matrix M and vector V, as in Eq. 37 (Salari
etal., 2018):

0

0 0

ﬂ?,‘z k||,2 ’7;1 kAzI,l B3 kAzIﬁ €39 kiz €34 kﬁlA ‘7(41.3 ku:,ﬁ LT
1P 0 o0 0O -1 0 O O O 0 0 0 -1 0
o o0 -1 0 0 0 1 o 0 o0 o0 0 -10
Mo o 1 0 o0 O -1 0 O O 0 0 0 0 0’
o o0 0 -1 0 0 0 10 0 0 0 0 0
o o o0 o0 0 -1 0 0 0 1 0o 0 0 0
o o0 o0 o o0 o0 o0 o0 0 0 O 1 0 0
o 0 0 1 o o0 o0 o0 o0 o0 0 0 o0 O
(93)
0
0
0
V="
0
0-2*
—0.15+2,°

As M contains only constant values, it can now
be decomposed with the singular value decomposi-
tion technique into three matrices, as in Eq. 40 (Sal-
ari et al., 2018):

0.707 0 0 0707 0 0 0
0.707 0 0 0707 0 0 0
0 0707 0 0 0707 0 0
Uy= 0 0 0851 0 0 0 -0.52,
0 0707 0 0 0707 0 0 (94)
0 0 0 0 0 1 0
0 0 052 0 0 0 -0.851

JGP Vol. 150, No. 2

1.732
1.618
Sm = 1.414, (95)
1
1

0.618
20.354 0 0 05 0 0 0 07990 0 0 0 0 0
0 0408 0 0 0707 0 0 0 0 0559 0 0.108 -0.093 0
0.354 0 0 05 0 0 0 0158 0 -0.192 0 0580 -0.476 0
0 0 081 0 0 00526 0 0 0 0 0 0 0
0.354 0 0 05 0 0 0474 0 -0.067 0 -0.173 -0.604 0
0 087 0 0 0 0 0 0 0 0559 0 0.108 -0.093 0

g 030 0 05 0 0 0 -0158 0 -0.125 0 0.754 0.129 0 96

Moo 0 0526 0 0 0 081 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0408 0 0 0707 0 0 0 0 0559 0 0.108 -0.093 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0
0.707 0 0 0 0 0 0 0316 0 0067 0 0.173 0.604 0
0 0 o 0 0 0 0 0 0 0 0 0 0 1

From Vy;, we can now obtain the A matrix, as shown
in Eq. 41 (Salari et al., 2018):

07910 0 0 0 0 0
0 0 0559 0 0.108 -0.093 0
0.158 0 0.192 0 0580 -0.476 0
0O 0 0 0 0 0 0
0.474 0 -0.067 0 -0.173 0.604 0
0 0 0559 0 0.108 -0.093 0
A= -0158 0 0125 0 0754 0129 0 (g7
0 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0559 0 0.108 -0.093 0
0 0 0 1 0 0 0
0 0 0 0 0 0 0
0.316 0 0.067 0 0.173 0.604 0
0 0 0 0 0 0 1

The A~ matrix is simply obtained by transposing A, and
we do not show it here. To obtain the B vector, we must
first calculate the pseudoinverse of M, M", as shown in
Eq. 43 (Salari et al., 2018). First, we calculate the pseu-
doinverse of Sy, Sy

0.5
0.577
0.618
Su™ = 0.707. (98)
1
1
1.618

With S,,", we can calculate M*:

347

920z Areniged 60 uo1senb Aq 4pd-zL61 1210z dBl/0EY26.1/6€€/2/0G L /4pd-ajonie/dbl/Bio sseidny//:dpy wouy pepeojumoq

0375 0125 0 0 0 00
0 0 0667 0 0.333 0 0
0125 0375 0 0 0 0 0
0 0 0 0 0 01
0375 0125 0 0 0 00
0 0 0333 0 0.333 0 0
M= 0125 0375 0 0 0 00 (g9
0 0 0 1 0 01
0 0 0 0 0 00
0 0 0333 0 0667 0 0
0 0 0 0 0 00
0 0 0 0 0 10
02 02 0 0 0 00
0 0 0 0 0 00

The M matrix can now be used to calculate the B vec-
tor, as in Eq. 42 (Salari et al., 2018). However, when the
model contains inequality constraints, the V vector will
contain elements that depend on the slack variables
71 and z. During optimization, the slack variables are
changed freely by the parameter estimation engine.
However, at the beginning of the optimization, they
must be initialized by solving their corresponding con-
straint equation. In this case, z; is initialized as follows:

ki’g:()—le =>

z =\ kis—0 = V0.1 = 0.316,

where 0.1 is the initial value of kjs. Likewise, z is
initialized as:

(100)

2 = 0.274. (101)

With the z and z values, we can now calculate the ini-
tdal V and B vectors:

) (102)

SOoOoOoO

(103)

To start the optimization, we must initialize the free
parameters X. When the model constraints include in-
equalities, as we have here, X is formed by the reunion
of X and Z vectors (Eq. 44; Salari et al., 2018). Z con-

348

tains the slack variables, which are initialized as shown
above, whereas X is initialized from the initial set of
model parameters Ry, using Eq. 39 (Salari et al., 2018).
Altogether, the initial free parameter values are:

10.640
7.318
-3.708
2.996
4.537. (104)
-5.626
8.006
0.316
0.274

]
]

Each time the cost function is requested by the opti-
mization engine, the transformed model parameters R
are calculated from the free parameters X with Eq. 40
(Salari et al., 2018). Then, the model parameters K are
calculated from R.

Applying arbitrary parameter constraints and behavioral
constraints. In addition to linear parameter constraints,
we also tested a few simple but useful constraints that
cannot be implemented with the linear algebra formal-
ism (Salari et al., 2018). First, we tested an arbitrary pa-
rameter constraint that restricts the channel count N
to a range of values. The test data were simulated with
N¢ = 5,000. However, to test the algorithms under more
realistic conditions, we enforced a range of values away
from the true value (6,000-8,000). The same strategy
was used with all the behavioral constraints introduced
next. The constraint and the corresponding cost func-
tion component are the following:

6,000 < N¢ < 8,000, (105)

: Ne— 6,000\ 8,000 - g\ 2
7o = le(i‘ﬁ,ooo) 1Py x (—8,000 ‘) . (106)

where f; and Ps are numerical factors with the fol-
lowing properties:

By = 0 if No = 6,000

{61 = a if Ne < 6,000 } a07)
By = 0 if No < 8,000

{52 = a if Ne > 8,000 }

The normalization to 6,000 or 8,000 makes this penalty
component numerically comparable with all the other
penalty and data components.

The second is a behavioral constraint that enforces
the maximum open probability reached during a
brief depolarization step from —120 to 0 mV, as illus-
trated in Fig. 2 B (run IV). With the true parameter
values, the model predicts a2 maximum Py of ~0.42,
but we constrained it to 0.5. The constraint equation
and the corresponding cost function component
are the following:

Behavioral constraints in kinetic models | Navarro et al.

920z Areniged 60 uo1senb Aq 4pd-zL61 1210z dBl/0EY26.1/6€€/2/0G L /4pd-ajonie/dbl/Bio sseidny//:dpy wouy pepeojumoq

Py = 0.5, (108)

I = ax(Po-0.5)2% (109)

Finally, we tested a behavioral constraint that enforces
the time constant of recovery from inactivation. As dis-
cussed earlier, it would be rather difficult to calculate
this quantity analytically. Instead, we use a surrogate
value, extracted from a simulation in response to a two-
pulse voltage-clamp protocol. As shown in Fig. 2 B (run
V), we inactivate the channels with a brief voltage pulse,
let them recover for 50 ms, and then apply a second
pulse to test how many channels have recovered. The
recovered fraction is defined as the maximum open
probability reached during the second voltage pulse
relative to the first pulse:

f _ (P())pulm2
R Po) puet”

(110)

Thus, if we want to enforce a specific recovery time
constant 7z, we can calculate the corresponding f; for a
recovery interval of arbitrary duration t and use that fg
value in the behavioral constraint:

f = exp(-7%). (111)

Our test model predicts a recovered fraction fz of
~0.43 with a recovery interval t = 50 ms, at =80 mV,
but we constrained it to 0.8. The constraint equation
and the corresponding cost function component
are the following:

Jk =038, (112)

F = ax(k-038)2% (113)

Optimizing the model. We illustrate the performance
of the algorithms with six optimization runs, each im-
plementing a different set of constraints, as described
in Fig. 2 B. Together, these examples test the full range
of constraints that the algorithms are designed to han-
dle, as they are likely to occur in practical modeling
applications: linear equality and inequality parameter
constraints and model behavior and properties. Fur-
thermore, we test all types of model parameters, as de-
fined in the companion paper: rate constant
parameters, multiplicative factors (a;), and external
parameters (N¢). The true parameter values, as well as
the initial and the estimated values obtained in each
optimization run, are given in Table 1.

In run I, we enforced only equality linear parameter
constraints (Eq. 83). The cost function that was mini-
mized by the optimizer had the following expression:

JGP Vol. 150, No. 2

AX) = B+ B+, (114)

where FP, F2, and Y are the cost components corre-
sponding to the data shown in Fig. 3: time-course traces,
activation curve, and availability curve, respectively.
Each of these data components is the sum of square
differences between the data and the prediction of the
model, normalized by the total number of data points.
The time-course component was also normalized to the
peak current, as follows:

v Iy, :
P = b T (i) (115)

where Ny is the number of traces, N, is the number of
samples in each trace, yy, and I, are the data point and
the predicted current, respectively, at voltage Vand time
t, and Yca i the largest negative peak current in the
entire dataset. With these normalizations, all three data
cost components take comparable values. We have not
done it here but, in principle, one should further nor-
malize the data to account for potentially different levels
of noise, such as between the time course traces and the
activation and availability curves. One possibility would
be to multiply each cost component by a factor inversely
proportional to its normalized variance, to ensure that
less noisy datasets will be fitted more tightly by the model.
This variance can be approximated through fitting each
dataset with an appropriate mathematical function (e.g.,
a sum of exponentials for the time course data and a
Boltzmann for the activation and inactivation curves).

In run II, we used the same conditions as for run I, but
we added the inequality linear parameter constraints
(Egs. 90 and 91). In runs III through VI, we applied the
same linear parameter constraints as in run II, but in
each of these runs, we added different constraints that
were implemented via the penalty mechanism: an arbi-
trary parameter constraint that restricts N to a range of
values (run III) and behavioral constraints that enforce
Po (run 1V), the recovered fraction fy (run V), or both
P and f simultaneously (run VI). In runs III through
VI, the optimizer minimized a penalized cost function
with the following expression:

FXa) = P+ B+ 1+ F, (116)

where ¢ stands for either F¥ (run III), I (run 1IV), I¥
(run'V), or F§ + F§ (run VI).

The optimization results shown in Fig. 4 demonstrate
the proper functioning of the algorithm with all types
of constraints. To test the convergence of the optimizer,
we intentionally chose starting parameters (Table 1)
that generate prediction curves that deviate substantially
from the data, as shown by the blue traces in Fig. 3. In
all cases, the cost function virtually settled in ~30 itera-
tions (Fig. 4 A, left), after which most model parameters
changed little (Fig. 4 B). For run I, the final parameter

349

920z Areniged 60 uo1senb Aq 4pd-zL61 1210z dBl/0EY26.1/6€€/2/0G L /4pd-ajonie/dbl/Bio sseidny//:dpy wouy pepeojumoq

values are within ~10% of the true values (Table 1), which
is to be expected under these conditions (Milescu et al.,
2005). For the other runs, the constraints push some of
the parameters away from their true values, as intended.
Although the final parameter values (Table 1) vary across
the six runs, they all predict virtually identical fit curves,
all represented by the red traces in Fig. 3 (A and B).

The effect of inequality linear parameter constraints
can be observed by comparing runs I and II. In run
1, the kig parameter is unconstrained and meanders
to values as large as +0.12 mV~!, finally converging to
a slightly positive value, even though the true value is
slightly negative (—0.05 mV™"). The convergence to a
positive value for ki,g is not a failure of the search engine
but simply a result of the stochastic nature of the data.
In run II, k{3 is constrained to a negative range and, as
expected, converges to a final value of zero. The conver-
gence to a value that lies on the edge of the constrained
range would suggest that this solution is suboptimal,
compared with the solution found in run I. Indeed, the
cost function value is nominally larger: 0.000533 for run
IT versus 0.000392 for run I, although the difference is
imperceptible. The kj; parameter is also constrained
with an inequality in run II. However, le,l hovers com-
fortably above its limit in run I, and, as expected, the
constraint applied in run II has no effect.

In runs III through VI, the cost function is replaced
by a penalized cost function, which adds penalty com-
ponents (Eq. 73). In all of these cases, the penalty func-
tion quickly drops by four or five orders of magnitude
during the optimization (Fig. 4 A, right). In run III,
where the penalty mechanism enforces a range of values
for N, the penalty function occasionally drops to zero
(Fig. 4 A, right, orange trace), whenever N is within
the allowed range and the constraint is exactly satisfied
(Fig. 5 A). Although the initial value of N¢ (3,000) was
outside the acceptable range, the optimizer quickly
brought N within the range, in just a few iterations.
We find it interesting that the convergence value of N¢
does not lie on the edge of its allowed range (6,000),
as close as possible to the convergence value found in
run II (5,500). This suggests the existence of multiple
solutions that predict identical fits.

In runs IV through VI, the penalty mechanism was
used to enforce equality relationships for Py and f. Like
with N¢ in run III, the initial values of Py and fz were
quite different from their enforced values. However, a
few iterations were sufficient to bring P, or fz close to
their enforced values, as illustrated in Fig. 5 (B and C,
green and magenta traces). In contrast to run III, the
penalty function approaches a small value but does not
reach zero (Fig. 4 A, right, green, blue, and magenta
traces). Accordingly, the enforced quantities hover in a
small neighborhood centered on their enforced values
(Fig. 5, B and C). The size of this neighborhood de-
pends on the numerical value of the penalty parameter

350

ay: the larger the ap, the smaller the neighborhood. In
principle, enforcing the penalty might require several
cycles, where each cycle increases the value of oy, as il-
lustrated in Fig. 1, and tightens the constraint. However,
for these relatively simple optimization examples, we
initialized the penalty factor as o = 1, which enforced
the constraints tightly enough in a single penalty cycle.

As expected, adding these constraints that push Po
and fg away from their true values also results in slightly
suboptimal fits in runs IV through VI, compared with
runs I through III. Furthermore, these constraints ex-
pose correlations between properties of the model (P
and f) and certain model parameters. Thus, Po is in-
versely correlated with Ni. Without any constraint, Po
and N¢ are estimated as ~0.42 and 5,100, respectively.
In contrast, when Py is constrained (runs IV and VI),
the N¢ estimate is lowered to 4,000 (Fig. 5 A). Vice versa,
when N is constrained to a larger value, the estimated
parameters predict a lower P (Fig. 5 B). Likewise, fg is
correlated with the rate of recovery from inactivation
(the I, to O transition). Thus, enforcing fz to a larger
value (0.8) than the true value (0.43) results in a smaller
estimate for kf,g and in a more negative estimate for
kis (Fig. 4 B, runs V and VI). Considering these poten-
tial correlations between different parameters or model
properties, one should be careful not to apply contra-
dictory constraints.

DISCUSSION

We have presented here a set of mathematical and com-
putational tools that can be used to estimate kinetic
mechanisms that explain new data but also satisfy us-
er-defined prior knowledge. In part one of this study
(Salari et al., 2018), we derived a procedure for enforc-
ing explicit linear equality and inequality parameter
relationships. Here, in part two, we introduced a pro-
cedure for enforcing arbitrary model properties and
behaviors, as well as arbitrary parameter relationships.
Together, these methods are capable of handling virtu-
ally all types of model constraints that are likely to arise
in practical situations. To demonstrate our approach,
we provided a step-by-step numerical example. Inter-
ested readers can use these examples to implement the
constraint algorithms in their own software and to verify
correctness. We also implemented these algorithms in
the freely available QuB software, as maintained by our
laboratory (Milescu, 2015).

Compeatibility with existing optimization frameworks

The procedures described here can be easily adapted
into a typical optimization package. As illustrated by
the workflow diagram in Fig. 1, only a few modifica-
tions would be required: adding a function that con-
verts between free parameters and model parameters
(X, — Ky and vice versa, modifying the cost function

Behavioral constraints in kinetic models | Navarro et al.

920z Areniged 60 uo1senb Aq 4pd-zL61 1210z dBl/0EY26.1/6€€/2/0G L /4pd-ajonie/dbl/Bio sseidny//:dpy wouy pepeojumoq

o
|

= Runl
= -3 = Runll
® 64 = Runlll
3
S 9. = Run IV
Re)
12 _ = RunV
0 20 40 60 80 = RunVl
lteration
B 4- Run | X < Run I 1] Nc Runl" 77777777777777777 0.15

), 109(Ne), ay

0
1

log(k;

')v IOQ(NC)! aj

0
1

log(k;

[oy | k2[1

] kzll

0 20 40 60 8 O 20 40 60 80 O 20 40 60 80
Iteration lteration Iteration

Figure 4. Testing optimization with model constraints. The model shown in Fig. 2 A was optimized to fit the data in Fig. 3 (time course
and steady-state curves), subject to the six sets of constraints shown in Fig. 2 B. (A) The convergence of the overall cost function (left) and
penalty component (right). (B) Parameter convergence in each of the six test runs. Only the model parameters K are shown, but note that
the optimizer searches in the free parameter space defined by X. To reduce clutter, some model parameters are not displayed, as they are
defined by constraints (e.g., k> = ax k35). For better visualization, the exponential factors k?,— are plotted on the right axis (dotted lines),
whereas all the other quantities are on the left axis: preexponential factors k{ (log scale, solid lines), channel count Nc (log scale, dashed
black line), and allosteric factor a; (dashed magenta line). The dashed gray horizontal lines and arrows indicate the boundaries of inequality
linear constraints for k3 ;and k4 3(runs Il through IV) and the boundaries of the range constraint for Nc (run Ill). Note how kj 3is estimated as
a positive value in run |, but it remains less than zero under the inequality constraint in runs Il through V1. In each panel, the symbols aligned
with the last iteration mark the true parameter values.

JGP Vol. 150, No. 2 351

920z Areniged 60 uo1senb Aq 4pd-zL61 1210z dBl/0EY26.1/6€€/2/0G L /4pd-ajonie/dbl/Bio sseidny//:dpy wouy pepeojumoq

/6,000 <N <8000 — Runl
— Runll
= Run I
= Run IV
= RunV
= RunVI

Nex 103

0 20 40 60 80

Iteration
B 0.6+ C 1.04v
Po=0.5 ﬁ =0.8
054 - o g 0.84 TR
3 l
®
0.4 S 0.6 |I\
< 8 |
0.3{7 o Eo04 \
L - B R _——
\ / o
02 \ V 8 0.2
\\/ & M
0.1 T T T) 0.0 J r T .
0 20 40 60 80 0 20 40 60 80
Iteration Iteration

Figure 5. Enforcing model properties and behavior. (A-C)
The convergence of the N¢ estimate (A) and calculated Po (B)
and f; (C) quantities are shown for each of the six optimization
runs described in Fig. 2 B. The constrained and the true values
are indicated by the gray and black dashed lines, respectively.
As expected, Nc and Py are inversely correlated; when one
is constrained to be larger or smaller than the true value, the
other one becomes smaller or larger, respectively. Likewise, f;
is correlated with the rate of recovery from inactivation; when
fz is constrained to be larger than the true value, the k33 and
k} 3 estimates become smaller and more negative, respectively.
All the enforced quantities quickly reach their enforced range
(Nc) or value (Po and f3). Note that without being constrained,
fz is not well defined by the test data and does not converge to
the true value. In contrast, Nc and Pg are well defined.

to calculate and add the penalty, and implementing a
schedule to progressively increase the penalty parame-
ter. The first two modifications are trivial because every
optimizer will have a callback function where the user
writes custom code to calculate the cost function for a
given set of free parameters. The third modification is
potentially more involved, but a simple solution would
be to increase the penalty parameter by hand and re-
start the optimizer with the parameter values obtained
in the previous iteration.

Constrained fitting versus multiobjective fitting

There is a certain similarity between constrained fitting
and simply including those data that underlie the con-
straints into a more comprehensive dataset to be fitted.
The second approach is generally described as multiob-

352

jective fitting (Druckmann et al., 2007; Bandyopadhyay
and Saha, 2013). Although it is not a substitute for the
reduction method that is used to enforce linear param-
eter constraints, it could be a substitute for the penalty
method. As the name implies, in this case the optimizer
would need to find a solution that satisfies multiple ob-
jectives (i.e., datasets). This is conceptually equivalent
to constrained fitting, but there is also one important
difference: in multiobjective fitting, the optimal solu-
tion found by the search engine may actually explain
poorly each and all of the individual datasets, as long as
it is the best overall compromise. Moreover, to find this
compromise solution, one must choose a set of weight-
ing factors that encode how much each dataset is worth
to the model, which is not trivial.

In contrast, the constraining mechanism described
in this study will give the highest priority to the con-
straints and satisfy them exactly (the linear parameter
constraints, via the reduction method) or at least very
closely (all other constraints, via the penalty method).
Only after the constraints are satisfied will the model
adapt to explain the data (in as much as it is possible).
Nevertheless, as we explained in the paper, a certain
margin of error can be built into the constraints to ac-
commodate noise and potential artifacts, but the con-
straints will stay tightly within this margin. Then, one
advantage to the constraint approach is that one can
more easily detect when a model is incompatible with
the data. Furthermore, one could also detect inconsis-
tent knowledge, as signaled by incompatible constraints.

Model behavior: To enforce or not?

The need for enforcing explicit parameter relationships
is obvious, if only to consider microscopic reversibility
or the ratio of sequential activation rates. However, it
may be less clear to the reader why model behavior and
properties need to be enforced. Why not derive them
directly from the data? After all, once model param-
eters are estimated, they can be used to predict any
model property or behavior. The problem resides in
the potential lack of model and parameter identifiabil-
ity. In an ideal case, the model would be uniquely iden-
tifiable, which means that no other topology exists that
can explain the data equally well (Kienker, 1989; Bruno
et al., 2005). Furthermore, the data would be noise
and artifact free and the model parameters would be
fully identifiable, which means that the model admits
a unique solution and the optimizer is able to find it
from the data. If this were the case, then it would make
little sense to enforce a model behavior or property ex-
cept to test the sensitivity of the parameters with respect
to that behavior.

In reality, however, the true model may never be
known, and the working model may be just one out of
many equivalent topologies. Furthermore, the param-
eters may not be fully identifiable, either because the

Behavioral constraints in kinetic models | Navarro et al.

920z Areniged 60 uo1senb Aq 4pd-zL61 1210z dBl/0EY26.1/6€€/2/0G L /4pd-ajonie/dbl/Bio sseidny//:dpy wouy pepeojumoq

model admits multiple solutions (theoretical parame-
ter identifiability) or because the data are corrupted by
noise and artifacts that flatten the cost function surface
(practical parameter identifiability; Milescu et al., 2005;
Raue et al., 2009; Siekmann et al., 2012; Hines et al.,
2014; Middendorf and Aldrich, 2017). Thus, estimating
the kinetic mechanism from limited data may resultin a
parameter set that is just one out of many possible solu-
tions and potentially one with poor predictive power.

This is actually the case with our numerical example:
in all runs, the estimates obtained by the optimizer are
close to the true values (Table 1), except when oth-
erwise constrained (e.g., N¢ in run III). However, the
estimates differ across runs, even though the fits are
virtually identical between runs and follow closely the
data (Fig. 3, red lines). How can different sets of pa-
rameters produce the same solution? The explanation
for this apparent contradiction is that the parameters
are not uniquely identifiable given the reduced data-
set. Clearly, adding more constraints or enforcing other
model behaviors would improve parameter identifi-
ability and would select only those parameter solutions
that are compatible with that behavior. Furthermore,
it would also improve model identifiability, making it
easier to discover the correct model. Short of the true
model, we would at least obtain more robust models, as
nature always does.

ACKNOWLEDGMENTS

We thank the members of the Milescu laboratories for their con-
structive comments and suggestions.

This work was supported by the American Heart Association
(grants 13SDG16990083 to L.S. Milescu and 13SDG14570024 to
M. Milescu) and the Graduate Assistance in Areas of National
Need Initiative/Department of Education (training grant fellow-
ship to M.A. Navarro).

The authors declare no competing financial interests.

Author contributions: L.S. Milescu developed the mathemati-
cal and computational algorithms and implemented them in soft-
ware. All authors contributed to designing and testing the
algorithms and software and writing the manuscript.

Richard W. Aldrich served as editor.

Submitted: 28 September 2017
Accepted: 6 December 2017

REFERENCES

Bandyopadhyay, S., and S. Saha. 2013. Some single-and
multiobjective optimization techniques. In Unsupervised
Classification. Springer, Berlin. 17-58. https://doi.org/10.1007
/978-3-642-32451-2_2

Bertsekas, D.P. 1975. Nondifferentiable optimization via
approximation. In Nondifferentiable Optimization. Springer,
New York. 1-25. https://doi.org/10.1007/BFb0120696

Bruno, WJ., J. Yang, and J.E. Pearson. 2005. Using independent
open-to-closed transitions to simplify aggregated Markov models
of ion channel gating kinetics. Proc. Natl. Acad. Sci. USA. 102:6326—
6331. https://doi.org/10.1073/pnas.0409110102

Colquhoun, D., and A.G. Hawkes. 1982. On the stochastic properties
of bursts of single ion channel openings and of clusters of bursts.

JGP Vol. 150, No. 2

Philos. Trans. R. Soc. Lond. B Biol. Sci. 300:1-59. https://doi.org
/10.1098/7stb.1982.0156

Colquhoun, D., and F. Sigworth. 1995. Fitting and statistical analysis
of single-channel records. In Single-channel recording. B.
Sakmann, and E. Neher, editors. Plenum Press, New York. 483—
587. hutps://doi.org/10.1007/978-1-4419-1229-9_19

Colquhoun, D., CJ. Hatton, and A.G. Hawkes. 2003. The quality
of maximum likelihood estimates of ion channel rate constants.
J- Physiol. 547:699-728. https://doi.org/10.1113/jphysiol.2002
.034165

Csanady, L. 2006. Statistical evaluation of ion-channel gating
models based on distributions of log-likelihood ratios. Biophys. J.
90:3523-3545. https://doi.org/10.1529/biophysj.105.075135

Druckmann, S., Y. Banitt, A. Gidon, F. Schiirmann, H. Markram,
and I. Segev. 2007. A novel multiple objective optimization
framework for constraining conductance-based neuron models
by experimental data. Front. Neurosci. 1:7-18. https://doi.org/10
.3389/neuro.01.1.1.001.2007

Fletcher, R. 2013. Practical Methods of Optimization. John Wiley &
Sons, New York.

Fletcher, R., and M.].D. Powell. 1963. A rapidly convergent descent
method for minimization. Comput. J. 2:163-168. https://doi.org
/10.1093/comjnl/6.2.163

Gurkiewicz, M., and A. Korngreen. 2007. A numerical approach to
ion channel modelling using whole-cell voltage-clamp recordings
and a genetic algorithm. PLOS Comput. Biol. 3:¢169. https://doi
.org/lO.1371/j0urnal.pcbi.0030169

Himmelblau, D.M. 1972. Applied Nonlinear Programming.
McGraw-Hill, New York.

Hines, K.E., T.R. Middendorf, and RW. Aldrich. 2014.
Determination of parameter identifiability in nonlinear biophys-
ical models: A Bayesian approach. J. Gen. Physiol. 143:401-416.

Kienker, P. 1989. Equivalence of aggregated Markov models of ion-
channel gating. Proc. R. Soc. Lond. B Biol. Sci. 236:269-309. https
://doi.org/10.1098/rspb.1989.0024

Liu, Y., J. Park, KA. Dahmen, Y.R. Chemla, and T. Ha. 2010. A
comparative study of multivariate and univariate hidden Markov
modelings in time-binned single-molecule FRET data analysis.
J. Phys. Chem. B. 114:5386-5403. https://doi.org/10.1021/
jp9057669

Menon, V., N. Spruston, and W.L. Kath. 2009. A state-mutating
genetic algorithm to design ion-channel models. Proc. Natl.
Acad. Sci. USA. 106:16829-16834. https://doi.org/10.1073/pnas
.0903766106

Middendorf, T.R., and R-W. Aldrich. 2017. Structural identifiability
of equilibrium ligand-binding parameters. J. Gen. Physiol.
149:105-119. https://doi.org/10.1085/jgp.201611702

Milescu, L.S. 2015. QuB: The Mlab version. Available at: https://
milesculabs.biology.missouri.edu/QuB.html

Milescu, L.S., G. Akk, and F. Sachs. 2005. Maximum likelihood
estimation of ion channel kinetics from macroscopic currents.
Biophys. J. 88:2494-2515. https://doi.org/10.1529/biophysj.104
.053256

Milescu, L.S., A. Yildiz, P.R. Selvin, and F. Sachs. 2006a. Maximum
likelihood estimation of molecular motor kinetics from staircase
dwell-time sequences. Biophys. J. 91:1156-1168. https://doi.org
/10.1529/biophysj.105.079541

Milescu, L.S., A.Yildiz, P.R. Selvin, and F. Sachs. 2006b. Extracting
dwell time sequences from processive molecular motor data.
Biophys. J. 91:3135-3150. https://doi.org/10.1529/biophysj.105
.079517

Milescu, L.S., T. Yamanishi, K. Ptak, M.Z. Mogri, and J.C. Smith.
2008. Real-time kinetic modeling of voltage-gated ion channels

353

920z Areniged 60 uo1senb Aq 4pd-zL61 1210z dBl/0EY26.1/6€€/2/0G L /4pd-ajonie/dbl/Bio sseidny//:dpy wouy pepeojumoq

https://doi.org/10.1007/978-3-642-32451-2_2
https://doi.org/10.1007/978-3-642-32451-2_2
https://doi.org/10.1007/BFb0120696
https://doi.org/10.1073/pnas.0409110102
https://doi.org/10.1098/rstb.1982.0156
https://doi.org/10.1098/rstb.1982.0156
https://doi.org/10.1007/978-1-4419-1229-9_19
https://doi.org/10.1113/jphysiol.2002.034165
https://doi.org/10.1113/jphysiol.2002.034165
https://doi.org/10.1529/biophysj.105.075135
https://doi.org/10.3389/neuro.01.1.1.001.2007
https://doi.org/10.3389/neuro.01.1.1.001.2007
https://doi.org/10.1093/comjnl/6.2.163
https://doi.org/10.1093/comjnl/6.2.163
https://doi.org/10.1371/journal.pcbi.0030169
https://doi.org/10.1371/journal.pcbi.0030169
https://doi.org/10.1098/rspb.1989.0024
https://doi.org/10.1098/rspb.1989.0024
https://doi.org/10.1021/jp9057669
https://doi.org/10.1021/jp9057669
https://doi.org/10.1073/pnas.0903766106
https://doi.org/10.1073/pnas.0903766106
https://doi.org/10.1085/jgp.201611702
https://doi.org/10.1529/biophysj.104.053256
https://doi.org/10.1529/biophysj.104.053256
https://doi.org/10.1529/biophysj.105.079541
https://doi.org/10.1529/biophysj.105.079541
https://doi.org/10.1529/biophysj.105.079517
https://doi.org/10.1529/biophysj.105.079517

using dynamic clamp. Biophys. J. 95:66-87. https://doi.org/10
.1529/biophysj.107.118190

Milescu, L.S., T. Yamanishi, K. Ptak, and J.C. Smith. 2010. Kinetic
properties and functional dynamics of sodium channels during
repetitive spiking in a slow pacemaker neuron. J. Neurosci. 30:12113—
12127. https://doi.org/10.1523 /J]NEUROSCI.0445-10.2010

Press, W.H., S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. 1992.
Numerical recipes in C. Cambridge University Press, Cambridge,
MA.

Qin, F.,, A. Auerbach, and F. Sachs. 1996. Estimating single-channel
kinetic parameters from idealized patch-clamp data containing
missed events. Biophys. J. 70:264-280. https://doi.org/10.1016/
S0006-3495(96)79568-1

Qin, F., A. Auerbach, and F. Sachs. 2000. A direct optimization
approach to hidden Markov modeling for single channel
kinetics. Biophys. J. 79:1915-1927. https://doi.org/10.1016/
S0006-3495(00)76441-1

Raue, A., C. Kreutz, T. Maiwald, J. Bachmann, M. Schilling, U.
Klingmiiller, and J. Timmer. 2009. Structural and practical
identifiability analysis of partially observed dynamical models by
exploiting the profile likelihood. Bioinformatics. 25:1923-1929.
https://doi.org/10.1093/bioinformatics/btp358

Salari, A., M.A. Navarro, and L.S. Milescu. 2016. Modeling the
kinetic mechanisms of voltage-gated ion channels. In Advanced

354

Patch-Clamp Analysis for Neuroscientists. Humana Press, New
York. 267-304. https://doi.org/10.1007/978-1-4939-3411-9_13
Salari, A., M.A. Navarro, M. Milescu, and L.S. Milescu. 2018.
Estimating kinetic mechanisms with prior knowledge: I. Linear
parameter constraints. J. Gen. Physiol. https://doi.org/10.1085/
jgp-201711911

Siekmann, L, J. Sneyd, and E.J. Crampin. 2012. MCMC can detect
nonidentifiable models. Biophys. J. 103:2275-2286. https://doi
.org/10.1016/j.bpj.2012.10.024

Stepanyuk, A.R., A.L. Borisyuk, and P.V. Belan. 2011. Efficient
maximum likelihood estimation of kinetic rate constants from
macroscopic currents. PLoS One. 6:¢29731. https://doi.org/10
.1371/journal.pone.0029731

Stepanyuk, A., A. Borisyuk, and P. Belan. 2014. Maximum likelihood
estimation of biophysical parameters of synaptic receptors from
macroscopic currents. Front. Cell. Neurosci. 8:303. https://doi.org
/10.3389/fncel.2014.00303

Venkataramanan, L., and EJ. Sigworth. 2002. Applying hidden
Markov models to the analysis of single ion channel activity.
Biophys. J. 82:1930-1942. https://doi.org/10.1016/S0006
-3495(02) 75542-2

Weiss, S. 2000. Measuring conformational dynamics of biomolecules
by single molecule fluorescence spectroscopy. Nat. Struct. Biol.
7:724-729. https://doi.org/10.1038 /78941

Behavioral constraints in kinetic models | Navarro et al.

920z Areniged 60 uo1senb Aq 4pd-zL61 1210z dBl/0EY26.1/6€€/2/0G L /4pd-ajonie/dbl/Bio sseidny//:dpy wouy pepeojumoq

https://doi.org/10.1529/biophysj.107.118190
https://doi.org/10.1529/biophysj.107.118190
https://doi.org/10.1523/JNEUROSCI.0445-10.2010
https://doi.org/10.1016/S0006-3495(96)79568-1
https://doi.org/10.1016/S0006-3495(96)79568-1
https://doi.org/10.1016/S0006-3495(00)76441-1
https://doi.org/10.1016/S0006-3495(00)76441-1
https://doi.org/10.1093/bioinformatics/btp358
https://doi.org/10.1007/978-1-4939-3411-9_13
https://doi.org/10.1085/jgp.201711911
https://doi.org/10.1085/jgp.201711911
https://doi.org/10.1016/j.bpj.2012.10.024
https://doi.org/10.1016/j.bpj.2012.10.024
https://doi.org/10.1371/journal.pone.0029731
https://doi.org/10.1371/journal.pone.0029731
https://doi.org/10.3389/fncel.2014.00303
https://doi.org/10.3389/fncel.2014.00303
https://doi.org/10.1016/S0006-3495(02)75542-2
https://doi.org/10.1016/S0006-3495(02)75542-2
https://doi.org/10.1038/78941

