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Estimating kinetic mechanisms with prior knowledge I: Linear
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To understand how ion channels and other proteins function at the molecular and cellular levels, one must de-
crypt their kinetic mechanisms. Sophisticated algorithms have been developed that can be used to extract ki-
netic parameters from a variety of experimental data types. However, formulating models that not only explain
new data, but are also consistent with existing knowledge, remains a challenge. Here, we present a two-part
study describing a mathematical and computational formalism that can be used to enforce prior knowledge into
the model using constraints. In this first part, we focus on constraints that enforce explicit linear relationships in-
volving rate constants or other model parameters. We develop a simple, linear algebra-based transformation
that can be applied to enforce many types of model properties and assumptions, such as microscopic reversibil-
ity, allosteric gating, and equality and inequality parameter relationships. This transformation converts the set of
linearly interdependent model parameters into a reduced set of independent parameters, which can be passed
to an automated search engine for model optimization. In the companion article, we introduce a complementary
method that can be used to enforce arbitrary parameter relationships and any constraints that quantify the be-
havior of the model under certain conditions. The procedures described in this study can, in principle, be cou-
pled to any of the existing methods for solving molecular kinetics for ion channels or other proteins. These

concepts can be used not only to enforce existing knowledge but also to formulate and test new hypotheses.

INTRODUCTION

Ion channels are highly adapted to perform specific
functions in the cell. To give just one example, voltage-
gated sodium (Nav) channels have finely tuned kinetic
properties that allow neurons and other excitable cells
to generate action potentials of specific shape and
frequency (Bean, 2007). The properties that enable
Nav and other channels to perform such complex
and well-calibrated behavior are encoded in the Kki-
netic mechanism, defined as a set of conformational
and functional states, interconnected by a network of
allowed state transitions that may depend on ligand
concentration, membrane potential, or other physical
variables (Colquhoun and Hawkes, 1995a,b). To under-
stand how ion channels function, one must decrypt the
kinetic mechanism. The same is true for all proteins,
from ion channels and receptors to enzymes and molec-
ular motors (Popescu and Auerbach, 2003; Milescu et
al., 2006; Mullner et al., 2010; Syed et al., 2010).

A kinetic mechanism can be solved by fitting experi-
mental data with a mathematical model. However, de-
cades of ion channel research have shown that kinetic
mechanisms cannot be fully captured by any single type
of experiment. Instead, to update or construct a new
model, one must fit a comprehensive data collection
(Horn and Lange, 1983; Hawkes et al., 1990, 1992; Van-
denberg and Bezanilla, 1991; Hoshi et al., 1994; Zagotta
et al., 1994a,b; Schoppa and Sigworth, 1998a,b; Roth-
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berg and Magleby, 2000; Milescu et al., 2005), ideally
generated by multiple experimental paradigms (Van-
denberg and Bezanilla, 1991; Akk et al., 2005; Milescu
etal., 2008). For example, we know that Nav and other
channels have four voltage sensors that gate with differ-
ent timing and voltage sensitivity (Bezanilla, 2000; Pan-
tazis et al., 2014). These fundamental aspects cannot be
easily resolved by single-channel or whole-cell record-
ings alone, but they can be addressed in combination
with other types of experiments, such as patch-clamp
fluorometry (Chanda and Bezanilla, 2002; Zaydman et
al., 2013; Pantazis et al., 2014).

Optimizing a2 model against multiple types of data is
difficult in itself. A further complication is that some
results—quantitative or qualitative—cannot be added
to the data collection that is used for fitting. The num-
ber of voltage sensors, the existence of open-state block,
and numerical relationships between parameters due
to allosterism, etc., are examples of such results. In-
stead, this prior knowledge about the channel must be
encoded directly into the model. In this way, the model
will explain the new data but will also remain consistent
with what is already known.

How do we introduce prior knowledge into a model?
We present here some strategies for addressing this
issue. At the most basic level, structural assumptions
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Figure 1. Estimating kinetic mecha-
nisms with prior knowledge. A model
can be made to fit experimental data
while also satisfying user-defined con-
straints that establish explicit relation-
ships between model parameters or
that define specific model behaviors.
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Behavioral constraints

about the kinetic mechanism can be stated implicitly
by choosing a specific set of states and connectivity, as
we explain with an example from the literature (Kuo
and Bean, 1994). Further, quantitative or qualitative
assumptions can be introduced by defining a set of
constraints that the model has to satisfy, while also ex-
plaining the new data. These model constraints can
be formulated as explicit mathematical relationships
between rate constants or other model parameters, or
they can specify the behavior of the model under cer-
tain conditions (Fig. 1).

To implement these ideas, we developed new com-
putational tools with a focus on parameter estima-
tion. First, we build upon an existing method for
enforcing linear constraints between rate constants
(Qin et al., 1996; Colquhoun et al., 2004; Milescu
et al., 2005) and extend it to cover arbitrary linear
constraints between model parameters, including
allosteric factors. Furthermore, we provide a new
formalism for handling both equality and inequality
relationships. In the companion article (see Navarro
et al. in this issue), we test a method for implement-
ing behavioral constraints, as well as arbitrary param-
eter relationships, by adding a penalty term to the
cost function of the fitting algorithm. The theory and
computational procedures described here can be
coupled, in principle, to any of the existing methods
for solving molecular kinetics, for ion channels or
other proteins. These concepts can be used not only
to enforce existing knowledge but also to formulate
and test new hypotheses.
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search space and reducing the num-
ber of free parameters. Furthermore,

X, X2 constraints can be used as a mecha-
nism for testing hypotheses against ex-
7 perimental data.

/
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Prior knowledge
and hypotheses

MATERIALS AND METHODS

All the mathematical and computational algorithms
described in this study were implemented and
tested with the freely available MLab edition of the
QuB program.

Theoretical background

Kinetic mechanisms. Ion channel kinetic mechanisms
are well described by Markov models, which reduce the
continuum of molecular conformations that can be as-
sumed by the protein to a small set of discrete states that
can be detected experimentally or inferred statistically
(Colquhoun and Hawkes, 1995a,b; Colquhoun and Sig-
worth, 1995). These states correspond to various con-
formations of functional and structural elements, such
as resting or activated voltage sensors, bound or un-
bound ligands, closed or open pore, and inactivated or
noninactivated channel. Direct transitions are permit-
ted between certain states, and the frequency of these
transitions is quantified by rate constants, which can be
functions of ligand concentration, membrane poten-
tial, tension, or other physical variables. The topology
(or structure) of a kinetic mechanism is defined by the
set of states and their transition connectivity, including
information on which rates are ligand dependent, volt-
age dependent, etc.

Here, we assume that all microscopic rate constants
follow the Eyring formalism (Eq. 1; Eyring, 1935), with
the implication that complexity in kinetic behavior
should be explained with more elaborate state mod-
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els, rather than through over-parameterized and ad
hoc rate constant expressions. Accordingly, voltage-
dependent rate constants are simple exponential func-
tions of voltage:

by =k xeb, (1)

where k; is the rate constant of the transition from state
i to state j, and V is the membrane potential. The k{
value is the rate constant at zero membrane potential,
whereas the kj value is the voltage-sensitivity factor,
which can be expanded as follows:

ko= (8ixzxF)/(RxT), (2)

where z; is the electrical charge moving over the frac-
tion 8; of the electric field, F is Faraday’s constant, R
is the gas constant, and T is the absolute temperature.
For voltage-insensitive rates, k,} = (. Rate constants that
depend on other physical variables, such as membrane
tension, have similar exponential expressions (Gnana-
sambandam et al., 2017). For state transitions that rep-
resent the binding of a ligand, rate constants have the
following expression:

by = K> [L], (3)

where kj is the rate constant at unitary ligand con-
centration [L]. When a model lumps several states to-
gether, some rates become macroscopic and contain a
statistical factor in their expression (e.g., the transition
between C; and Cs in the model shown in Fig. 2 B).
The set of k! and kj values are the main parameters
of the kinetic mechanism. Together, the kinetic param-
eters and the topology of the model fully specify the
mechanism. In turn, the kinetic mechanism describes
the operation of the channel within the membrane,
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Figure 2. Expressing prior knowl-
edge via model topology and pa-
rameter relationships. (A) An example
model that captures the kinetic proper-
ties of neuronal sodium channels (Kuo
and Bean, 1994; Milescu et al., 2010).
ki1 (B) Various assumptions about the

. structural and functional elements of
the channel are contained in the struc-
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connectivity) and in the quantitative
relationships between rate constants.
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voltage-dependent rate constants,
whereas a and b are multiplicative fac-
tors expressing allosteric relationships.
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|11 - |12 and inactivated (I), and open (O) states.

mh

under stationary conditions or in response to stimuli.
Markov models, computational algorithms, and soft-
ware have been adapted and developed to extract the
kinetic mechanism from experimental data (Ball and
Sansom, 1989; Hawkes et al., 1990; Qin et al., 1996,
2000a,b; Venkataramanan and Sigworth, 2002; Celen-
tano and Hawkes, 2004; Qin and Li, 2004; Milescu et
al., 2005; Csanady, 2006; Moffatt, 2007; Stepanyuk et al.,
2011, 2014), with two interrelated aims: to find an appro-
priate topology and to estimate the kinetic parameters.

Formulating the topology of the model. The first step
in building a kinetic model is to identify a particular
topology that defines the structural and functional el-
ements of the channel and their connecting pathways.
The topology can be used to specify the number of
voltage sensors, the identity of voltage-sensitive transi-
tions, the number of inactivated states, the presence of
multiple open states, the existence of allosteric rela-
tionships, etc. The model shown in Fig. 2 B illustrates
how a topology can be formulated to capture the key
features of a Nav channel kinetic mechanism, as de-
tailed in the Results. This model was based on a large
body of knowledge accumulated in the field and, not
surprisingly, has provided a flexible enough frame-
work that explained voltage-clamp recordings of so-
dium currents in several neuronal preparations (Kuo
and Bean, 1994; Raman and Bean, 2001; Taddese and
Bean, 2002; Milescu et al., 2010).

In contrast, when little is known about the channel,
one must take a purely data-driven approach and build
a parsimonious topology that explains the data reason-
ably well. Of course, if one wishes a realistic model, the
Eyring theory and related concepts must still be obeyed.
Some kinetic properties are intuitive enough and can
be easily translated into model features (Salari et al.,
2016). For example, whole-cell recordings in which the
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current first rises and then decays require a model with
one conducting and at least two nonconducting states.
In general, searching for the right topology can be ap-
proached as an iterative process, where one tests a series
of models of increasing complexity, adding more and
more states and connections. For each tested model,
one must determine whether the topology is compati-
ble with the data. If no parameter values can be found
that result in a good fit, the topology must be reformu-
lated and the parameters reestimated. Because larger
models can inherently fit better, one should take into
account the number of degrees of freedom when rank-
ing models. Thus, unless a larger model improves the
fit substantially, one should give preference to a model
with fewer free parameters. The search across topolo-
gies can be terminated when the fit no longer improves.

This model search process is not trivial and relies
heavily on the experience of the investigator. The
number of nonequivalent (Kienker, 1989) connectiv-
ity schemes can be prohibitively large, even for models
with a relatively small state count (Bruno et al., 2005).
A possible solution is to use a smart optimization algo-
rithm that not only estimates parameters for a given
topology but also searches efficiently across topologies
at the same time (Gurkiewicz and Korngreen, 2007;
Menon et al., 2009). Furthermore, one may be able to
reduce the searched state space by using some infor-
mation contained in the data. For example, statistical
analysis of single-channel electrical recordings can pro-
vide reasonable estimates on the number of conduc-
tance levels (through visual inspection or amplitude
histogram analysis) and the minimum number of ki-
netic states in each conductance level (through dwell-
time histogram analysis; Colquhoun and Hawkes, 1982;
Hawkes et al., 1990). Other methods can provide more
direct evidence about the structural conformations and
transition pathways of the channel, such as the number
of voltage sensors, the number of inactivated states, or
the identity of voltage- or ligand-dependent transitions
(Grosman et al., 2000; Ahern et al., 2016). In principle,
an automated search across model topologies can in-
corporate this information.

Parameter estimation. A computational procedure for
finding the “best” parameters for a proposed model to-
pology combines an algorithm that measures how well
a given model explains the data with an optimization
engine that searches the parameter space for the “best”
solution (Fletcher, 2013). This optimal solution mini-
mizes the error between the data and the prediction of
the model (e.g., the sum of square errors) or maxi-
mizes a probability function (e.g., the likelihood that
the experimental data were generated by the model or
the Bayesian posterior probability; Horn and Lange,
1983; Hawkes et al., 1990; Qin et al., 1996, 2000a;
Celentano and Hawkes, 2004; Milescu et al., 2005;
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Csanady, 2006; Moffatt, 2007; Calderhead et al., 2013;
Stepanyuk et al., 2014; Epstein et al., 2016). Intuitively,
the first approach can be described as minimizing a
“cost function,” whereas the second, as maximizing a
“goodness of fit.” Throughout this study, we will use the
"cost function" term, but with the understanding that it
could refer to either minimizing the sum of square er-
rors or, equivalently, minimizing the negative log-likeli-
hood. When one also searches for an appropriate
topology, the value of the cost function can be used as
a score to rank the model. Even though the kinetic
mechanism is fully characterized by the k;;° and k'
parameters, the experimental data typically depend on
some other parameters as well, such as the number of
active ion channels, the single-channel conductance,
and the ionic concentrations. To extract the kinetic
mechanism from the data, these other parameters may
need to be coestimated (Colquhoun et al., 1996; Qin et
al., 2000b; Milescu et al., 2005).

RESULTS

Once a model topology is selected to appropriately ex-
press what is known or hypothesized about the channel,
thus encoding prior knowledge, the next step is to find
a set of parameters that explain the data well. However,
these parameters can also contain prior knowledge. In
fact, the parameter-estimation procedure itself can be
designed to enforce prior knowledge, by making it gen-
erate parameter values that are in agreement with a set
of model constraints. We classify these model constraints
in two categories: (1) parameter constraints, discussed
in this study, and (2) behavioral constraints, discussed
in the companion article (Navarro et al., 2018). A pa-
rameter constraint is formulated as an explicit math-
ematical relationship that involves rate constants or
other model parameters. An example is the scaling of
one rate constant to another or restricting the range of
a parameter to positive values. In contrast, a behavioral
constraint quantifies the behavior of the model under
certain conditions, without explicitly referring to rate
constants or other model parameters. An example is
enforcing the maximum open probability (Py) reached
by the channel during a specific voltage-clamp stimu-
lation protocol.

The mathematical and computational procedures
discussed here for enforcing parameter constraints
are limited to linear relationships. However, nonlin-
ear relationships can be enforced using the mecha-
nism developed for behavioral constraints, presented
in the second part of this study (Navarro etal., 2018).
As illustrated in Fig. 1, linear parameter constraints
that enforce an equality relationship reduce the di-
mensionality of the parameter space, eliminating
one dimension for each relationship. In contrast,
both inequality parameter constraints and behavioral
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constraints preserve dimensionality but reduce the
size of the parameter space. To describe it intuitively,
inequality parameter constraints present the opti-
mizer with a reduced road map, whereas behavioral
constraints guide the optimizer through toll-free
roads only.

Implementing prior knowledge with linear

parameter constraints

In this section, we discuss the implementation of prior
knowledge via linear parameter constraints. To illustrate
this concept, we use the Nav channel kinetic mechanism
shown in Fig. 2 A. We chose this model because it covers
many of the parameter constraints that our formalism
can enforce. The model was originally formulated (Kuo
and Bean, 1994) with several mechanistic assumptions
in mind, which are reflected in the number of states
and connections, and in the mathematical relationships
between various kinetic parameters (Fig. 2 B). These as-
sumptions can be regarded and expressed as parame-
ter constraints.

Model assumptions. The first assumption is that chan-
nel activation involves four identical and independent
voltage sensors, and all four must be activated to open
the pore. Thus, to simplify the kinetic mechanism, all
closed states with the same number n of resting sen-
sors are lumped into a single compound state. The re-
sult is the five-state activation pathway C; ... G;. The
frequency of activation transitions for any of the com-
pound states C; ... C; is equal to n times the frequency
of the activation transition for a single sensor, where n
is a statistical factor. The same rule applies to deactiva-
tion transitions. For example, when the channel re-
sides in a closed state that has three resting voltage
sensors (Co, n=3), the compound activation rate (ko)
is three times the activation rate of a single sensor (ky;
or a,,). Thus, if ks 5 and ke are the microscopic transi-
tion rates of a single sensor activating or deactivating,
respectively, the assumption of identical and indepen-
dent voltage sensors is expressed by the following
mathematical relationships, where one rate is scaled to
another by a constant factor:

ks y = 2 x k4,5, kos 3x k4,5, k1,2 = 4x k4,5,
kS,? = 2Xk2,1’ k4,s = 3><k»z,17 k5,4 = 4><k2,1~

Any deviation from the condition of identical and in-
dependent voltage sensors will require a model with
a different number of states, connections, and statisti-
cal factors along the activation pathway. In fact, these
constant multiplication factors (2, 3, and 4) could
be replaced with unknown cooperativity factors, to
be determined from the experimental data, similar
to the inactivation allosteric factors introduced next.
The same principles apply to ligand-gated ion chan-
nel mechanisms. In this case, the statistical factors can

(4)
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be used to describe the relationships between the li-
gand-binding sites.

Another assumption is that the channel can inac-
tivate not only from the open state Og but also from
any of the C; ... C; closed states into the I5 ... I} inac-
tivated states. However, the transition into inactiva-
tion from the closed states depends on the degree of
activation: as more voltage sensors are activated, the
C to I transitions become faster, whereas the I to C
transitions become slower. As envisioned in the orig-
inal model, this property is implemented with the al-
losteric factors a and b. Thus, the rate of inactivation
from a closed state C, is equal to the rate of inactiva-
tion from the previous closed state C,_;, multiplied
by the a factor. For example, kog = a x ky 7, kg9 = a x
ko g, etc. The opposite is true for the return rates: kg
= b x kyy, ks = b™' x kgo, etc. Taking k,; and k;,
as the reference microscopic rates, this assumption
is expressed by the following mathematical relation-
ships, where one rate is scaled to another by an unde-
termined factor:

kog = ax kg, ko = a2><k1,7, kyto = flstl,%
ks = a*x kiz,  kse = bt x ki1, hos = b7 x ki1,
kg = b2 xkr1, ks = b x k. (5)

Furthermore, the voltage sensors can also activate when
the channel is inactivated, along the I ... I;; pathway,
but with different kinetics. This is also encoded by the
allosteric factors a and b, resulting in another set of sim-
ilar mathematical relationships:

ko = axkygs, koto = axksy, kgo = axkys,
kg = ax ko, 7= 0%k, kg = b x ky,
koo = b7 xkys,  hiio = b7 x ks (6)

Opverall, this allosteric coupling between activation
and inactivation can explain the apparently contra-
dictory findings that inactivation appears strongly
voltage sensitive but only minimal electrical charge
is detected to move within the channel during inac-
tivation (Armstrong and Bezanilla, 1977). Generally,
allosteric factors, such as the a and b quantities in
Eqgs. 5 and 6, are unknown and need to be deter-
mined from the data.

Finally, the last assumption is that the channel sat-
isfies the condition of microscopic reversibility, i.e.,
no energy input is required for gating and opening.
Under this condition, for any reaction loop in the
model, the clockwise product of rates around the
loop must equal the counterclockwise product (Song
and Magleby, 1994; Rothberg and Magleby, 2001; Col-
quhoun et al., 2004). As the model in Fig. 2 A has five
independent loops, the following mathematical rela-
tionships must hold true:
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ko x kyg X kg7 X kg =

ko1 X ko X kyg % ky 7 (forthe G;-Cy-Is-1,-C; loop),
kos x ks g % kog X kg o =

kg x kog % k39 % kog (Ca-Cs-Ig-Ig-Co),

ks 4 % k1o % kiog X kog =

kys % kioa % ko10 % k39 (C3-Cy-T1-19-Cs),

ka5 % ks 1% kipio X Rioa =

ksa % Ryys % Rion % kao (Cy-Cy-111-119-Cy),

ks 5 % ko9 X kig1 X iy =

ko5 % Rigg % Ripig % ks 1y (C5-Og-119-111-Cs).

(7)

Voltage- and ligand-dependent rate constants. Some of
the mathematical relationships used to express parame-
ter constraints may involve rate constants that are func-
tions of membrane potential. Unless otherwise
specified, all these mathematical relationships must be
true for any membrane potential value. For example,
the scaling relationship ks4 = 2 x ky5in Eq. 4 can be ex-
panded as follows:

kgAxexp(k;Ax V) = 9% la?bxexp(kijx V) (8)

A logarithm transformation can be applied to convert
products into sums:

In(k§4) + kax V= In(2) +In(k5) + kis x V. (9)

Rearranging the terms gives the following:

ln(kjg’z;) - ln(k‘?,;)) + Vx (k?%ﬂ - ki,i’)) = 1n(2) (10)

This relationship must be true when V=0, in which case
it simplifies to

In (k) -In(k)5) = In(2). (11)
Using this result in Eq. 10, we obtain the following:
ksa—kis = 0. 12)

Thus, to enforce a scaling relationship between two
voltage-dependent rate constants, the two mathemati-
cal relationships above (Eqgs. 11 and 12) must be simul-
taneously satisfied. The same reasoning can be applied
to other types of constraints. For example, after taking
the logarithm and rearranging the terms, the first loop
balance constraint in Eq. 7 becomes

In(k's) —In( kY1) +1In( Ks) — In( kds)+
In(k§7) —In(k7s) +In( kY1) —In( k7)+ (13)
Vx ( kll,z - k%,l + kle,s - kg,? + kfé] - k71,8 + k7l,1 - k11,7) = 0.

For Eq. 13 to be true, two mathematical relationships
must be simultaneously satisfied:
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In (ko) - In(kSy) +In(ks) — In(kSo)+
ln(kgg) - ln(k%s) + ln(k%l) - ln(k?ﬁ) =0 (14)
and k11,2 - k21,1 + kel,s - kgz + k81,7 - k71,8 + k71,1 - k11,7 = 0.

Some kinetic mechanisms involve state transitions asso-
ciated with the binding of aligand (Grosman etal., 2000;
Burzomato et al., 2004; Akk et al., 2005). For example, a
relationship where one ligand-dependent rate constant
ki is scaled by a constant factor ¢ to another ligand-
dependent rate constant ky can be expanded as follows:

ki?x[L] = exKyx[L] =
ln(ki?)Jrln([L]) = 1n(c)+1n(k1?1)+ln([L]),

(15)

with the final solution:

In(k)) -In(ky) = In(o. (16)

Relationships involving voltage- or ligand-dependent
rate constants have some special restrictions that have a
simple mathematical provenance: (a) if a rate is scaled
to another rate, their voltage sensitivities must be equal
(or trivially zero); thus, a voltage-dependent rate can-
not be scaled to a voltage-independent rate, except for
a single voltage value; (b) if a loop involves only one
voltage-dependent transition, then the forward and
backward voltage-sensitivity factors for that transition
must be equal (or zero); a more typical and useful
scenario would require at least two voltage-dependent
transitions in the loop; and (c) a mathematical rela-
tionship that involves ligand-dependent transitions
cannot be satisfied for all ligand concentrations, unless
the algebraic sum of all the In([L]) terms is equal to
zero. Thus, a ligand-dependent rate cannot be scaled
to a ligand-independent rate, except for a single con-
centration value. In the case of microscopic revers-
ibility, this condition requires that the clockwise and
counterclockwise transitions around the loop involve
the same number of ligand-dependent steps. When
the channel binds multiple types of ligands, each type
must satisfy these conditions. Models formulated with-
out taking these precautions are, in principle, physi-
cally unrealistic.

Allosteric, statistical, and other multiplicative factors.
Multiplicative factors can be introduced in the rate con-
stant equation to formulate macroscopic rates and to
express a variety of parameter constraints. One obvious
application is to implement allosteric model behavior,
as previously discussed, where the a and b factors multi-
ply the rate constant pre-exponential term k. However,
multiplicative factors can also be introduced within the
exponential in Eq. 1. So far, we lumped the voltage sen-
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sitivity as a single factor, kﬁ, but, in fact, we may need to
consider the other quantities in Eq. 2. For example, one
may want to introduce explicit temperature depen-
dence for a rate. In this case, kl} can be factorized by the
following constraint expression:

kaj = ax G, (17)

where a is a multiplicative factor that stands for §; x z;,
and G is a numerical constant equal to F/RT, as in Eq.
2. This approach would make it possible to mix data
collected at different temperatures, in the same way as
we can already account for different voltages or ligand
concentrations.

As another example, one may want to enforce a rela-
tionship between the &; and §; values for a given tran-
sition, such as §; = 1 — §;;. In this case, assuming that z;
and z; are known quantities, we would write the follow-
ing constraint expressions:

ku! = aux G, kj{ = aex G, aq = 1-a, (18)

where a;; and ay, are multiplicative factors that stand for
8;; and §;;, respectively, and C is a numerical constant
equal to zF/RT, where z = z; = z;.

As the multiplicative factors are logarithmically trans-
formed, they are subject to some restrictions. Thus, a
pre-exponential parameter k{ can only be constrained
to an unlimited product of multiplicative factors and
other pre-exponential parameters, each raised to an
arbitrary power:

[

k‘? = (Cx Hk deLXHm,n k«?m > (19)

where C is a positive numerical constant. Taking the
logarithm from k{ will convert this product into a linear
sum. In contrast, an exponential parameter k.} can only
be constrained to an unlimited sum of multiplicative
factors and other exponential parameters, each multi-
plied by an arbitrary numerical constant:

kgl = C+ Zk Ck X ax + Zm,n (:mn X k(#n, (20)

where C is an arbitrary constant. As explained fur-
ther, a given multiplicative factor can only be used as
a pre-exponential-type factor, as in Eq. 19, or as an
exponential-type factor, as in Eq. 20, but not as both
simultaneously.

Inequality constraints. So far, we have only considered
parameter constraints that are formulated as mathe-
matical equalities. However, prior knowledge may
also be expressed through inequality parameter con-
straints. First, there is a physical requirement that all
pre-exponential rate parameters k ;;  must be greater
than zero because transition frequencies are positive
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numbers. Likewise, quantities that multiply rate con-
stants, such as the a and b allosteric factors in Egs. 5
and 6, must also be restricted to positive values in
order to keep rates positive. Both of these constraints
are automatically handled by the logarithm transfor-
mation of variable, as explained further down. In
contrast, the exponential factors kj; ' are in principle
free to take any value in the —co to +oo0 range, but they
can also be restricted by a variety of inequality con-
straints. For example, we may want the voltage sensi-
tivity parameter to be greater than zero for
voltage-sensor activation, and less than zero for
deactivation:

kﬁ > (0 (activation), kj} < 0 (deactivation). (21)

Applying any of these constraints could be a useful
working hypothesis during the initial stages of formu-
lating a model. Subsequently, these constraints could
be relaxed. In reality, the forward and backward values
can both have the same sign: as long as the activation
value is more positive than the deactivation value (kj >
k,f) , the channel will be more activated at more positive
membrane potentials, as is the case with Nav and other
voltage-gated channels.

To give another hypothetical example, we may want the
ratio between two rate constants at a certain membrane
potential V; to be smaller than a numerical constant c:

ki/ka £ ¢ >
[k x exp (ki x Vo)]/ [k < exp(kyx V)] < ¢ =
In( k) —In(k)) + Vox (ki — ki) < Inco. (22)

All of these “<” or “>” inequalities can be converted to
equality relationships by subtracting or adding, respec-
tively, a positive quantity to the right side of the inequal-
ity. For example, in Eq. 22, we can subtract 7%, a quantity
that, by definition, is positive:

In (k) - In(kQ) + Vox (ki — ky) < In(o -2° (23)

As long as the inequality condition in Eq. 23 is satisfied
for z= 0, we can find a value for z that converts the in-
equality into an equality:

In(kf) -In(kG) + Vox (k- ki) = Inco) —2%  (24)
If we want the above ratio between two rate constants to

be smaller than a numerical constant at any voltage V,
not just at V;, then we have

In(k{) —In(ky) + Vx (ki - ki) = In(o -2%  (25)

Because this is an equality, we follow the same logic as
for equality constraints: the above relationship must
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also be true when V=0, and thus, we obtain two simul-
taneous relationships:

In(k)) -In(k}) = In(o) 2%  ki—ky = 0. (26)
For ">" inequalities, we must add 7 to the right side,
rather than subtract it.

In the jargon of optimization theory, zis called a “slack”
variable (Fletcher, 2013). With equality constraints, one
has to find a set of model parameters that satisfy a set of
relationships. When inequalities are added to the model
and transformed into equalities using slack variables,
one has to find both a set of model parameters and a
set of slack variables that together satisfy the constraint
relationships. A slack variable is not a true parameter
of the model, but merely a variable that is temporarily
used to handle inequality constraints during the search
for optimum parameters. Very importantly, the quantity
added or subtracted via slack variables must take posi-
tive values, which is why we use 7 and not z The reason
for converting inequality relationships to equalities is to
have all linear constraints handled by the same linear
algebra mathematical formalism, as explained further.

Model parameters. As discussed in the previous section,
the core parameters of a kinetic model are kfj) and k;!,
together with some optional multiplicative factors ay
that describe allosteric coupling or other properties
(e.g., the a and b allosteric factors in the model shown
in Fig. 2 B) or help parameterizing the rate constants in
more detail. However, other parameters ¢ may also be
added to the modeling framework, depending on the
particular application. These external parameters are
not necessarily present in any of the rate constant ex-
pressions. Instead, they may describe the data or exper-
imental variables. For example, when fitting macroscopic
currents, one may also need to estimate the number of
channels in the record or the single channel conduc-
tance (Milescu et al., 2005). Thus, we define a set K, of
size Nk, which contains all of these model parameters:

K = {k,k,a.q}. (27)

All of these quantities, which we term “rate constant
parameters” (pre-exponential k and exponential k}),
“multiplicative factors” (ay), and “external parameters”
(qi), may be involved in the mathematical relationships
that express parameter constraints, as discussed further.

A general equation for linear parameter constraints. All
the mathematical relationships that were used to imple-
ment the assumptions made for the Nav model in
Fig. 2 A have something in common: regardless of type
(scaling, microscopic reversibility, etc.), each of these
equality and inequality parameter constraints result in
one or two equations involving In(k{), k}, a,, and 2,
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each multiplied by a constant. Although not shown in
these examples, those relationships can also contain ex-
ternal parameters g.. Thus, a general form that covers
all these examples can be written as follows:

i G In (k)] + Zij (G x ki) + X[ Gox flao ]+
DilGxfi(@)] = G (equality) (28)

i G In (k)] + i (G k) + Zi| Gox o]+
M Gxf(q)] = C+Cx2?%  (inequality) (29)

where £ is an invertible function of the multiplicative
factor ay (e.g., ila) = In(a) or film) = &), and £ is
an invertible function of the external model parameter
q.. The C.?, C.}, Gy, G, C, and C, quantities are numerical
constants, with C, = 1 for a “>” inequality, and C, = —1
for a “<” inequality.

Specific parameter constraints (e.g., scaling one rate
constant to another) can be obtained from the general
equation by selecting a subset of In (&), kj, fi(a), and
fi(q1) via nonzero multiplication constants C?, C;}, G,
or G. As discussed throughout the article, a variety of
useful constraints can be implemented using this mech-
anism, such as making a rate equal to a constant, scal-
ing two rates by a constant factor, scaling two rates by a
variable factor, constraining the total charge for a set
of transitions, enforcing microscopic reversibility, con-
straining a reaction loop out of microscopic balance,
restricting a model parameter to a range, expressing ex-
plicit temperature dependence, etc. Some of these con-
straints will require a single mathematical relationship,
whereas others will require two. We note that using mul-
tiplicative factors in constraints generally makes sense
when the same factor is used in multiple relationships.
Otherwise, these factors can be simply calculated after
the parameters are estimated.

Converting between model parameters and free param-
eters. One can easily verify that the model in Fig. 2 B
was parameterized in such a way as to implicitly satisfy
most assumptions: identical and independent voltage
sensors, allosteric coupling of inactivation to activation,
and microscopic reversibility. For example, the condi-
tion of identical and independent voltage sensors is en-
forced by the 4, 3, 2, 1 or 1, 2, 3, 4 statistical factors
multiplying the o, or B, quantities, respectively. In
other words, any values can be assigned to the model
parameters, a’ al, a, b, etc., and the assumptions will
be automatically satisfied. There is only one exception:
the C;—Og-I,9-1;,—-C; reaction loop is not implicitly bal-
anced. In this case, the balance equation (i.e., Oy X Pro
X B X b7 X 0y = B X @' X By X Oy X 0t,) is NOL true by
definition. Instead, it must be enforced by choosing an
appropriate set of numerical values for all the parame-
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ters involved. In contrast, all the other loops are auto-
matically balanced (e.g., 40, x By, x a x By, X b !'xay,= B
X Pr X 40y, x ax o, x b1,

To formulate a parameterization that implicitly satis-
fies all parameter constraints, a commonly used strategy
is to identify a subset of independent model parameters
that can be estimated by the optimization engine and
a subset of dependent parameters that can be simply
derived from the independent ones. This is exactly how
the model in Fig. 2 B was formulated. However, finding
this parameterization is not trivial in some cases (Col-
quhoun et al., 2004). Moreover, it is not clear to us how
constraints that are defined by inequality relationships
would be handled by this type of parameterization. A
potentially easier and certainly more flexible strategy is
to define the constraints as an invertible transformation
f. between the set of interdependent model parameters
K and a set of independent or “free” parameters X:

X = (K), K= fX). (30)

Thus, the model is defined by the K parameters, which
are interdependent and thus cannot take arbitrary val-
ues but only those values that satisfy the user-defined
parameter constraints. In contrast, the X parameters
are independent of each other and are “free” to take
any value in the —co to +oo range. We emphasize that the
X parameters are not simply a subset of K, as explained
in the following paragraphs. These free parameters are
passed to a model-blind optimizer that can search with-
out any constraint in the parameter space defined by
X, where it finds a solution that best explains the data.
This optimal solution can be translated from the free
parameter space back into the model parameter space,
via the f' transformation.

If we want to implement the linear parameter con-
straints defined by Eq. 28 or 29, how do we define the
f; and £ transformations that translate the model pa-
rameters K into the free parameters X and vice versa?
In preparation for this, we need to recognize that the
left side of the generalized Eq. 28 or 29 is nonlinear
with respect to k;? and ay, and perhaps to some external
parameter q. However, we can make the following in-
vertible transformations of variable:

e = In(K), h = expley), b= flw), o
ac = f(d), @ = Ma), a= S ().
If the multiplicative factor ay is an allosteric factor or a
similar quantity that multiplies a rate constant k;, then
fi(a) is In(ay), which is invertible. If a, is a factor that
multiplies a voltage-sensitivity parameter kj, then £ (ay)
is ay, which is obviously invertible as well. Similar logic
applies to the external parameters q;. For example, if g
refers to the number of channels, we can also use the
logarithm transformation (Milescu et al., 2005). In all
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cases, the logarithm has two desirable effects: it restricts
the variables to positive values, and it scales the param-
eters to more similar values relative to each other, help-
ing the optimization engine to find the solution.

We can rewrite the generalized Egs. 28 and 29 with
these transformations of variable:

(G xef) + i ( G x i)+
2i(Gxd) + Xi(Gx ) = C (equality),

T Gxel) + 3 chx ks
S(Gxd) + X(Gx@) = C+Cxz?  (inequality). (33)

(32)

The left side of these equations is now linear with re-
spect to 83, kl}, ¢, and @. Next, we define a vector R, of
dimension Ng, with elements that correspond to 98, 1},
¢, and @;. For a more intuitive notation, we refer to an
element of R as r;, when its type is unspecified, or as 1,
ri}, Iy, or 1, when we emphasize its identity as a specific
type of model parameter (ki(i)’ kl}, ay, or qj, respectively).
R has the same size as K (Ng = Nx). Thus, a parameter
constraint is expressed as a linear relationship between
the elements r; of R, as follows:

YiGxn = C, (equality) (34)
(Gxnr = C+Cxz% (inequali (35)
quality

where C stands for one of the numerical constants C,?,
Cj, Gy, or G, respectively. Then, assuming that we have
N¢ constraint relationships, we can write the general-
ized constraint from Eqs. 34 or 35 in a more compact
matrix form (Qin etal., 1996; Fletcher, 2013), as follows:

MxR =V, (36)

where M is a matrix of dimension N x N, and V is a
vector of dimension N¢. Each row of M corresponds to
the numerical constants on the left side of the gener-
alized Egs. 34 or 35, whereas each element of V rep-
resents the right side of Egs. 34 or 35:

(G (G o (G o (G

(CS)M\, (Ggl)\( v (G N o (G

)
el
. Jl i (O or (C+Cxz%, | -
P (O, or (C* Cx)n)

(O]

7 (R)

Thus, each linear relationship between the € j Ok ij Y

Ok, and @, variables is encoded by row ¢ of matrix M
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and element c of vector V. Eq. 36 encapsulates, in ma-
trix form, all the linear parameter constraints imposed
on the model, including both equality and inequal-
ity relationships.

Although they linearize the constraint relationships,
the transformed model parameters R are still interde-
pendent through the constraint relationships. How do
we remove the interdependence and convert R into the
set of free parameters X? Ignoring, for now, that V is not
a constant vector because it depends (nonlinearly) on
the optional slack variables z, we can take advantage of
the linear form of the matrix equation M x R =V and
express R as a linear function of X (Qin et al., 1996)
and vice versa:

R = AxX+B, (38)
X = A'xR, (39)

where the vector X, of dimension Nx = Nz — N, con-
tains the independent parameters. Note that Eq. 39 is
obtained from X = A™! x (R — B), because A~! multi-
plied by B is equal to a zero vector. The matrix A, of
dimension Ny x N, and the vector B, of dimension N,
can be determined from M and V using the singular
value decomposition (Golub and Reinsch, 1970). First,
M is decomposed as follows:

M = UyxSyxVyT, (40)

where Uy is an orthogonal matrix of dimension N x
Nc, Vi is an orthogonal matrix of dimension Ny x N,
and Sy is a diagonal matrix of dimension Ng x Ny that
contains the singular values of matrix M. Then, A can
be extracted as a submatrix of Vy:

Aiz],...N‘R,j:l....’\fx = VM =1, N, j=Ne.. . N+ (41)

The inverse of the A matrix, A~} is similarly obtained
from Vy!. Because Vy is orthogonal, V'l is simply
equal to Vy transposed (Vu1). Then, B can be calcu-
lated as follows:

B = M'xV, (42)

where the matrix M*, of dimension N x N, is the pseu-
doinverse of M and can be calculated as follows:

M" = VyxSy"x UMT> (43)

where Sy" is obtained from Sy by replacing all nonzero
diagonal elements (the singular values) with their in-
verse. With the A and B matrices obtained as in Egs. 41
and 42, we can now calculate R from K, and then X from
R, and vice versa.
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How do we deal with inequality constraints and slack
variables? We found a solution that is actually quite
simple, although, perhaps, not immediately obvious.
First, we define a vector Z, of dimension N; equal to
the number of inequality constraints. This vector con-
tains all the slack variables, one for each inequality con-
straint. Then, we define another vector X, which is the
union of X and Z:

X = XUZ (44)

The size of X is equal to Nx + N;. The slack variables Z
are arbitrary and thus independent of each other and
of the free parameters X. Hence, the elements of X are
also independent of each other and represent the free
parameters given to the optimizer. Each time the op-
timizer tries a new set of free-parameters X, the corre-
sponding Z is used to recalculate V (Eq. 37), which, in
turn, is used to recalculate B (Eq. 42). The A matrix
remains the same because the coefficient matrix M con-
tains only constants. Thus, we can calculate the trans-
formed model parameters R as follows:

B, = M'xV,, (45)
R = AxX+B,, (46)

where B, and V, are the B and V quantities calculated
for a given vector Z.

During optimization, the slack variables in Z are pro-
vided by the optimizer, together with X. However, Z
must be initialized at the beginning of the optimization
from a given set of transformed model parameters R
and the appropriate relationships in Eq. 37. Let z be
the slack variable introduced by the inequality relation-
ship defined by row c of the constraint matrix M. Then,
z. can be calculated with the following equation:

M. xR = C.+ G, x 22, (47)

where M., is a vector corresponding to row ¢ of M. This
equation has the obvious solution:

% = {(F2=5). (48)

The two-way conversion between the model parameters
K and the free parameters X is summarized in Fig. 3.

Redundant constraints. One should take care to prevent
redundancy and use only the minimum number of
mathematical relationships that are necessary to imple-
ment the assumptions of the model. Intuitively, a con-
straint relationship is redundant if its intended
consequence is already enforced by other relationships.
With our example model, one could use either the scal-
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Model Optimizer

K parameter space X parameter space

1

Calculate transformed model
parameters R

R={inG) ke /@) S @)

Yes

Inequalities?

No Yes

Free parameters X Free parameters X

X=X XuZ=X
|
Update constraint vector V
v,=C.+C, ><zc2

Calculate free Calculate free
parameters X parameters X
X=R X=A"xR
[ |

Yes No Yes

Inequalities?

Calculate transformed Calculate transformed
Calculate slack variables Z model parameters R model parameters R
z=[M.xR-C)C,.T R=X R=AxX+B (B=M"xV)
{ [ I
Calculate free !
parameters X Calculate model

Calculate free
parameters X

X=X X=XUZ parameters K
| | K= xpl) o fy 6o /7).
} T
Optimizer Model

X parameter space K parameter space

Figure 3. Transformations between model parameters and free parameters. The model is defined by a set of interdependent
parameters K, whereas prior knowledge is expressed as a set of linear parameter constraints. K contains pre-exponential and expo-
nential kinetic parameters (kﬂ and k), multiplicative factors (aJ), and external parameters (q). To enable more types of constraints,
K is transformed into R by applying the logarithm or other functions to some of the parameters in K. The linear constraints are re-
duced via the singular value decomposition to obtain a set of free parameters X. Inequality constraints are handled by a set of slack
variables Z. The constraints reduce the number of free parameters in X by one for each mathematical relationship, although each

inequality relationship increases the size of Z by one. An overall set of free parameters X is formed from X (equality constraints only)
or from X and Z (equality and inequality constraints). X is given to the model-blind optimizer to search for an optimal solution, which

can be converted back into a set of model parameters K. (A) Conversion from K to X. (B) Reverse conversion from X to K. These
conversions can be applied to any kinetic mechanism, regardless of the number of states and connections. All the quantities in the
figure are explained in the main text.

ing k;g = a x k; o, or the scaling k;g = 4 x a x ky5, but not
both because that would create an additional relation-

not be duplicated. When in doubt, one could check the
rank of the M matrix, which will be reduced by redun-

ship between k;» and ky5. Similarly, the condition in
which the algebraic sum of the voltage sensitivities
around a reaction loop is equal to zero may already be
enforced by some rate-scaling relationships and should
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dant constraints.

Redundant constraints may also arise from inequali-
ties. Although tempting, using inequality relationships
to enforce a range constraint on a model parameter
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is not possible, unfortunately, because it would result
in two equality relationships that are redundant. How-
ever, this limitation can be overcome through the same
mechanism that handles behavioral constraints (Na-
varro et al., 2018). Furthermore, although inequality
constraints add slack variables to the overall set of free
parameters, the total number of equality and inequality
constraints must still be strictly smaller than the num-
ber of model parameters K.

Calculating the cost function and its gradients. In a typi-
cal scenario, the cost function Fis an explicit function
of the rate constants k; and of some external
model parameters q:

I = j(kﬁ, ¢)- (49)

Typically, F would not depend explicitly on the multi-
plicative factors ai, which are generally used to estab-
lish relationships between other parameters. Because
the model parameters K can be obtained from the free
parameters X, F can also be written as a function of the
free parameters X:

F = f®). (50)

Thus, the optimization algorithm can be model blind.
In other words, even though it eventually generates a set
of optimum model parameters K, it actually searches
for a solution in the space defined by the free param-
eters X. As it searches for the solution, the optimizer
requires the cost function F to be calculated for each
proposed X. The specific expression of the cost func-
tion F depends on the type of application; it could be a
sum of square errors, a likelihood, or a Bayesian poste-
rior probability or it could be a mixture of these expres-
sions, when multiple types of data are bundled together
(e.g., single-channel and whole-cell traces).

The optimizer may also require the gradients of Fwith
respect to the free parameters X, as in the case of gra-
dient descent optimization methods (Fletcher, 2013).
These gradients can be calculated by numerical approx-
imations, but analytical calculations are more accurate
and may actually be faster in some instances. To calculate
the gradient of Fwith respect to a free parameter X, we
have to consider that the rate constants k; are functions
of k{ and k. In turn, k{ is a function of &f. We also have
to consider that g is a function of ¢,. These 83, kl}, and
¢ quantities are entries in the Rvector and, thus, are ex-
plicit functions of a free parameter Xy. To calculate a gra-
dient, we apply the chain differentiation rule, as follows:

OF _ y|3F, (% OK ox, Ok Ok ar
0Xy ok akfj’ 01, 0%y ah.} or, 0%y
ij
F ., O 0% (51)
o 3 " on, a—k]'
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In Eq. 51, 1y, Iy, and 1, are the elements of the R vec-
tor that correspond to e?i, kl}, and @y, respectively. The
0F/0k; and 0F/0q, quantities depend on the specific
application, e.g., the maximum interval likelihood
(Qin et al., 1996) or the maximum point likelihood
of single-channel data (Qin et al., 2000a) or the max-
imum likelihood of macroscopic currents (Milescu et
al., 2005). The other partial derivatives can be calcu-
lated as follows:

O _ ko oK e Ok
F L S

ok
= kixV, a’:i =1. (52)

The dqi/dr, partial derivative depends on the specific
transformation between g and @,, as illustrated in Eq.
53 for the logarithm and identity transformations:
9 .
a—f' = q if ¢ = In(q),
! (53)

dq .
a_r}l,:l if @1 = ¢

Finally, the partial derivative of any r; with respect to
any X, takes the following form:

an e
E)_xk = Gk if Xy € X,
;?; = 9xmix% if ¥ € Zand %", (54)
k
a7 B oo [P “_»
=— = 2x mi.x Xy if X, € Zand “<”.
Bxk ’

where a;, and ;. are elements in the A and M* ma-
trices, respectively. In the last two expressions of Eq.
54, the ¢ subscript is the index of the inequality con-
straint relationship that uses Xy as the slack variable (the
index in V; Eq. 45).

Using all these quantities, the overall analytical deriv-
ative of Fwith respect to X becomes

oFr oF
a_J_Ck = Z‘J[a}ﬁ| k, (amk+ Vank):l‘F

Zl[g—gx ¢ x a,],k] ifx, € X,
% 2 X Xy X

S [ G byx (mit Vi) |+

5 [ ! ifx, € Z, “>”, (55)

X qQ X mf)(]
Z [ X kg x (M, + VX m,t,,)]+
ifx, € Z, “<”

{2 xaxni]

Eq. 55 is for the case of ¢, = In(q). The subscripts m, n,
and p used for the a and m" quantities are equal to the
indices in the R vector that correspond to 88, i}’ and
@y, respectively.
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Calculating the error of the estimates. When estimat-
ing the parameters of a model, it is important to have
a measure of confidence in those estimates. The vari-
ance of a free parameter estimate measures the curva-
ture of the cost function with respect to that parameter.
Intuitively, the variance tells us how much the calcu-
lated prediction of the model will change when the
value of a free parameter %, is changed by a small
amount. We emphasize that this change must be inter-
preted in the context of the specific data used in the
analysis. Thus, parameters estimated with a large vari-
ance are generally poorly determined because of in-
sufficient data, whereas a small variance denotes a
well-defined parameter.

One could calculate the variance of a free param-
eter estimate, Var(x\), from the second-order partial
derivative of the cost function or could use the vari-
ance provided by some optimization engines, as in
the case of the Davidon-Fletcher-Powell optimizer
(Fletcher, 2013). However, when using the parameter
constraints described here, the free parameters X must
be converted back to model parameters K, and some
transformation must be applied to the variance. Thus,
the variance of a model parameter, Var(k;), can be cal-
culated using the following approximation (Qin et al.,
2000a; Milescu et al., 2005):

- Ik \*

Var(k) = zp[vm( %,) X (a—xp> ] (56)
where &, is a free parameter in X. To calculate the vari-
ance for each type of model parameter (k@?, kl}, a, and
qi), we use the chain differentiation rule. For rate con-
stant parameters k{ and kj, we obtain the following:

oy 2
() = 5|« (1 22) |

, (57)
Var( ki) = ZP[VLIT( %,) x (g;i) ]

For pre-exponential and exponential multiplicative fac-
tors a,, we have the following expressions:

2
Var(ay) = Y, [Vm"( Xp) X (ak x%) ]
P
if @y is pre-exponential;
2
Var( @) = Zp [Var( %p) X (%) ] (58)
P

if @y is exponential.

Finally, for external parameters q;, the expression
depends on the transformation function. For the
logarithm and the identity function, we have the follow-
ing expressions:
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Var( q) = ZP[VW( %p) (le;—;})ﬂ

for logarithm transformation;

Var(q) = ZP[V‘"( %)) x (%)2]

for identity transformation.

(59)

In Eqgs. 56, 57, 58, and 59, the partial derivative of r (Ti,(i)’
n}, 1, and 1)) with respect to X, is calculated as in Eq.
54, depending on whether %, is an element of X or a
slack variable in Z.

DISCUSSION

Enforcing prior knowledge when fitting new data is
not trivial, and one reason is that prior knowledge may
take different forms. For example, it can be a linear
mathematical relationship between two sequential,
ligand-binding transitions or it can describe the dy-
namics of the channel during complex episodes of
action-potential firing. The first example could be eas-
ily handled through model parameterization: the in-
dependent parameters are identified by the user and
passed on to a search engine, whereas the remaining
(dependent) parameters are simply derived from the
first set, whenever necessary. However, a more elegant
and flexible solution, in our opinion, is the method
of reduction (Fletcher, 2013), first applied to kinetic
modeling algorithms some 20 years ago (Qin et al.,,
1996, 2000a; Milescu et al., 2005). However, even the
reduction method, despite its reach, is not the univer-
sal solution to enforcing prior knowledge. Although
very powerful, this method is limited to constraints that
can be formulated as explicit linear equality relation-
ships between model parameters. Thus, it cannot han-
dle inequalities, nonlinear relationships, and implicit
constraints that describe a model property or behavior,
such as the maximum open state occupancy during an
action potential.

In this two-part study, we proposed a comprehen-
sive set of mathematical and computational tools that
address all these limitations and greatly expand the
range of prior knowledge that can be enforced. First,
as described in this article, we enhanced the reduction
method to handle both equality and inequality linear
parameter constraints. Furthermore, we expanded the
range of parameters that can be constrained to include
not only rate constant parameters but also allosteric and
other similar factors and external parameters that de-
scribe the data or the experiment. Any relationship be-
tween these parameters can now be enforced, as long as
it is linear. Second, as described in the companion arti-
cle (Navarro et al., 2018), any other types of model con-
straints, such as range constraints, nonlinear parameter
relationships, or model properties and behavior, are
handled by applying a penalty to the cost function. To-
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gether, the reduction method and the penalty method
can handle virtually any type of model constraint that is
likely to be encountered in the field.

The constraining methods described here and in
the companion article are available through the freely
available QuB software, as maintained by our labora-
tory. These methods are also easy to implement by
interested readers. The only high-level mathematical
operation involved is the singular value decomposi-
tion, which is readily available from many free, linear
algebra packages. As illustrated in Fig. 3, the code can
be implemented as a pair of functions: one that con-
verts a set of interdependent model parameters into
a set of free parameters, and a second function that
performs the reverse operation. The first function is
called only once, when the optimization is started, to
initialize the free parameters from the model param-
eters. Any optimization package has one user-custom-
izable callback function that is called each time the
search engine needs the cost function for a given set
of parameters. The function that converts free param-
eters into model parameters can be inserted at the
beginning of this callback function. For interested
users, a step-by-step numerical example is given in the
companion article.
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