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Lipids influence powerfully the function of ion channels and transporters in two well-documented ways. A few
lipids act as bona fide second messengers by binding to specific sites that control channel and transporter gat-
ing. Other lipids act nonspecifically by modifying the physical environment of channels and transporters, in par-
ticular the protein—-membrane interface. In this short review, we first consider lipid signaling from this traditional
viewpoint, highlighting innumerable Journal of General Physiology publications that have contributed to our
present understanding. We then switch to our own emerging view that much important lipid signaling occurs via
the formation of membrane domains that influence the function of channels and transporters within them, pro-

mote selected protein—protein interactions, and control the turnover of surface membrane.

Introduction

Lipids and lipid signaling profoundly impact the func-
tion of ion channels and transporters, and the molecular
mechanisms by which lipids act are now being rapidly
elucidated. More than 50 JGP contributions illustrate
specific regulation of ion channels by phosphoinositides,
both transient regulation caused by phosphoinositide con-
centration changes and constitutive regulation related to
channel localization in membrane compartments with
differing phosphoinositide content. Less specifically,
lipids modify the function of channels and transporters by
modifying local membrane structure and protein—-mem-
brane interfaces. Membrane tension, fluidity, curva-
ture, and asymmetry are subjects of more than 200 JGP
publications. The lipids involved include diacylglycerols,
ceramides, free fatty acids, fatty acid metabolites, lysolip-
ids, and cholesterol. Arachidonic acid is addressed in 26
JGP publications, while cholesterol and anionic lipids
are each addressed in more than 200 JGP articles. An
emerging area of interest is the formation of proteolipid
domains in cell membranes. Diverse studies indicate that
membrane proteins and lipids can form ordered domains
that modify membrane protein function and may catalyze
unique membrane protein interactions, such as concerted
channel gating. Domains initiate as nanoscale proteolipid
aggregates and, upon coalescence, can achieve lifetimes
of up to several seconds. Domains can vesiculate inwardly
as adapter-free endocytosis or outwardly as ectosome shed-
ding, and they may potentially serve as platforms for local
lipid metabolism. Palmitoylation is a common protein
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modification that promotes participation in ordered
domains. Amphipathic compounds, such as lysolip-
ids and detergents, and phospholipids with small head
groups, such as ceramide, can also catalyze domain coales-
cence. A parallel mechanism is that membrane domains
can be formed via membrane cytoskeleton fences that
restrict long-distance lipid diffusion without restricting
local lipid diffusion. Clearly, the development of improved
means to study membrane domains and to test emerging
ideas about their formation will be a major challenge for
membrane physiology in the 21st century.

Lipid signaling is complex

In 1969, a prescient JGP article explicitly raised the
question of how mechanistically the lipid bilayer can
influence membrane protein conformations (Wallach,
1969). The answers were not simple at that time, and
they are not simple now. A few of the physical mecha-
nisms of interest are tabulated in Fig. 1 A. Second mes-
senger functions are exemplified by the regulation of
K channels by phosphatidylinositol (4,5) bisphosphate
(PIP,) as it occurs in sympathetic neurons (Kruse et al.,
2016). Numerous biophysical mechanisms by which the
interface between membrane proteins and the bilayer
can be modified are outlined in recent articles of the
Olaf Andersen group (Lundbaek and Andersen, 1994;
Andersen, 2013; Bruno et al., 2013; Rusinova et al.,
2013, 2015), three of which were published in JGP.
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Figure 1. Mechanisms involved in lipid signaling to ion
channels and transporters. (A and B) A host of biophysical
mechanisms (A) and lipidic messengers (B) are involved in lipid
regulation of membrane proteins. PLCs cleave one signaling
lipid, PIP;, and generate two signaling molecules, IP; and DAG.
Phospholipase Ds (PLDs) and DAG kinases both generate the
signaling molecule, PA. DAG lipases cleave one signaling lipid,
DAG, and generate the cannabinoid 2-AG, whereas FFAs serve
as precursors to many other signaling lipids. PLA, generates
the signaling lipid LPC, as well as FFAs. The acyltransferase
PLA2GA4E generates LPC as it transfers an acyl chain from PC to
PE to form N-aPE, the precursor of anandamide.

Lipids that can influence membrane—protein inter-
faces in all cells including diacylglycerols (DAGs), ce-
ramides, free fatty acids (FFAs), and FFA metabolites,
as well as cholesterol and PIP, (Rusinova et al., 2013).
The complexity grows exponentially with the number
of lipids considered, and it explodes with the realiza-
tion that lipid-metabolizing enzymes simultaneously
generate and deplete multiple bioactive lipids. Fig. 1 B
highlights this principle for PLCs. As example, PLC-
becomes activated when M; muscarinic receptors or
o adrenergic receptors are activated and couple to Gy
proteins (Falkenburger et al., 2013). The PLC-§ activity
controls not one signaling lipid, but a network of lipids,
while it simultaneously generates inositol triphosphate
(IPs) and thereby Ca signals. DAG is generated, PIP; is
depleted, and PIP, depletion potentially depletes phos-
phatidylinositol (3,4,5) trisphosphate (PIPs;; Howes et
al., 2003). It is even suggested that PIP; phosphatase
activity can in certain circumstances promote accumus-
lation of PIP, (Li et al., 2014). Next, DAG is phosphor-
ylated by DAG kinases to generate phosphatidic acid
(PA; Gomez-Cambronero, 2014; Bullen and Soldati-
Favre, 2016), or it is cleaved by DAG lipases to generate
FFAs and arachidonylglycerol (2-AG). All three of the
reaction products are universal signaling lipids (Oka-
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zaki and Saito, 2014), and FFAs are the precursors of ad-
ditional highly active metabolites. The activated forms
of FFAs, long-chain acyl coenzyme As (CoAs), directly
regulate both transporters (Hamming et al., 2008) and
channels (Shumilina et al., 2006), whereas prostaglan-
dins and cannabinoids are agonists at their own specific
receptors (Sang and Chen, 2006). 2-AG is also impli-
cated to regulate A-type K channels by a direct mecha-
nism and thereby control neuronal pacemaking (Gantz
and Bean, 2017).

Expanding still further this complexity, the same
lipid signaling molecule can often be generated by mul-
tiple biochemical pathways. Given that lipids typically
traffic extensively during and subsequent to their syn-
thesis (Blom et al., 2011), this multiplicity may or may
not contribute to compartmentalization of lipid signal-
ing. Whereas 2-AG, as diagrammed in Fig. 1 B, can be
a product of the PLC pathway, cannabinoids are also
generated in other branches of lipid metabolism (Rah-
man et al., 2016). Anandamide synthesis, for example,
can be initiated by the transfer of an acyl chain from
phosphatidylcholine (PC), possibly located in the outer
monolayer, to the head group of a phosphatidylethanol-
amine (PE) in the inner monolayer, via an acyl transfer-
ase (PLA2GA4E) that only recently has been identified
(Ogura et al., 2016). Once again, multiple signaling
molecules are generated. Lysophosphatidylcholines
(LPCs), which are commonly generated by PLA,, are
also generated when the acyl chain of PC is removed
and transferred to the head group of PE, thereby form-
ing N-acyl-PE (N-aPE). The cannabinoid anandamide is
formed subsequently by the cleavage of N-aPE. In this
connection, it is an intriguing question whether this
unusual, three-legged lipid intermediate, N-aPE, might
itself have signaling functions in the cytoplasmic leaflet
of the surface membrane.

A good signaling lipid can be hard to find

Invertebrate vision illustrates very well the complexities
just outlined. The no receptor potential Drosophila
visual mutant, norpA (Paj et al., 1976), characterized
biochemically in a JGP paper in 1978 (Ostroy, 1978),
provided the first very persuasive support, albeit indi-
rect support, for the notion that specific membrane
lipids can act as specific membrane-delimited second
messengers to regulate ion channels. Biochemical
work in the early 1980s revealed that in vision-impaired
norpA mutants, DAG was not being phosphorylated to
generate PA (Yoshioka et al., 1984). Soon, it was clar-
ified that the disrupted enzyme was not a DAG kinase
but rather a PLC (Yoshioka et al., 1985). Subsequently,
the transient receptor potential TRP proteins that me-
diate invertebrate vision were identified (Montell and
Rubin, 1989), and they were determined to be cation
channels that could initiate light responses by depolar-
izing photoreceptor cells in the ommatidium (Montell
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and Rubin, 1989). It remained then only to identify the
second messenger generated by PLC activity.

Ironically, these seminal discoveries did not lead
quickly to the identification of a second messenger that
mediates invertebrate phototransduction. IP; appeared
to be required for Limulus photo responses (Brown et
al., 1984), and it was later verified to be critical in Limu-
Ius in another JGP contribution (Fein, 2003). However,
IP; was eliminated as a possible second messenger in
Drosophila, and interest turned to FFAs generated by
DAG lipases subsequent to PIP, cleavage to DAG (Chyb
et al., 1999). Later, results for DAG kinase mutants
shifted interest to DAG itself (Hardie et al., 2002). How-
ever, the role of DAG in Drosophila phototransduction
became less convincing over the next decade. Recently,
it has been proposed that PIP, depletion within the
membrane, together with acidification that can occur
during PLC activity, underlies the photo response in
Drosophila (Hardie and Juusola, 2015). Given this his-
tory, the field remains unsettled, and there are indeed
good reasons for uncertainty. The functions of TRP
and TRPL channels, although better understood in
Drosophila as a result of contributions to JGP (Saari et
al., 2017), are strongly dependent on the cell type in
which they are expressed, thereby confounding analysis
of their biochemical regulation in expression systems
(Lev et al., 2012). Although regulatory proteins may
play a role, it seems certain that the lipidic environment
is important. Resolution of the remaining open ques-
tions will be challenging, and one possible outcome is
an involvement of multiple lipid messengers.

Multiplicity in lipid signaling

The interconnected nature of lipid signaling and the po-
tential for involvement of multiple signaling lipids, just
highlighted, raise similar problems across the board.
One prevalent example is that PIPy-sensitive transport-
ers and channels are more often than not also affected
by PA or other anionic lipids. Human inwardly rectifying
K channels, for example, have one relatively specific site
for PIP; and another nonspecific site where additional
anionic lipids can bind (Cheng etal., 2011). Therefore,
regulation of DAG kinases and PA hydrolases, as well
as PLGs, becomes physiologically important. PIP; and
PA both have substantial effects on many K, channels,
and the voltage sensitivity of some K, channels is more
affected by PA than PIP, (Hite et al., 2014). Our own
interest in lipid signaling was stimulated by finding that
multiple negatively charged lipids can profoundly acti-
vate cardiac Na/Ca exchange (NCX1) in isolated car-
diac membranes (Hilgemann and Collins, 1992). At
first, it appeared that phosphatidylserine and PA were
the key modulators of Na/Ca exchangers (Hilgemann
and Collins, 1992), butin giant membrane patches, PIP,
unambiguously became the most active anionic lipid in
the presence of ATP (Hilgemann and Ball, 1996). As
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expected, PIP; cleavage in response to activation of M,
muscarinic receptors expressed in cell lines inhibited
NCX1 currents (Yaradanakul et al., 2007).

Disappointing for us, others found that PLC activa-
tion in cell cultures did not inhibit NCX1 activity, mon-
itored as ion flux (Chernysh et al., 2008). Furthermore,
hormones that activate G, signaling and PLCs were
found in some circumstances to activate, rather than in-
hibit, NCX1 activity (Ballard and Schaffer, 1996; Stengl
et al., 1998; Yaradanakul et al., 2007). In the case of
a-adrenergic receptor activation by phenylephrine, an
involvement of PKCs was indicated (Ballard and Schatf-
fer, 1996), although many o-agonist effects in myocytes
do not seem to involve PKCs (Endou et al., 1991). Cer-
tainly, PA is generated during the o; response, both via
the PLC/DAG kinase pathway and via phospholipase Ds
(Singer et al., 1996). Accordingly, PA rather than PIP,
may be the most active lipid messenger at Na/Ca ex-
changers in cardiac myocytes, and the long-term acti-
vation of NCXI1 by Ca elevations (Lu et al., 2016) may
well reflect generation of PA by Ca-dependent DAG ki-
nases (Liu etal., 2016; Boroda et al., 2017). In summary,
and typical for PLC activation in any cell, the response
of cardiac myocytes to PLC- activation involves multi-
ple lipids. PA may act primarily on Na/Ca exchangers,
DAG on TRPC3, and TRPC6 channels (Onohara et al.,
2006), and PIP; on delayed rectifier K channels (Bian
and McDonald, 2007), but it remains possible that mul-
tiple lipids regulate each of these mechanisms.

Beyond the complexity that multiple lipids may reg-
ulate the same targets, individual signaling lipids can
have different functions in different cell types. Table 1
summarizes work from more than 40 JGP contribu-
tions concerning the functions of PIP, in regulating ion
channels. These articles explore a wide range of issues,
from interactions of PIP, with polyamines in the regula-
tion of Kyrp channels, to the specificity of PIP, as a regu-
lator of different K channel types (e.g., Kir verus K,), as
well as very different channel types (ENaC versus HCN
channels), and the potential of PIP, to regulate skele-
tal muscle excitation—contraction coupling. Space does
not permit a detailed review of this work, but many de-
tails are available in review articles compiled previously
(Logothetis and Nilius, 2007; Robertson, 2007). Espe-
cially in neurons, the second messenger function of
PIP; to K, channels has been firmly established (Hughes
et al., 2007; Hernandez et al., 2008b; Hille et al., 2015;
Dai et al., 2016). In other tissues, notably the heart, it
remains more convincing that PIP, usually functions as
a surface membrane marker that constitutively activates
ion channels when they are localized to the cell surface
(Hilgemann et al., 2001).

As usual in biology, the rules are not absolute. It is
described for cardiac atrial myocytes that PIPy-sensi-
tive GIRK channels can desensitize as muscarinic re-
ceptor activation promotes PIP, cleavage (Jan and Jan,
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Table 1. lon channel regulation by PIP,: >40 JGP contributions

Ion channel JGP contributions

Kurp channels

GIRK channels

Multiple inward rectifier (Kir) channels
KCNQ channels

TRPV channels
Hyperpolarization-activated HCN (“Ig”) channels  Pian et al., 2006
Epithelial (ENaC) Na channels Pochynyuk et al., 2007

Koster et al., 1999; Ribalet et al., 2000; Shyng et al., 2000; Cukras et al., 2002; Pratt et al., 2011

Petit-Jacques et al., 1999; Lacin et al., 2017

Lu et al., 2002; Xie et al., 2005; Lee et al., 2016

Suh et al., 2004; Hernandez et al., 2008a,b; Telezhkin et al., 2012; versus other K, channels: Kruse et al., 2012
Lee et al., 2005; Doerner et al., 2011; Ufret-Vincenty et al., 2015

Large conductance Ca-activated (BK) K channels  Vaithianathan et al., 2008; Tian et al., 2015

CNG vertebrate vision channels Dai et al., 2013
TRPC6/7 channels Ttsuki et al., 2014
ELK K channels Lietal, 2015

TRPM3 channels
Skeletal muscle Ca release mechanism Berthier et al., 2015

Ca, channels Park et al., 2017

Badheka et al., 2015; Toth et al., 2015

CNG, cyclic nucleotide-gated; Ca,, voltage-gated Ca; ELK, EAG-like.

2000; Kobrinsky et al., 2000), consistent with a second
messenger function. However, this appears to be spe-
cies-dependent and may not occur in intact cardiac
tissue. In guinea pig atria, for example, muscarinic
receptor activation shortens action potentials rapidly
and monotonically, and the underlying GIRK chan-
nels clearly remain active for many minutes with no
sign of desensitization (Gertjegerdes et al., 1979). This
is indicative of strong G; signaling to activate GIRKs
with only weak G, signaling that might deplete PIPs.
As a second example, HERG (Ikr) K channels in ven-
tricular myocytes can be inactivated by PIP, depletion
and potently reactivated by PIP, (Bian and McDonald,
2007). Nevertheless, their inhibition by Gg-coupled
aj-adrenergic receptors (Bian and McDonald, 2007;
Urrutia et al., 2016) appears to depend more on PKC
activity (Urrutia et al., 2016) than on PIP, depletion.
In this context, many studies show that the affinities
of PIP, binding sites can be regulated by phosphory-
lation and by additional channel modulators (Du et
al., 2004; Rapedius et al., 2005; Li et al., 2011; Zhang
et al., 2014; Chen et al., 2015; Salzer et al., 2017).
Accordingly, PIP, can be switched from being a con-
stitutive, high-affinity channel activator to being a
regulatory second messenger with lower channel affin-
ity whose influence changes with changes of surface
membrane PIP, levels.

That phosphoinositides indeed regulate ion chan-
nels in a membrane compartment—dependent man-
ner is now supported by studies of ion channels in
internal membrane compartments. D3 phosphoinos-
itides, such as PI(3,5)P,, activate TRPML channels
that are localized to lysosomes (Zhang et al., 2012;
Schmiege et al., 2017), where D3 inositides are prev-
alent, whereas PI(4,5)P, is inhibitory (Zhang et al.,,
2012). Similarly, the activity of Na-selective two-pore
channels (TPCs), localized to endolysosomal mem-
branes, requires D3 inositides (Lagostena et al., 2017;
Nguyen et al., 2017).
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Local PIP; signaling

After more than 20 years of electrophysiological PIP,
studies, it remains an open question whether PIP, sig-
naling can occur in a local manner. Superresolution
microscopy has generated conflicting results about PIP,
domains with antibody probes showing PIP, clustering
(Wang and Richards, 2012), whereas less aggressive,
lower-affinity PH domains reveal even distributions of
PIP, with interspersed areas of PIP, sparsity (i et al.,
2015). Findings that tend to support local PIP, signal-
ing in cardiac myocytes, and therefore the presence of
long-lived membrane domains, include the following.
Although global PIP, changes very little with oy-ad-
renergic stimulation (Nasuhoglu et al., 2002), multiple
studies suggest that PIPs-sensitive ion channels can ex-
perience PIP, depletion during a;-receptor activation.
This is the case for volume-activated anion channels that
in myocytes require PIP; for their activation in response
to cell swelling (Ichishima et al., 2010). Activation of
o receptors can block their activation by swelling, and
multiple methods to deplete and enhance PIP, modu-
late this blockade as expected if a;-adrenergic receptor
activation locally depletes PIPs.

More directly, provocative experiments using fluores-
cent phospholipids in cardiac myocytes suggested (a)
that PIP, diffusion is strongly and selectively restricted
by the membrane cytoskeleton of the sarcolemma (Cho
et al.,, 2005a), (b) that this restriction can be readily
disrupted by latrunculin-induced disruption of mem-
brane cytoskeleton (Cho et al., 2005a), (c) that PIP,
restriction by the cytoskeleton enables local signaling
from specific receptors to specific PIPy-sensitive inward
rectifying K channels (Cho et al., 2005b), and (d) that
GIRK channels are specifically localized to caveolae in
which PIP, depletion is very pronounced during acti-
vation of colocalized endothelin receptors (Cui et al.,
2010). That PIP; in caveolae can be regulated in a lo-
calized manner is supported further by an independent
biochemical study showing that activation of aj-adren-
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generates vesicles that follow normal trafficking pathways to endosomes, and the contents of endocytized vesicles can recycle back
into cells (Lariccia et al., 2011). (C) MEND occurs very rapidly in the presence of high-cytoplasmic Ca when the cytoplasm is enriched
with polyamines (e.g., spermidine) or the membrane is enriched with cholesterol. There is no requirement for ATP. (D) Application
of TX-100 at a sublytic concentration induces MEND within a few seconds without significant conductance changes and with no re-
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MEND triggered by Ca influx for 5 s (blue trace) is blocked in the absence of ATP (red trace) but can be restored by perfusion of PIP,
quirement for ATP. (E) Application of ionic detergents, such as SDS, at low concentrations appears to block constitutive endocytosis.
MEND occurs when SDS is washed off, indicating that ordered domains with long lifetimes were formed in the presence of SDS.

(B-E) Tracings of records published in the two JGP articles referenced in this legend.

ergic receptors depletes PIP; in caveolae of myocytes
but not in the bulk of the cardiac sarcolemma (Morris
et al., 2006). Given the potential importance of these
findings for an understanding of PIP, signaling in myo-
cytes, it remains paramount that these conclusions are
addressed by further studies, preferably with additional
methodological approaches. That membrane cytoskel-
eton and/or other membrane-associated proteins can
strongly impede the diffusion of lipids in membranes
is unambiguously established for phagosomes (Go-
lebiewska et al., 2011; Ostrowski et al., 2016) and for
lipid diffusion within the cytoplasmic leaflet of epithe-
lial cells, where tight junctions form a diffusion barrier
between apical and basolateral cell surfaces (van Meer
and Simons, 1986).

Membrane domains as regulators of membrane protein
interactions and function

It has been advocated for decades that the formation
of proteolipid domains within biological membranes
promotes selected protein—protein interactions and
membrane trafficking events (van Meer and Simons,
1988). How, in detail, domains form and regulate these
functions remains controversial. Our group was forced
to think in terms of membrane domains after finding
that cells can internalize large fractions of their surface

JGP Vol. 150, No. 2

membrane without involvement of conventional endo-
cytic proteins (Yaradanakul et al., 2007). Fig. 2 A de-
scribes the progression of massive endocytosis (MEND)
in cartoon form. During these responses, membrane
regions internalize that are more ordered, and there-
fore bind amphipathic compounds poorly. More than
20 amphipaths were analyzed, including detergents,
hydrophobic ions, and fluorescent membrane probes
(Hilgemann and Fine, 2011). Those membrane regions
that are more disordered, and bind amphipaths more
avidly, remain at the cell surface. The capacitance re-
cords typically do not reveal discrete events, indicating
that the vesicles formed are not unusually large. Trig-
gers of MEND include large Ca transients, amphipathic
compounds, membrane protein palmitoylation, sphin-
gomyelinase activities, and metabolic stress.

The JGP review process enabled us to publish a se-
ries of articles describing very large datasets concerning
these endocytic processes (Fine et al., 2011; Hilgemann
and Fine, 2011; Lariccia et al., 2011). At least three
different Ca sensors could eventually be distinguished
(Hilgemann etal., 2013), and MEND could be shown to
occur in several different flavors, some of which are il-
lustrated in Fig. 2 (B-E) using capacitance recording to
monitor surface membrane area in BHK cells. Ca influx
for 5 s via constitutively expressed Na/Ca exchangers
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routinely causes initially an exocytic response that ex-
pands the surface membrane by >30%. After cytoplas-
mic Ca recedes, this response is followed by loss of 50%
of the cell surface over 2 min (blue trace in Fig. 2 A),
and this response was verified optically to be endocyto-
sis rather than ectosomal membrane shedding (Laric-
ciaetal.,, 2011). In the absence of cytoplasmic ATP (red
trace in Fig. 2 A), MEND is blocked but can be rapidly
restored after a Ca transient by perfusing PIP, into cells
(Lariccia et al., 2011). In other circumstances, illus-
trated in Fig. 2 G, MEND occurs with no dependence
on ATP or PIP,, and the rapid progression of MEND
requires the continued presence of a high cytoplasmic
Ca concentration. This type of Ca-activated MEND is
promoted by polyamines, such as spermidine, and by
enhancing the membrane cholesterol content.

The involvement of membrane domains became in-
creasingly likely with indications that conventional en-
docytic proteins, such as clathrin, dynamins, and actin,
were not involved in MEND. As anticipated, reagents
that modify mechanical properties of membranes
(Lundbaek and Andersen, 1994; Lundbzk et al., 2004)
and promote complex membranes to form domains
(Staneva et al., 2005) powerfully induced MEND with
no requirement for ATP and without significant con-
ductance changes. Fig. 2 D illustrates the induction of
MEND by Triton X-100 (TX-100, 120 pM). Like TX-
100, ionic detergents such as SDS can also displace
cholesterol laterally (Carita et al., 2017), and SDS in-
duces MEND at concentrations 10-fold lower than its
critical micelle concentration. These MEND responses,
illustrated in Fig. 2 E, take place with the caveat that
detergent must be removed for MEND to occur. An ex-
planation of this pattern must take into account that
SDS does not cross membranes and has no effect from
the cytoplasmic side in pipette perfusion experiments.
Our suggestion is that, although SDS promotes the
formation of domains that can internalize, the ionized
head groups of SDS molecules also prevent the final fu-
sion of the outer monolayer with itself that must occur
as vesicles pinch off. SDS can be washed off cells much
faster than the membrane can reorganize laterally back
to its “ground” state. Accordingly, domains induced by
SDS must have lifetimes equivalent to the few seconds
over which MEND takes place in these experiments
when SDS is washed off.

The induction of MEND by sphingomyelinases (Zha
et al., 1998; Lariccia et al., 2011) is also implicated to
involve the formation of submicroscopic membrane
phase separations. Equivalent experiments using giant
artificial vesicles demonstrate that ceramides, gener-
ated during sphingomyelin cleavage by sphingomyeli-
nases, associate into domains and catalyze membrane
vesiculation in the direction expected from their in-
verted V shape (Holopainen et al., 2000). A correlate
to this result, described in a provocative JGP article
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(Combs et al., 2013), is that the loss of head group mass
by sphingomyelinase activity causes large hyperpolariz-
ing shifts in the activation of K, channels by decreasing
the energy required for K channel voltage sensors to
move outwardly.

From the different MEND types, delayed ATP/
PIP,-dependent MEND has been studied most exten-
sively up to now. As illustrated in Fig. 3, mitochondria
appear to initiate delayed MEND through a pathway
that uses CoA as a second messenger (Hilgemann et al.,
2013; Lin et al., 2013). In brief, CoA is synthesized on
the outer surface of mitochondria and is then actively
concentrated at least 50-fold into the mitochondrial
matrix (Idell-Wenger et al., 1978; Tahiliani and Neely,
1987) via voltage-dependent transporters (Tahiliani,
1989; Tahiliani et al., 1992), perhaps using a nucleotide
exchange mechanism (Fiermonte et al.,, 2009). The
opening of large-diameter permeability transition pores
(PTPs) in response to Ca or metabolic stress in mito-
chondria releases CoA back into the cytoplasm, where
it initiates a wave of acyl-CoA (aCoA) synthesis via aCoA
synthetase activity (Idell-Wenger et al., 1978; Sepp et al.,
2014). Possibly, aCoA supports domain coalescence via
direct amphipathic effects on the cytoplasmic mono-
layer of the surface membrane. In addition, however,
the aCoA wave supports palmitoylation of membrane
proteins. This clearly requires additional Ca-mediated
“permissive” signals at the surface membrane, whereby
both PKC activation and transient generation of reac-
tive oxygen species can be effective (Hilgemann et al.,
2013; Lin et al., 2013). Functionally, palmitoylation and
PIP, seem to support domain coalescence in a similar
fashion. A possible explanation is that one acyl chain of
PIP,, bound to at the edge of a membrane protein, can
bend laterally and engage in hydrophobic interactions
with neighboring proteins, including the acyl chains of
palmitoylated proteins that protrude similarly.

That Ca can effectively promote endocytosis, as well
as exocytosis, was described insightfully in a 1979 JGP
article analyzing pinocytosis that occurs in Amoeba
proteus (Prusch and Hannafin, 1979). Other types of
Ca-dependent endocytosis that might be related to
delayed MEND are “bulk endocytosis” (Cheung et al.,
2010) and “excess endocytosis” (Engisch and Nowycky,
1998), which occurs in secretory cells. Although recent
work on bulk endocytosis suggests an involvement of
actin and tropomyosin in some secretory cells (Gormal
et al., 2017), Ca-dependent endocytosis that occurs in
rat calyx of Held terminals appears to be rather similar
to Ca-activated MEND (Yue et al., 2017). Ca-activated
endocytosis in astrocytes (Jiang and Chen, 2009) has
very similar characteristics to the fast forms of Ca-acti-
vated MEND (Lariccia et al., 2011).

As portrayed in Fig. 4, the manipulations that lead
to MEND presumably drive small aggregates or clusters
of proteins and lipids to coalesce into larger domains
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that eventually become large enough to form vesicles
(Lingwood and Simons, 2010; Schmid, 2017). During
this progression, increased ordering of the membrane
may enable collective conformational changes of lip-
ids that in turn can mediate functional interactions
between membrane proteins without direct protein—
protein contacts (Sarasij et al., 2007; Garcia-Siez and
Schwille, 2010). Of course, this requires that the pro-
teins involved significantly perturb the bilayer when
they undergo conformational changes. Recent recon-
stitution studies using complex lipid mixtures reveal
that conformational changes of Na/K pumps indeed
significantly affect the bilayer (Bhatia et al., 2016). As
expected if those modifications are significant and can
affect neighboring proteins, Na/K pump activity in
cardiac myocytes appears to impact Na/Ca exchangers
by mechanisms that do not involve Na concentration
changes (Lu and Hilgemann, 2017). In this light, it will
be of great interest to determine how and if membrane
ordering and domain formation may facilitate the con-
certed gating of clusters of voltage-gated ion channels
(Choi, 2014; Moreno et al., 2016) as well as channel
cross talk that can occur between distinct channel types
(Vivas et al., 2017).

Membrane domains mushroom in life-or-

death circumstances

Yeast can survive without clathrin (Lemmon and
Jones, 1987), mammalian cells can survive without
dynamins (Park et al., 2013), and one speculative
explanation is that primitive endocytic processes re-
lated to MEND enable this survival. At least, it seems
reasonable to assume that over the course of evolu-
tion, cells developed complex lipidic membranes be-
fore developing the intricate protein machinery that
underlies classical membrane trafficking. Accord-
ingly, MEND-related endocytic processes might have
been critical for survival of evolving cells, and MEND
might have served as a template upon which more

Growth of Membrane Proteolipid Domains

Size Lifetimes
PIP, synthesis1
Expression of TM proteinsf
5nm <10 ps Palmitoylation of TM proteinsf
Lipase and phospholipase activities
30 nm >1ms —amphipaths that displace cholesterol

Stabilization of transbilayer asymetry
Acetylation or other protein modifications?

180 nm >1s

Figure 3. Proposed molecular basis of delayed palmitoyla-
tion-dependent MEND. Adapted from Hilgemann et al. (2013).
CoA is synthesized on the outer surface of mitochondria and
accumulated to high concentrations in the mitochondrial matrix
via a voltage-dependent nucleotide (X)/CoA exchange mecha-
nism (Fiermonte et al., 2009). CoA is released to the cytoplasm
by transient activation of PTPs when mitochondrial accumulate
Ca and/or generate oxidative stress. A wave of long-chain aCoA
synthesis promotes palmitoylation of surface proteins via the
activity of aCoA transferases (DHHCs), especially via the surface
membrane DHHCS5. PKCs and transient generation of reactive
oxygen species (ROS) appear to play permissive roles for the
palmitoylation of DHHCS substrates, which subsequently accu-
mulate in Lo domains that vesiculate inwardly during MEND.

selective endocytic processes and signaling mecha-
nisms developed. Speculatively, at least, this would
explain why life-or-death metabolic stress appears to
activate MEND. Beside cardiac cells in an ischemic
zone of the myocardium, neoplastic cells within solid
tumors must cope with extreme metabolic stress to
survive (Noman et al., 2015), as do degenerating
neurons with limited mitochondrial function (Pluta
et al., 2013). In solid tumors, MEND-related endocy-
tosis might provide an endocytic flux of nutrients in
parallel with classical pinocytosis (Recouvreux and
Commisso, 2017), whereas in degenerating neurons,
MEND-related endocytosis might propagate cell de-
mise by internalizing deranged proteins (e.g., prions

Figure 4. Potential hierarchy of membrane
domain entities from clusters to vesicles.

Outer monolayer cholesterol/sphingomyelin I Adapted from Lingwood and Simons (2010).

Lo membrane domains begin as aggregates
or clusters of lipids around one to a few
membrane proteins (Schmid, 2017). Lifetimes
of such clusters will in general be in the mi-
crosecond range, although lifetimes of phos-
phoinositides bound to membrane proteins
can be extraordinarily long, namely tens of
seconds (Huang et al., 1998; McKenna and
Ostap, 2009). Clusters can then coalesce to
domains that grow large enough to form ves-

icles and that potentially achieve lifetimes long enough to allow local phosphoinositide metabolism. Assuming that membrane
reorganization, which leads to MEND, indeed reflects growth of membrane domains, coalescence will depend on cholesterol/
sphingomyelin content of the outer monolayer, PIP, synthesis, the expression of transmembrane proteins that can be palmitoylated,
PKC activities that appear to promote palmitoylation, the maintenance of transbilayer phospholipid asymmetry that supports outer
monolayer ordering, and G-protein signaling that controls lipase activities generating MEND-catalyzing amphipathic compounds.
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Figure 5. MEND is a key event in isch-
emia/reperfusion injury. MEND occurs in
cardiac myocytes upon reintroduction of
oxygen after an anoxic episode, in parallel
with a transient activation of Kap channels
and the complete loss of Na/K pump activ-
ity. Capacitance (C,,) and conductance (G,,)
were monitored online via square wave
voltage perturbation (20 mV/3 ms; Wang
and Hilgemann, 2008). The extracellular

solution contained 130 mM Na, and 7 mM
Na was substituted for 7 mM K to activate

Na/K pump currents as indicated. The cy-
toplasmic solution contained 100 mM K,
25 mM Na, and 6 mM MgATP. Results are

consistent with the hypothesis that during reoxygenation, mitochondria generate a cytoplasmic wave of aCoA that activates Karp
channels and that promotes MEND, possibly both via direct amphipathic effects on the sarcolemma and via membrane protein
palmitoylations. Both MEND and Na/K pump inhibition may also be supported by PLA, activities that generate additional am-
phipaths, such as LPC. Conventional endocytic mechanisms might also become involved, as is suggested to occur during ischemia

(Yang et al., 2016).

or amyloid proteins) secreted by neighboring cells
(Stopschinski and Diamond, 2017).

As documented in Fig. 5, the metabolic settings that
support MEND in cardiac myocytes are often also coin-
cident with those that promote Kyrp channel openings,
which underlie ST-segment elevation in the EKG (Long
etal., 2010; Stoller etal., 2010). Fig. 5 presents a routine
recording of these events in an isolated, patch-clamped
murine cardiac myocyte (n > 30). Using standard physi-
ological solutions with 6 mM MgATP included in the pi-
pette solution, myocytes are superfused with thoroughly
Os-depleted solutions for a period of 5 min. During the
anoxic period, membrane conductance and capaci-
tance (i.e., sarcolemma area) are entirely stable. Upon
reintroducing oxygen, however, membrane capacitance
begins to fall within 40 s, and a large outward Kyrp po-
tassium current develops transiently. During the same
time period over which Kyrp current rises and falls, and
over which membrane area decreases by ~18%, Na/K
pump activity decreases to negligible values and re-
mains suppressed for long periods of time.

These results appear fundamental, starting with the
fact that Karp current is activated during reoxygenation
in these protocols, not during anoxia. To explain in
detail this sequence of events, it must eventually be
determined whether ATP becomes depleted as Kyrp
channels activate and whether conventional endocytic
proteins become involved. At this time, however, the
events appear consistent with the pathway outlined in
Fig. 3. When mitochondria are stressed, they initiate
a cytoplasmic aCoA wave that promotes the direct ac-
tivation of Kyrp channels (Shumilina et al., 2006) and
the progression of MEND. Na/K pump activity may be-
come suppressed in part via endocytosis of pumps, in
part via inhibitory effects of palmitoylating Na/K pump
subunits, and in part as a response to additional lipidic
messengers that affect the function of ion channels and
transporters. Bioactive lipids generated in ischemia in-
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clude acylcarnitines (Yamada et al., 1994), FFAs, and
lysolipids (DaTorre et al., 1991). LPC, in particular, has
powerful inhibitory effects at both Kyrp channels (Eddle-
stone, 1995) and Na/K pumps (Oishi et al., 1990).
Other lipidic events that may occur include the fol-
lowing. PIP, may become depleted as a result of mi-
tochondrial Ca release via PTPs with subsequent PLC
activation. PIP, may become depleted if PTP openings
promote reverse ATP synthase activity that results in
ATP depletion. Strong support for the involvement of a
MEND-like process in these events comes from seminal
studies published in the 1970s, as well as recent work:
sarcolemmal membrane particles, which likely reflect
Na/K pumps, were described to aggregate during reper-
fusion injury in 1977 (Ashraf and Halverson, 1977), the
density of Na/K pumps in the cardiac sarcolemma was
described to decrease substantially during reperfusion
injury in 1976 (Beller et al., 1976), and this decrease
was recently shown to be uninfluenced by disruption of
a classical dileucine clathrin endocytosis motif present
in the o subunits of Na/K pumps (Pierre et al., 2011).

The mountains beyond the mountains

In conclusion, lipid signaling regulates ion transporters
and channels much more extensively and powerfully
than was previously envisioned. PIP, is a chameleon
that can act as a second messenger or as a constitutive
activator, and it can be switched between these roles
by classical cell signaling mechanisms. Although PIP,
has received an extraordinary amount of scientific at-
tention, DAGs almost certainly have equally profound
roles at ion channels and transporters. We predict that
new signaling roles for most of the lipids highlighted in
Fig. 1 B will be revealed in the coming few years. The
idea that membrane domains bring proteins together
and thereby promote functionally important protein—
protein interactions is not a new one (van Meer and Si-
mons, 1988). However, the idea of a raft evokes images
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of isolated signaling complexes in a sea of membrane,
not the endocytosis of large fractions of the surface
membrane. Clearly, we are only beginning to under-
stand how membrane domains organize and regulate
important membrane processes. A key challenge will
be to elucidate how the “unconventional” mechanisms
considered here are related to classical signaling and
trafficking mechanisms. JGP is, in our experience, a su-
perb forum within which relevant new studies can be
reviewed, improved, and disseminated to advance this
fast-growing area of membrane physiology.
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