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Action potentials (APs) are the functional units of fast electrical signaling in excitable cells. The upstroke and downstroke
of an AP is generated by the competing and asynchronous action of Na*- and K*-selective voltage-gated conductances.
Although a mixture of voltage-gated channels has been long recognized to contribute to the generation and temporal
characteristics of the AP, understanding how each of these proteins function and are regulated during electrical signaling
remains the subject of intense research. AP properties vary among different cellular types because of the expression
diversity, subcellular location, and modulation of ion channels. These complexities, in addition to the functional coupling
of these proteins by membrane potential, make it challenging to understand the roles of different channels in initiating
and “temporally shaping” the AP. Here, to address this problem, we focus our efforts on finding conditions that allow
reliable AP recordings from Xenopus laevis oocytes coexpressing Na* and K* channels. As a proof of principle, we show
how the expression of a variety of K* channel subtypes can modulate excitability in this minimal model system. This
approach raises the prospect of studies on the modulation of APs by pharmacological or biological means with a controlled

background of Na* and K* channel expression.

Introduction

The action potential (AP) is a self-regenerating electrical sig-
nal and is the basis for long-distance signaling in the nervous
system, skeletal muscles, and the heart. APs are also observed
in plants, where they are thought to control several physio-
logical processes (Choi et al., 2016). The plasma membrane of
living cells is electrically polarized, with an intracellular nega-
tive voltage with respect to the extracellular environment. An
AP consists of a transient change of the membrane potential
toward canceling its electrical polarity (depolarization), fol-
lowed by the establishment of positive intracellular potentials
(polarity reversion or antipolarization) and, subsequently, a
return to the initial negatively polarized state (repolarization).
Based on the seminal work of Hodgkin and Huxley (1939, 1952)
on the squid giant axon, we know that at least two competing
ionic currents are essential for the generation of APs. In gen-
eral, the first current consists of an influx of positive charges,
usually carried by Na* ions, driving a change toward positive
membrane potentials. The second current is mainly carried by
K* ions and flows in the opposite direction through a K*-selec-
tive pathway that is also activated by depolarization. Today, we
know that these pathways are typically embodied in Na*- and
K*-selective voltage-gated (Nay and Ky, respectively) ion chan-
nels (Hille, 2001).

Understanding how specific membrane transport pathways
contribute to AP firing is the subject of considerable research
effort (Bean, 2007). In excitable cells, a rich diversity of volt-
age-gated and non-voltage-gated channels and ion exchangers
shape the AP, determining properties such as AP threshold, dura-
tion, amplitude, and firing frequency (Ballerini et al., 1997; Hille,
2001; Wang and Huang, 2006; Bean, 2007; Jan and Jan, 2012). The
silencing of certain ion channel genes (Macica et al., 2003; Peters
etal., 2005; Speca et al., 2014) or inhibition of specific channels
by toxins or drugs (Bekkers and Delaney, 2001; Pathak et al.,
2016; Hu and Bean, 2018) have been useful subtractive methods
contributing to understanding the role of specific ion channel
pathways in AP firing. Alternatively, an additive approach could
be useful to understanding the role of different channels incor-
porated into a background of the minimal components necessary
for APs. Computational models often use an additive design to
study membrane excitability in silico (Rudy and Silva, 2006;
Marder and Taylor, 2011). To advance this goal in living cells, we
turned to the Xenopus laevis oocyte expression system (Gurdon
etal., 1971) because it is a highly used tool for the study of mem-
brane transport proteins foreign to the amphibian oocyte and
allowed us to select for the simultaneous expression of specific
proteins (Dascal, 1987; Sigel, 1990).
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To date, there are more than 8,000 published works on the
properties of ion channels expressed in Xenopus oocytes describ-
ing various experimental approaches, including techniques such
as two-electrode voltage clamp (TEVC), patch clamp, or cut-open
oocyte voltage clamp. However, investigation of the capacity of
Xenopus oocytes to generate all-or-none APs is only sparsely
addressed in the research literature. The present study explores
a relatively simple and inexpensive adaptation of conventional
TEVC recordings in Xenopus oocytes as an approach to the study
the additive effects of K* channel subtypes on the generation of
APs. We build from prior demonstrations of regenerative APs in
oocytes (Shapiro et al., 2012, 2013; Corbin-Leftwich et al., 2016)
and test the sufficiency of Na* channel expression alone, as well
as the addition of non-voltage-gated and/or voltage-gated K* con-
ductances to document the reliability of AP generation and the
impact of K* channel diversity on APs. Furthermore, we demon-
strate that APs recorded in Xenopus oocytes can induce repetitive
firing. The results are important in their ability to replicate key
features of APs and explore the minimal components needed for
AP generation. This work has wide applications to the study of
APs, including the role of specific ion channel subunits, the im-
pact of ion channel mutations and modulation, pharmacologic
screening of small molecules, and comparative physiology of ion
channels from diverse species. The approach also has educational
value for inquiry-based learning and helps clarify common mis-
conceptions about APs.

Materials and methods

Preparation of oocytes and RNA injections

RNA preparation, Xenopus laevis oocyte isolation and prepa-
ration, and oocyte injection were performed using published
methods (Heler et al., 2013; Corbin-Leftwich et al., 2016). Animal
protocols were approved by Institutional Animal Care and Use
Committees at the University of Richmond, Virginia Common-
wealth University, and the University of the Pacific and conform
to the requirements in the Guide for the Care and Use of Lab-
oratory Animals from the National Academy of Sciences. Some
oocytes were prepared from ovarian lobules purchased from
Xenopus 1, and some oocytes were purchased from EcoCyte Bio-
science. Results from many batches of oocytes were combined.
Each oocyte was injected with 24-46 nl RNA and studied 2-4 d
later. Oocytes were maintained at 14-17°C in a solution of (in mM)
96 NaCl, 2 KCl, 1.8 CaCl,, 1 MgCl,, 5 HEPES, 5 sucrose, and 2.5 Na
pyruvate, pH 7.4, with 50 U/ml penicillin G and 50 pg/ml strep-
tomycin or 25 pg/ml gentamycin.

Electrophysiology
Ionic currents were recorded in two electrode voltage clamp
(TEVC) from oocytes with Warner OC-725B or OC-725C amplifi-
ers using maximum clamp speed and gain (Warner Instruments).
Voltage and current recording pipettes were filled with a filtered
solution containing 1 M KCl, 10 mM EGTA, 10 mM HEPES, pH 7.4.
To obtain AP recordings, we avoided voltage clamping the
oocyte by decreasing the amplifier’s feedback gain (Corbin-
Leftwich et al., 2016). As in many TEVC systems, our amplifiers
consisted of two voltage-clamping circuits. One controls the in-
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tracellular potential, holding it at 0 mV with respect to a refer-
ence (“ground”). The second circuit (“bath clamp”) controls the
extracellular potential, setting it to the negative of the command
voltage (Vemp). Thus, an oocyte is voltage-clamped at -70 mV by
setting the extracellular voltage to +70 mV. Our approach was,
therefore, to make one of these two circuits as inefficient as pos-
sible, without hampering the ability to depolarize the cell. To
achieve this, a simple modification was made. A 50-megaochm
resistor was added between the current (feedback) electrode and
the headstage to decrease the ability of the amplifier to voltage
clamp the interior of the oocytes at 0 mV. To depolarize the mem-
brane, we added a second resistor (10-megaohm) connected in
series to a diode and placed in parallel to the first resistor. The
diode was oriented with the cathode pointing toward the cell
(Fig. 1, A and B). This arrangement allowed us to readily depo-
larize the membrane, but not efficiently repolarize it (Figs. S1
and S3). A switch was added to bypass this circuit, allowing us to
toggle between the “loose” voltage clamp mode for AP recordings
and the traditional TEVC mode for current recordings.

In the loose-clamp mode, we were able to readily depolarize
the membrane (Fig. S2). For AP triggering, brief depolarizing
pulses (0.5-1ms) were used to elicit single APs, and longer dura-
tion stimuli, sometimes in the form of ramps, were used to gen-
erate multiple APs, as noted in the figure legends.

Experiments were conducted at room temperature (20-23°C)
in a recording chamber that was perfused continuously with
a standard 2 K, solution containing (in mM) 2 KCI, 98 NacCl, 2
MgCly, and 5 HEPES, pH 7.4. A10 K, solution (10 KCl with 90 Na or
N-methyl-p-glucamine Cl) was used to study inwardly rectifying
K* (Ky;) currents in voltage clamp (Fig. 4). Alternative solutions
are noted in figure legends. Data were recorded and analyzed
on computers equipped with Digidata 1320A A/D hardware and
Clampex and Clampfit software (Molecular Devices). Data were
sampled at 10-50 kHz and filtered at 1-2 kHz. Some experiments
used a USB-6251 multifunction acquisition board (National In-
struments) controlled by an in-house program coded in LabVIEW
(National Instruments; details available from C.A. Villalba-Galea
upon request). For these, the electrical signals were filtered at
100 kHz, oversampled at 500 kHz to 2 MHz, and stored at 5-25
kHz for offline analysis. All data were transferred to Excel (Mic-
rosoft) and Origin (OriginLab Corp.) for additional analysis and
the production of figures; some data were analyzed using custom
Java-based software (details available from C.A. Villalba-Galea,
upon request). For box-and-whisker plots (Figs. 3 and 4), the ends
of the box are the upper and lower quartiles, and the median is
marked by a horizontal line inside the box. The whiskers are the
maximum and minimum values, and the mean is designated with
asolid data point inside the box. Significant differences in resting
membrane potential (Vgesr) measurements (Fig. 4) were deter-
mined by ANOVA followed by a Tukey-Kramer multiple compar-
isons test. P < 0.05 was considered significant.

Plasmid constructs

Ion channel plasmids used in this study included rat Na,1.4 (a
subunit), rat Na,f1, human K,7.1, human K,7.2, human K,7.3, rat
Ki:2.1, Shaker with fast inactivation-removed (Shaker A6-46,
hereafter ShakerA), rat K,4.2A2-40 (slows inactivation and
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Figure 1. Areliable approach to recording APs in Xenopus oocytes. (A and B) Schematic of the loose-clamp electronics used to measure APs with a TEVC
amplifier. The dashed red box shows the adapted circuitry, which is enlarged in B. Electrical recordings in oocytes injected 2-4 d prior with an RNA mixture
for sodium and potassium channels: 10 ng Na,1.4, 2.5 ng Na,f1, 5 ng K,7.2, 5 ng K,7.3, and 0.6 ng ShakerA. (C) In the loose clamp, 1-ms voltage pulses were
applied to depolarize the membrane. Top: Membrane current produced by the depolarizing stimulus. Bottom: Membrane depolarization. The inset in C shows
a subthreshold depolarization (black trace), and the next pulse stimulated a voltage change that is an all-or-none AP (red trace). (D) For the same RNA mixture
as in C, the APs in oocytes were examined with paired pulses to measure the refractory period. The 1-ms pulses (top) were 16 ms apart for the traces on the
left. The black traces for the pulses were for stimuli of the same amplitude, whereas red traces signify that the second pulse was of greater amplitude than the
first. The corresponding membrane voltage recordings are shown in the bottom left with the same color coding. On the right side, the 1-ms depolarizing pulses
(top) were 9 ms apart. The black traces were for stimuli of the same amplitude, whereas blue traces signify that the second pulse was of greater amplitude. The

corresponding membrane voltage recordings are shown in the bottom right. The second stimulus was increased four times without eliciting an AP.

enhances channel expression), rat K,2.1, and mouse TREK-1
E306A. Mutations or deletions were introduced and confirmed
by published methods (Heler et al., 2013). The mass of each RNA
injected is noted in each figure legend. The Na,f1 subunit was
always coinjected with the Na,a subunit to enhance channel
expression and produce fast Na* channel gating (Makita et al.,
1994; Isom et al., 1995).

Online supplemental material

Figs. S1 and S2 show the performance of the loose TEVC clamp.
Fig. S3 shows how the kinetics of membrane repolarization in
loose TEVC is impacted by an outwardly rectifying, voltage-gated
K* conductance. Fig. S4 shows evidence for a contribution from
native oocyte Cl- conductance to the repolarization of APs. Fig. S5
shows that K;, channels impact Vggsy but not Vg in regulating
AP excitability.
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Results

We expressed Na* and K* channels in Xenopus oocytes to de-
termine the minimal requirements for inducing all-or-none
regenerative electrical activity in the membrane of a large, non-
excitable cell. Fig. 1 shows the loose-clamp electronics used to
measure the APs in oocytes (Fig. 1, A and B) and demonstrates
APs recorded in oocytes with high expression of Na,1.4 (o and B
subunits) and K, currents (Fig. 1 C).

The resistor-diode device described in Methods allowed depo-
larization of the membrane, but not its repolarization (Fig. S1, A
and B; and Fig. S2). Also, the expression of a Ky channel resulted in
arapid repolarization of the membrane after depolarization (Fig.
S1, D and E) with a repolarization rate that was a function of the
depolarizing pulse amplitude (Fig. S3 C). In oocytes expressing
Nay and Ky channels, we were able to elicit APs once a threshold
potential was surpassed by the application of 1-ms depolarizing
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pulses. We attributed the fast upstroke of this electrical response
and the subsequent rapid repolarization to the activity of Nay
and Ky channels, respectively. These APs produced in Xenopus
oocytes expressing Nay and Ky channels had a quick rising phase,
were all or none (see inset to Fig. 1 C), and reached a depolar-
ized potential of approximately +20 mV under the conditions
tested. The repolarizing or decaying phase of the AP was mainly
driven by the large outward current from the ShakerA channels.
We also observed that repolarization of Xenopus oocyte APs was
often followed by an afterhyperpolarization (Fig. 1 C) as long as
K, channels were used in the RNA injection mixture. The same
type of recordings in uninjected oocytes produced electrotonic
responses, displaying only slow, nonundershooting membrane
potential changes (Figs. S1and S3).

APs in Xenopus oocytes also demonstrate refractory periods
(Fig. 1 D). We observed a relative refractory period when a sec-
ond AP could be initiated only after applying a stimulus stronger
than that used to elicit the first AP (Fig. 1 D, left). An absolute
refractory period was determined as the shortest time interval
during which a second AP could not be elicited, despite increases
in stimulus magnitude (Fig. 1 D, right). Thus, the APs in Xenopus
oocytes demonstrate the hallmark features of APs that are critical
to setting the firing rate of excitable cells.

Are Na, channels alone sufficient to produce an AP?

For the generation of an AP, both a depolarizing conductance
and a repolarizing voltage-dependent conductance are thought
to be required. Membrane repolarization was slow but steady in
uninjected oocytes that were depolarized by a step pulse (Fig. S1
B). This result suggests that the expression of Na, channels in oo-
cytes combined with endogenous conductances in oocytes should
produce a transient response, resembling an AP. To test this hy-
pothesis, we injected oocytes with only cRNAs encoding Nay a
and B subunits. Fig. 2 shows that long-lasting, all-or-none depo-
larizing membrane potential changes could be generated with
sufficiently large Na, channel expression (even in the absence of
K* channel RNA in the injection mixture). Similar to uninjected
cells, an oocyte expressing only a small inward Na* current (~1
A at the peak inward current in TEVC; Fig. 2 A, inset) generated
only passive membrane depolarizations (electrotonic potential)
in loose clamp (Fig. 2 A), and cells with low levels of Na* cur-
rent expression failed to trigger an AP (Fig. 2 B). However, for
oocytes with inward Na* currents greater than ~20 pA, APs were
often elicited (Fig. 2, C and D). With the highest expression of
Na* currents measured (~40 pA or more), all-or-none responses
reached a peak depolarization near the Nernst potential for Na*
(approximately +40 mV; Fig. 2 D). We speculate that, given the
large size of the oocytes, a high density of current was required
to overcome the background repolarizing conductances in the
oocyte and depolarize the entire cell.

Another important factor to be considered was the Vggsr. In
the absence of exogenous K* channels, we were able to manipu-
late Vggst by setting Veyp to more negative potentials. Thus, we
used this procedure to study the role of Nay channel modula-
tion by Vggsy in AP triggering because Nay channels are known
to undergo closed-state inactivation, represented as k., in the
equations of Hodgkin and Huxley (1952); see also Armstrong
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(2006). As a consequence, the number of Nay channels that can
be activated increases as the membrane potential becomes more
negative. On the other hand, hyperpolarization also decreases the
rate of activation of channels, as described by Cole and Moore
(1960). Consistent with this idea, we observed that AP trigger-
ing had a bell-shaped dependence on Vgggr (Fig. 2, E and F). In
oocytes showing less than 20 pA of maximum Na* current, AP
triggering was more effective when Vggsy was between -52.6 and
-62.5 mV (Fig. 2 E). In oocytes displaying more than 20 pA, trig-
gering an AP was more effective when Vggst was between -62.6
and -67.5 mV (Fig. 2 F). This small change in the optimal Vigsr
for AP triggering is consistent with a role for Nay channel closed-
state inactivation in cellular excitability.

Note that we routinely recorded ionic currents in the TEVC
mode as a way to estimate the relative magnitude of currents
resulting from the mixtures of ion channel RNAs injected. How-
ever, we are under no illusions that the voltage control in TEVC
was adequate at all test potentials (Baumgartner et al., 1999). To
achieve AP generation and test for the minimal requirements by
continually increasing Na* currents, we conceded this limitation
of TEVC. In sum, to reliably elicit an all-or-none regenerative
change in membrane potential in Xenopus oocytes, the critical
issue is that the estimated peak, inward, voltage-gated Na* cur-
rent must be quite large (=20 pA) and Vggsr must be optimized
for Na, channel availability.

Are non-voltage-gated K* conductances sufficient to

support AP firing?

The ability to generate APs in oocytes in the absence of exoge-
nous K* channel expression indicates that native resting con-
ductances in oocytes are sufficient to repolarize the Nay-only
AP. Furthermore, some of the resting conductances must hyper-
polarize the membrane sufficiently to reset the voltage sensors
of the Na, channels and increase their availability to produce
the all-or-none AP. The hyperpolarizing actions of the Na*/K*
ATPase pump would be of insufficient magnitude to perform
these functions; ouabain inhibition of the pumps in cardiac
muscle induces a membrane depolarization of only 5 mV (Miura
and Rosen, 1978). An alternative explanation is that the oocyte
plasma membrane possesses a sufficient number of its own K*
or Cl- channels, although their contributions cannot be distin-
guished when the expression of foreign channels is very high. We
observed evidence that endogenous Cl- conductances, activated
by the Na,-dependent depolarizations (Sanguinetti et al., 1996;
Weber, 1999), contribute to the repolarization of the AP gener-
ated from Na, channels alone (Fig. S4). In oocytes expressing Na*
currents greater than ~30 p.A, we observed (in five of eight cells)
APs with repolarizing phases that lasted from 390 to 2,970 ms,
and we observed that reduction of external Cl- lengthened the
repolarization phase (Fig. S4). In addition, “leak” K* channels of
the Kyp type are present in Xenopus oocytes (Weber, 1999) and
may also contribute to repolarization.

We tested the impact of experimentally induced K,p channel
expression on Na*-generated APs in Xenopus oocytes in the ab-
sence of exogenous voltage-gated K* channel expression (Fig. 3).
Along with the Na, channels, we coexpressed TREK-1 channels
possessing an E306A mutation so that these Kyp channels would
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Figure 2. Testing for AP generation in oocytes after expression of sodium channel RNA only. Oocytes were injected with 10 ng Na,1.4 and 2.5 ng Na,1
subunits only and recorded 2-4 d postinjection. K* channel RNA was not included. (A-D) Representative membrane potentials recorded from oocytes main-
tained at a membrane voltage of approximately -50 mV, in response to stepwise increases in depolarizing pulses (1 ms) in the loose clamp recording mode.
The insets in each panel show TEVC current recordings (not leak-subtracted) of the estimated maximum inward Na* current recorded for each oocyte: 1 pA
(A), 17 pA (B), 25 pA (C), and 43 pA (D). Voltage and current recordings in A-D are all on the same axis scales, for comparison of amplitudes and kinetics. The
upward current deflections in the insets (A-D) are unsubtracted capacitive artifacts (truncated in B-D). These are representative examples from among a
larger population of oocytes showing variable levels of Na* current expression. (E and F) The probability of firing an all-or-none AP was determined for all
cells injected with Na* channel a and B RNAs only and expressing <20 pA (E) or 220 pA (F) of peak inward current. AP genesis was determined in response
to variable-amplitude 1-ms depolarizing pulses in the loose-clamp mode for Vet values between -42.5 and -72.5 mV (grouped in increments of 5 mV). The
number on each bar represents the number of recordings at each range of Vgest. The dashed lines in E and F designate the maximum probability of firing an AP

for the conditions of low (E) and high (F) Na* current expression.

be constitutively active in the absence of thermal, chemical, or
mechanical stimuli (Honoré et al., 2002), which might simulta-
neously impact Na, or endogenous channels. Notably, oocytes
injected with RNA for Na, channels and only TREK-1K* channels
demonstrated reliable APs (Fig. 3). Compared with oocytes ex-
pressing the slowly activating K,7.2/7.3 channels, the expression
of constitutively active TREK channels resulted in faster APs,
although they lacked an undershoot after membrane repolar-
ization (Fig. 3 A). TREK-1 conductances influenced the duration
of the AP depolarization; as K* current amplitude increased, the
AP half-width decreased (Fig. 3 B). As described previously for
large Na* currents recorded in TEVC, large TREK-1 K* currents
introduced error in the voltage clamp recording, and so the val-
ues reported for TREK-1 current amplitudes (Fig. 3 B, inset; and
Fig. 3 D) are estimates, with the largest values possessing the
greatest error.

Increasing expression of K,p channels also increased the mag-
nitude of the polarization of the Vgesr (Fig. 3 C). Of course, the
oocyte Vggst measured in TEVC is expected to be more depolar-
ized than the true Vygsr because two micropipettes are penetrat-
ing and thus damaging the membrane. Despite this drawback,
under the same conditions of measurement, the impact of Kyp
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channels on Vggsr in Xenopus oocytes is similar to that of volt-
age-gated channels, with K,7.2/7.3 channels used for comparison
(Fig. 3 C). Fig. 3 D plots all of the Vgggr data for oocytes expressing
TREK-1 (from the box plot in Fig. 3 C) so that the relationship be-
tween the variable expression of TREK-1 currents and Vggsy may
be determined. Based on the impact of TREK-1 expression on AP
duration and Vggsr, Kop channels support AP firing by facilitating
Na, channel deactivation and minimizing inactivation, even in
the absence of exogenous K, channels.

Kir channel expression enhances excitability in

Xenopus oocytes

We also studied the impact of K;, channels on AP generation in
oocytes (Fig. 4). We coexpressed Na, channels with ShakerA plus
K;;2.1and used the loose-clamp approach to deliver depolarizing
current ramps, which elicited a series of APs (Fig. 4 A). The APs
eventually ceased because of the cumulative inactivation of Na*
channels. Block of K;, channels by external Ba** (30 or 100 pM)
reduced the latency to fire APs and, sometimes, increased the
number of APs fired during the current ramp (Fig. 4, B-D). This
occurred with a reversible Ba?*-dependent depolarization of the
Vresr (Fig. 4 E). Using TEVC, we confirmed the presence of a
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using 1-ms depolarizing pulses. (B) APs from four different oocytes with low (blue trace) to high (orange trace) expression of TREK currents are shown. Inset:
The half-width of each AP was measured and plotted as a function of the estimated magnitude of the outward TREK current at +35 mV. In the inset, the four
symbols in color (orange, green, pink, and blue) correspond to the traces shown on the left for low to high TREK currents, respectively. (C and D) Vgest was
recorded after penetration of both recording pipettes into oocytes expressing Na, channels with the addition of the K,7.2/7.3 subunits (red) or TREK (blue). Box
plots show 25-75% of the range (the box); the solid square inside the box is the mean Vggsy, and the whiskers depict the maximum and minimum values. The
line within the box represents the median value. Complete data for Vgest measured in cells expressing Na, channels plus TREK (blue box plot) are expanded in
D for individual cells with outward currents ranging from 3 to ~20 pA at a command potential of +35 mV in TEVC.

Ba?*-sensitive K, current in these cells by elevating the external
K* concentration from 2 mM to 10 mM K, (Fig. 4 F). We tested
if the enhanced excitability following Ba?* block of K;, channels
could be explained by a change in threshold (Vryz), but we found
no evidence for this (Fig. S5). These results highlight the exqui-
site sensitivity of AP generation to the difference between Vggsr
and threshold for the all-or-none response.

An additive approach to studying the impact of K, channel
diversity on APs

A diversity of AP waveforms could be achieved using the ex-
pression of different channel types (Fig. 5). When Na, channel
RNA was coinjected with only a K,4-type of K* channel RNA, the
oocyte APs were long and lacked a detectable undershoot after
membrane repolarization (Fig. 5 A). The rapidly activating and
inactivating K,4 channels did not confer a rapid phase of repolar-
ization, and the K* conductance was not sustained long enough
to contribute to an undershoot. However, when Na, channel
RNA was coinjected with only a K,7-type of K* channel RNA, the
oocyte APs were shorter in duration and demonstrated a prom-
inent undershoot after membrane repolarization (Fig. 5, B and
E). By comparison to K4, the more sustained activity of the K,7
channels would be expected to contribute more to the repolar-
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ization and afterhyperpolarization. The combined expression of
K,4 and K,7 types of channels gave rise to an intermediate-du-
ration AP with a prominent undershoot. The kinetics of the K,7
channel seem to dominate over the K,4 channel, perhaps because
the K,4 currents are more transient. Neither K,4 nor K,7 K* cur-
rents, alone nor combined, were sufficient to generate a fast AP
with kinetics similar to neuronal APs. However, coexpression of
Na, channels with ShakerA resulted in fast APs (Fig. 5 D). When
combined with the K,7 type of channels, the impact of ShakerA
predominates and the APs are fast (Fig. 5 F). Importantly, when
studying the additive effects of different K* conductances on AP
properties, the K* channel currents were also observed in TEVC
so that the presence of each current could be confirmed for each
unique RNA. In sum, our results demonstrate the ability to in-
duce diverse APs in oocytes, and future studies could use this
additive approach to study in greater detail the contributions of
different channel types to the AP waveform.

Can oocytes generate repetitive AP firing?

Oocytes had the capacity to generate multiple APs in response
to sustained stimuli, multiple stimuli, or in some cases, no di-
rect stimulus. For example, very high expression of Na, chan-
nels along with very high expression of K* channels could result
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Figure 4. Maintenance of Vggst by inwardly rectifying K* channels regulates AP generation in Xenopus oocytes. Xenopus oocytes were injected with an
RNA mixture of 10 ng Na,1.4, 2.5 ng NavB1, 2.5 ng ShakerA, and 10 or 20 ng K;;2.1 and incubated for 3 d before experiments. (A-E) Loose-clamp AP recordings
were done using a ramp to depolarize the membrane in the absence of Ba?* (2 K, control; A), plus 30 pM Ba?* (B), plus 100 pM Ba?* (C), and upon recovery
from Ba?* block of K;, current by washout with 2 K, (D). The dashed, vertical line in A-D designates the approximate time of onset of the first AP in a ramp
under control conditions. Arrows in A-D designate the value of Vgesr for each recording condition. (E) Comparison of Vgest measured before the current ramp
that elicited APs, recorded as in A-D. The impact of 30 and 100 pM Ba®* was measured (n = 6); significant differences from control values are noted by *. Box
plots show 25-75% of the range (the box); the solid square inside the box is the mean Vgesy, and the whiskers depict the maximum and minimum values. The
line within the box represents the median value. (F) For the same cells as in A-E, the expression of the K;2.1 channel current was observed in TEVC recordings
using a 10 K, solution (black trace) and a voltage ramp to elicit the K* currents. The current-voltage plot shows an example of block of the inward K;, current
by 30 uM Ba?* (blue trace) and 100 uM Ba?* (red trace). The recovery is in 10 K, (gray trace). The inset quantifies the percentage of the 10 K, inward current at

-70 mV that was blocked by 30 or 100 uM Ba?* (n = 6).

in spontaneous APs, as the Vgesr hovered near the membrane’s
threshold for firing (Fig. 6 A). Combinations of K;2.1 plus Shak-
erA (Fig. 6 A) supported spontaneous APs. High expression of K,7
channels could also support spontaneous APs, but with a differ-
ent firing rate (Fig. 6 B). In addition, delivery of a sustained, su-
prathreshold depolarizing pulse from a loose clamp could excite
atrain of APs in oocytes expressing K;;2.1 plus ShakerA (Fig. 6 C).
In sum, AP patterns induced in Xenopus oocytes represent an
emergent property of the expression and interactions of a vari-
ety of ion channel types.

Discussion

The determinant of AP formation is the high expression of volt-
age-gated Na* and K* channelsin a spatially compact and restricted
area such as in the axon initial segment (Kole and Stuart, 2012).
The high expression of Na* and K* channels in Xenopusoocytes af-
firmed these minimal channel requirements for inducing a rapid,
all-or-none, regenerative electrical event. The findings in this
paper extend the work of Shapiro etal. (2012), who demonstrated
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the ability of infrared radiation to depolarize a cell, and of Corbin-
Leftwich et al. (2016), who studied the impact of a K,7 modulator
on cellular excitability. Unique to the present study is the assess-
ment of membrane potentials generated in loose clamp by high
expression of Na, channels (Fig. 2), examination of the role of
non-voltage-gated K* conductances in the genesis of APs (Figs. 3,
4, and S5), demonstration of the diversity of AP waveforms that
can be generated in oocytes (Figs. 5 and 6), and documentation of
reliable methods necessary to achieve the AP recordings (Figs. 1,
S1,S2,and S3). Collectively, these findings provide valuable infor-
mation about the parameters of APs induced in oocytes that can
be used in diverse research and educational settings.

Notably, our study used skeletal muscle Navl.4 a subunits,
because plasmid DNA constructs for neuronal Na, channels are
remarkably unstable in bacterial hosts. However, if methods are
successfully used to prepare neuronal Na, plasmid DNA without
rearrangements or uncontrolled mutations (Feldman and Lossin,
2014), it is reasonable to expect that neuronal Na, channels (e.g.,
Na,L.1, 1.2, and 1.6) could be used to generate APs in oocytes as
well. This remains to be tested in future studies.
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Figure5. Diversity of K, channel expression modifies the oocyte AP waveforms. (A-F) Representative APs evoked in oocytes 3 d after injection with RNA
mixtures for Na,1.4 a (10 ng) and Na,1 (2.5 ng) plus K, channels. The RNAs were mixed to achieve an injection of 20 ng K,4.2A2-40 (A); 2.5 ng K,7.2 and 2.5 ng
K,7.3 (B); 20 ng K,4.2A2-40 plus 2.5 ng K,7.2 and 2.5 ng K,7.3 (C); 0.65 ng ShakerA (D); 5 ng K,7.2 and 5 ng K,7.3 (E); and 0.65 ng ShakerA plus 5 ng K,7.2 and 5
ng K,7.3 (F). In A-F, each set of three membrane voltage recordings shows one response which was just below threshold (blue trace), the first suprathreshold
response (red trace), and a suprathreshold response for which increasingly larger pulses of 1-ms duration failed to change the membrane potential recording
(black trace). A-F use the same voltage and time axes for ease of comparison; the insets in D and F show the faster APs on a different time scale.

In neurons, the axon hillock (Fuortes et al., 1957) and the
axon initial segment (Araki and Otani, 1955) are sites of AP ini-
tiation (Colbert and Johnston, 1996), although this functional
polarization may be a vertebrate specialization (Kole and Stuart,
2012). The unique role of these structures is governed by the
very high expression of voltage-gated Na* and K* channels in a
spatially restricted area. Although there are differences in the
channel density and geometry of the neuronal structures and
the Xenopus oocyte, a requirement for very high expression of
Na* channels is a cornerstone of the present study. The genesis
of all-or-none events that resemble APs in excitable cells re-
quired the coexpression of at least one type of voltage-gated or
non-voltage-gated K* conductance. Indeed, coexpression of the
TREK-1 type of Kyp channels with Na, channels was sufficient to
allow rapid APs (Fig. 3). These results compare favorably with
the conclusions from a mixed computer simulation/biological
experiment in which virtual Na* currents were introduced to
HEK cell patch-clamp recordings with biologically expressed Kyp
channels to assess the ability to fire APs without the introduction
of voltage-gated K* channels (MacKenzie et al., 2015). Although
background K, channels may have been present in the HEK cells,
and the study examined in silico but not biological Na* channels,
Kyp channels generated the hyperpolarized Vygsr needed for APs,
and they contributed to repolarization of the AP (MacKenzie et
al., 2015). Likewise, in cerebellar Purkinje cells, high expression
of Kyp channels supports rapid AP firing (Brickley et al., 2007).
The results of the present study support the hypothesis that the
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minimal requirement for an AP includes a sufficiently large K*
conductance, although it need not be a voltage-activated conduc-
tance. Mechanistically, our results suggest that a K,p conductance
is sufficient to promote the deactivation of Na* channels, at least
for the capability of firing single APs.

K;; channels have a complex relationship with cellular excit-
ability. Neurons with naturally large K, currents tend to have
strongly hyperpolarized Vgesr values (Hibino et al., 2010), which
may suppress excitability (Leao et al., 2012; Li et al., 2013), and
genetic overexpression of K;, channels can be used to silence neu-
ronal electrical activity (Nitabach et al., 2002). Correspondingly,
genetic inhibition of K;;2.1 reduces membrane hyperpolarization
and promotes rhythmic firing in ventricular myocytes (Miake et
al., 2002). The dampening of excitability by K;, channels may
seem paradoxical, because membrane hyperpolarization pro-
motes recovery from inactivation of Na, channels. However,
a membrane that is strongly hyperpolarized at rest may not
generate a large enough depolarization in a spatially restricted
area to engage the regenerative cycle of depolarization and Na*
channel activation, even when Na* channels are available. K;,
channels thus influence cellular excitability not simply by main-
taining a hyperpolarized Vggsy or altering Vryg, but by regulat-
ing the relationship between Vggsr and Na, channel availability
(Figs. 4 and S5).

K;, channel expression promoted spontaneous firing (Fig. 6 A)
and high-frequency firing in response to long current injections
(Fig. 6 C), probably by finely regulating the Na, channel availabil-
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Figure 6. Oocyte recordings may demonstrate multiple APs. 3 d before
AP recordings, oocytes were injected with a mixture of 10 ng Na,1.4 a and 2.5
ng Na,1.4 B plus coexpressing K* channel RNAs, as noted. (A) Spontaneous
APs in oocytes coexpressing ShakerA (0.65 ng RNA) and K;, 2.1 (10 ng RNA).
This is representative of four similar recordings from oocytes injected with the
same mixture of RNAs. (B) Oscillatory APs were also spontaneously evoked in
oocytes coexpressing Kv7.1(2.5 ng RNA). This is representative of five similar
recordings from oocytes injected with the same mixture of RNAs. (C) High-fre-
quency AP firing in oocytes coexpressing ShakerA (0.65 ng RNA injected) and
K- 2.1(10 ng) generated by a 1-s suprathreshold depolarizing stimulus applied
from a loose clamp. Representative of four cells.

ity. Indeed, other mechanisms that allowed the membrane po-
tential to hover near threshold while also maintaining sufficient
Na, channel availability for AP firing could reveal excitability in
the oocyte membrane; even K,7 channels could support sponta-
neous firing (Fig. 6 B). Correspondingly, we observed that in oo-
cytes with a high expression of Na, channels and the capability
of generating APs, we could prevent AP generation by artificially
hyperpolarizing the membrane in the loose-clamp recordings.
Together, these experiments in oocytes help us understand how
K, channels influence the dynamic relationship between Na,
channel availability and Vggsy, with significant impact on cellu-
lar excitability.

We have shown that AP generation in Xenopus oocytes pro-
vides a way to additively change an AP waveform in living cells
and study the role of different channels on AP diversity (Yue
and Yaari, 2004; Bean, 2007; Larsson, 2013). Such an approach
could be particularly useful in reconstituting APs from ion chan-
nels cloned from invertebrates in which recording from neural
tissue is challenging or using channels from unicellular organ-
isms such as diatoms or algal cells. Other specific applications
include investigating the role of accessory subunits for many
of the channels (Patton et al., 1994), RNA editing (Patton et al.,
1997; Garrett and Rosenthal, 2012), glycosylation (Johnson and
Bennett, 2008), or disease-causing, gain-of-function mutations
in ion channels (Lossin et al., 2012; Cannon, 2015; Dell'Orco et
al., 2017). Especially useful would be the expression of mutations
in accessory subunits whose influences are difficult to predict.
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An example is the C121W mutation in a neuronal Na, B1 subunit,
which is associated with a form of epilepsy (Wallace et al., 1998).
Additional applications of this approach are to test hypotheses
about the impact of drugs and modulators on AP waveforms
(Corbin-Leftwich et al., 2016) using controlled combinations of
channel RNAs. Perhaps researchers may also be able to induce
propagated APs in gap junction-associated oocytes (Swenson et
al., 1989) or stimulate APs in oocytes using channelrhodopsins or
ligand-gated channels.

When adding different ionic conductances to the model sys-
tem, the ease of repeatedly switching between voltage clamp
and AP recording makes it possible to assess relative magnitudes
of ionic currents and membrane potential changes. However,
precise measurements of the kinetics and amplitudes of ionic
current recordings are compromised by space clamp artifacts
(Baumgartner et al., 1999). The key adaptation of the TEVC
method that is needed for AP recordings in oocytes is to weaken
the voltage clamp so that the membrane potential changes as a
function of the ionic currents. Thus, the approach described here
is best considered as an AP recording method; requirements for
simultaneous voltage clamp recordings of time- and voltage-de-
pendent currents should be used only to confirm that certain
channel types are functional and to estimate expression levels.
A second limitation is in studying the role of calcium-dependent
conductances on AP firing, due to the presence of endogenous
Ca?*-activated Cl- conductances in the oocyte (Weber, 1999). Ad-
ditional limitations of the oocyte expression system or any other
in vitro expression system are not restricted to the loose-clamp
method of AP recording. Despite these limitations, the model has
identified research applications and remains open to the possi-
bility of future, creative adaptations as well.

An unexpected benefit that we experienced in exploring this
AP model is the facilitation of student learning about the prop-
erties of APs. Undergraduate and graduate students alike benefit
from the hands-on recording and analysis of APs, an experience
that is not tractable for many students when using cultured cells
orbrain slices and patch-clamp methods. The approach offers the
enjoyment of interacting with the data in real time and in aliving
cell; the ability to use the model for hypothesis-testing promotes
inquiry-based learning, which deepens understanding and in-
creases knowledge retention (Kober, 2015; Waldrop, 2015). The
minimal AP model can certainly help to clarify common miscon-
ceptions about APs. For example, students, faculty, and research-
ers alike often believe that the value of -50 or -55 mV (as shown
in textbooks) is the value of “threshold” in all cells. This minimal
AP model, therefore, could certainly help investigators recognize
the impact of ion channel composition and resting potential on
threshold and appreciate that it is neither a set value for every
excitable cell nor invariable in an individual cell. Academics also
often believe that all neurons fire APs. The present approach helps
students formulate their own explanation for why certain neu-
rons do not show spiking behavior in native systems (Bufleretal.,
1992; Baden et al., 2013) and what is distinctive about an excitable
membrane. This helps encourage discussion and understanding
about how channel localization and clustering may affect AP fir-
ing and facilitates appreciation for the structure and function of
the axon hillock, initial segments, and nodes of Ranvier.
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In conclusion, this work demonstrates reliable, useful, and
simple approaches to induce APs in Xenopus oocytes with many
applications for research and teaching.
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