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|dentifiability, reducibility, and adaptability in allosteric macromolecules
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The ability of macromolecules to transduce stimulus information at one site into conformational changes at a
distant site, termed “allostery,” is vital for cellular signaling. Here, we propose a link between the sensitivity
of allosteric macromolecules to their underlying biophysical parameters, the interrelationships between these
parameters, and macromolecular adaptability. We demonstrate that the parameters of a canonical model
of the mSlo large-conductance Ca?*-activated K* (BK) ion channel are non-identifiable with respect to the
equilibrium open probability-voltage relationship, a common functional assay. We construct a reduced model
with emergent parameters that are identifiable and expressed as combinations of the original mechanistic
parameters. These emergent parameters indicate which coordinated changes in mechanistic parameters can
leave assay output unchanged. We predict that these coordinated changes are used by allosteric macromol-
ecules to adapt, and we demonstrate how this prediction can be tested experimentally. We show that these
predicted parameter compensations are used in the first reported allosteric phenomena: the Bohr effect, by

which hemoglobin adapts to varying pH.

INTRODUCTION

Cellular signaling relies on macromolecules to trans-
duce stimuli information into conformational changes
(Changeux and Edelstein, 2005). The mechanisms by
which macromolecules accomplish this feat are often
allosteric: a small stimulus applied at one area of the
macromolecule regulates behavior at locations struc-
turally distant from the active site of stimulation. A
detailed and mechanistic understanding of allosteric
regulation is a major goal of biophysics (Changeux,
2012, 2013). The Monod-Wyman-Changeux (MWC)
model, which provides a physical-chemical interpreta-
tion of indirect regulation in terms of the geometry
of the regulatory molecule (Monod et al., 1963, 1965;
Marzen et al., 2013), has emerged as an essential tool
in this effort. Operationally, any given MWC model
represents a candidate hypothesis for how allosteric
conformational change occurs. If a model is not able
to quantitatively fit available data, it is rejected. For
models that agree with the data, the model parameter
values provide estimates of biophysically meaningful
properties that cannot be measured directly. Tre-
mendous effort has gone toward determining which
mechanistically relevant parameters best fit available
macromolecular data (Colquhoun and Hawkes, 1982,
1995; Horn and Lange, 1983; Blatz and Magleby, 1986;
Ball and Sansom, 1989; Kienker, 1989; Ball and Rice,
1992; Colquhoun and Sigworth, 1995; Qin et al., 1996,
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2000; Colquhoun et al., 2003; Celentano and Hawkes,
2004; Milescu et al., 2005; Moffatt, 2007). However,
it has recently been observed that even simple MWC
models suffer from parameter non-identifiability: the
data in commonly used activity (or binding) curves
do not provide sufficient constraining power to find
unique values of the parameters, even if essentially
noiseless (Hines et al., 2014; Middendorf and Al-
drich, 2017a,b).

Essentially all work on parameter estimation in MWC
models has treated non-identifiability as a hurdle to be
overcome toward the estimation of individual MWC
parameter values, which clearly confer mechanistically
meaningful information about the macromolecule
under study. Here, we argue that valuable mechanistic
information may be lost by focusing on individual pa-
rameter values. We demonstrate that non-identifiable
datasets admit identifiable “emergent” parameters and
argue that these emergent parameters confer mecha-
nistic information about macromolecular function not
available from individual parameter values themselves,
no matter how accurate.

We begin by studying the causes of parameter
non-identifiability in a canonical MWC model of the
mSlo large-conductance Ca**-activated K* (BK) ion
channel (Horrigan and Aldrich, 2002; Yan and Al-
drich, 2010), with respect to two common assays of
functional activity. The non-identifiability is shown

© 2017 Bohner and Venkataraman This article is distributed under the terms of an
Attribution-Noncommercial-Share Alike-No Mirror Sites license for the first six months
after the publication date (see http://www.rupress.org/terms/). After six months it is
available under a Creative Commons License (Attribution-Noncommercial-Share Alike 4.0
International license, as described at https://creativecommons.org/licenses/by-nc-sa/4.0/).

547

920z Arenuged 20 uo1senb Aq 4pd-1G/11910Z dbl/ze0.26.1/.15/G/6v L /4pd-8jonie/dbl/Bio sseidny//:dpy wouy pepeojumoq


http://crossmark.crossref.org/dialog/?doi=10.1085/jgp.201611751&domain=pdf
http://www.rupress.org/terms/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://rup-jps.ejpress.com/cgi-bin/prod.plex?jps_action=email_person_display&to_email=gaurav@alumni.reed.edu&to_p_id=18589

to arise because the parameters compensate for
each other to produce similar model output, rather
than because the model contains irrelevant param-
eters. In particular, we demonstrate that observed
parameter non-identifiability is caused by “sloppy”
sensitivity of parameters to model output: the model
output is highly sensitive to particular nonlinear
combinations of parameters and essentially insensi-
tive to others (Brown and Sethna, 2003; Waterfall et
al., 2006; Gutenkunst et al., 2007; Transtrum et al.,
2010, 2011, 2015).

We address the issue of parameter non-identifiability
by constructing “reduced” models of the channel for
each of the two functional assays, using the recently
developed manifold boundary approximation method
(MBAM; Transtrum and Qiu, 2014; Transtrum, 2016
Preprint). Each reduced model has fewer parameters
than the original model but describe its functional data
equally well. Crucially, the parameters of these reduced
models are (a) identifiable with respect to the model
output and (b) explicitly expressed as emergent combi-
nations of the original MWC parameters. Our reduced
models therefore allow for quantitative estimates of
biophysically relevant parameters, despite individual
parameter non-identifiability.

The emergent parameters of our reduced models
indicate which coordinated changes in biophysical
parameters may preserve assay output. We therefore
interpret our reduced models as predictions encoded
in the original MWC model. These predictions confer
information about the robustness of a macromole-
cule’s underlying biophysical parameters with respect
to a functional output. We claim that these predictions
have physiological and evolutionary relevance, so long
as the model is mechanistically relevant and the func-
tional assay adequately captures the macromolecule’s
in vivo function.

It is difficult to determine confidently that any given
assay or set of assays captures a macromolecule’s in vivo
behavior. Here, we choose to study equilibrium bind-
ing curves, thereby adopting the hypothesis that the in
vivo purpose of a macromolecule is to act as a biologi-
cal sensor that takes stimuli information as input and
produces equilibrium activity as output; this hypothesis
is common in information-theoretical studies of MWC
models (Tkacik et al., 2008; Martins and Swain, 2011;
Olsman and Goentoro, 2016).

Ultimately, the relevance of our predicted parameter
compensations, and thereby our assay choice, must be
determined experimentally. To this end, we demon-
strate that a previous meta-analysis of hemoglobin
oxygen-binding curves confirms the physiological rel-
evance of parameter compensations in hemoglobin’s
adaptation to varying pH, referred to as the Bohr effect
and known to be important for the efficient transporta-
tion of oxygen through blood in vivo.
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MATERIALS AND METHODS

The full code used to generate the synthetic data and
all analyses is available on GitHub: https://github.com
/gbohner/MBAM.

Synthetic data generation

Our model takes as input N voltage and calcium pairs
as an array X, and an M x 1 vector of parameters 0.
The output of the model is an N x 1 vector of open
probabilities y. We represent the model as the func-
tion f(0,X) =y, defined as in the text. Our “base”
parameters 0% (Fig. 2 B) were chosen to match pre-
vious studies (Horrigan and Aldrich, 2002; Miranda
etal., 2013).

Fitting noisy data
Given a 0 to be estimated, noisy data y’ were generated
from mode f(0,X) via

y'= f(0,X) O e(0),

where €(o) is drawn from the distribution Uniform([1
— 0, 1 + c]). Additive and multiplicative Gaussian noise
models were also tested.

We then used the Levenberg-Marquardt solver
(Marquardt, 1963) to infer the best-fit parameters 0’=
argming € (0,y’), where €(0,y’) = €|/(0,X) —-y’|| is
the norm of the discrepancy between data and model
output. Each fit was performed from 24 different initial
parameter vectors, from which the global best-fit pa-
rameters were selected.

Computing relative parameter error

Y, a lower bound on the relative size of the 95% con-
fidence interval for the i-th parameter, was calculated
(Gutenkunst et al., 2007; Apgar et al., 2010):

\ 1/2
X = exp<4>< (GT\; (Hél)z,l) >7 1,

where

__ &
H, = dlog®® €(0.y).

The log Hessian Hy is used to estimate the widths of
the constant cost ellipsoid (Fig. 3 B), and the diagonal
elements of its inverse are used to place a lower bound
on individual relative parameter errors, Z;. For all of our
calculations, N=104 and 6 = 10%.

MBAM

MBAM attempts to reduce the number of parameters in
a model while quantitatively fitting a given dataset. This
is accomplished by reducing the number of parameters
in a model one at a time. Each single parameter reduc-
tion is the result of eliminating or combining diverging
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parameters. These diverging parameters are found by
searching through parameter space along a trajectory
that minimizes the effect on model output. Such a tra-
jectory is found by solving the following system of ordi-
nary differential equations,

%ot =V

V;FH(,’V,

lIvell*”

where ¢ denotes time spent following the trajectory,
Hj, refers to the log Hessian evaluated at 0, as defined
above, r, = f(0,X) - f(0*,X) is the vector of output
discrepancies for all inputs, and V denotes the vector
gradient operation with respect to the parameters.

The initial parameter vector 0, is taken to be the vec-
tor of presumed best-fit parameters 0, = 6%, and the
initial direction vector (v,) is set to be the sloppiest
direction of the constant cost ellipsoid. These initial
conditions enforce that our search begins at the lowest
point of our cost surface (6,) and that we initially move
in the direction that goes uphill as little as possible (v;).
This trajectory is followed until the diverging parame-
ters are found (0, ), or the cost becomes so large that
the parameters no longer fit the data. The reader is re-
ferred to Transtrum (2016) (Preprint) and Transtrum
and Qiu (2014, 2016) for full details.

420, = [(Vr) (Vr) ] (r)

Online supplemental material
Our supplemental text contains full algebraic details of
the MBAM reductions presented in the paper. Fig. S1
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Figure 1. Synthetic steady-state data.
(A) Schematic of the general allosteric
gating mechanism used to gener-
ate synthetic data. Subscripts denote
the number of identical subunits. The
steady-state properties of this model
are fully described by eight parameters
{Lo, Z, JO, Z, KD, C, D, E} (B and C) PD
— Vand log(P,) — V relationships gen-
erated from base parameters (Fig. 2 B)
for different Ca?* concentrations (uM: 0
[blue circles]; 0.7 [red boxes]; 4 [brown
crossed circles]; 12 [asterisks]; 22 [blue
diamonds]; 55 [red circles]; 70 [brown
boxes; 95 [gray crossed circles]). For
each Ca®', voltage was sampled uni-
formly in 25-mV intervals.

|
200
V(mV)

shows RMS cost for each reduced model. Fig. S2 shows
how parameter compensations explain the discrepancy
between true and inferred values. Fig. S3 shows inferred
parameters from the reduced log(P,) model.

RESULTS

The BK channel primarily senses two stimulus signals:
membrane voltage and intracellular Ca* concentration
(Horrigan and Aldrich, 2002; Latorre and Brauchi,
2006; Yan and Aldrich, 2010; Miranda et al., 2013). In
response to these signals, BK opens its channel gate,
allowing potassium ions to permeate. We consider a
canonical model of BK gating (Horrigan and Aldrich,
2002; Yan and Aldrich, 2010), shown schematically in
Fig. 1 A. The model consists of three functional do-
mains: the channel gate, voltage-sensing domain, and
Ca®-sensing domain. The channel gate is regulated by
four identical and independent voltage and Ca*" sen-
sors. Consistent with the MWC framework, each do-
main can be in one of two conformations: C-O, R-A,
X-X - Ca* for the gate, voltage, and Ca** subunits, re-
spectively. The function of each domain is defined by
an equilibrium constant (L, J, K), and the coupling be-
tween domains is mediated by allosteric factors (C, D,
E). Formally, the model is given by

PV, [Ca®]) =
L(1+KC+ JD+ JKCDE)* (1
L(1+KC+ D+ JKCDE)*+ (1+ ]+ K+ JKE)¥
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Figure 2. An illustration of non-iden-
tifiability. (A) Data generated with base
parameters, well fit with fit parameters.

9 Base Fit Error bars are 10% from noiseless data
Lo|2.2x107%(7.7x 10737 value. Data are labeled as in Fig. 1. (B)
| 042 8.8x 10-3 P;ramete(;s |’;chat l%eFerate:i tf;]e da'Fa
I 0.10 0.066 (base) and the solid lines (fit) s own in
) A. z. and z; are in units of e, Kp is in
2yl 0.58 0.59 units of M; the other parameters are di-
Kp|3.9%x 1075 [2.7x 1073 mensionless. (C and D) Log of fitted Ly,
cl 616 1.7 108 D (rgspectively) values to 100 noisy syn-
| | | Bl apa 5 4 1 thetic P, datasets generated from base
-100 0 200 W parameter values. Values span many
V(mV) E 2.0 4.5% 10 orders of magnitude. The horizontal
spread is for ease of visualization; red
C D lines indicate the true base parameter.
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with equilibrium constants (], K, L) given by

L= loexp<7zfllv>;] = ﬁ)eXP(%}/); K= %’

where z;, and z are the partial charges associated with
channel opening and voltage sensor activation, re-
spectively. Synthetic data generated from this model is
shown in Fig. 1 (B and C).

The biophysical parameters {Lo, z, Jo, 2, Kp, C, D,
E} in Eq. 1 have been estimated with a wide variety of
experimental assays. We will focus on the identifiabil-
ity of these parameters with respect to the steady-state
open probabilities of BK at various voltages and Ca*"
concentrations. In the language of MWC models, this
“P,” curve corresponds to the ubiquitous activity or
binding curve. We will also analyze a related common
assay (Horrigan and Aldrich, 2002): the base 10 loga-
rithms of the probabilities, log(P,), made possible by
single-channel recordings that allow for the determina-
tion of very small steady-state open probabilities. We will
see that the model exhibits non-identifiability with re-
spect to both assays, but the non-identifiability is more
severe for the P, assay. We will demonstrate that this
difference in non-identifiability implies that the log(P,)
assay may be used to experimentally test for the pres-
ence of parameter compensations predicted to hold the
P, assay constant.
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BK parameters are non-identifiable

because of sloppiness

We begin by asking the following: how identifiable are
the BK model parameters, with respect to each of the
P, and log(P,) assays? Fig. 2 illustrates the problem of
non-identifiability via the P, assay: noisy synthetic data
generated from the BK model are well fit (within the
10% error bars) by parameter values far from the base
values used to generate the data (Fig. 2, A and B). To
get a sense of how widely the parameters inferred from
noisy P, data may vary, we fit the P, model to 100 noisy
synthetic P, datasets (see Materials and methods) gen-
erated from the base parameters. We found that the
best-fit parameters to noisy data spanned many orders
of magnitude; the inferred best-fit parameters for L,,
D are shown in Fig. 2 (C and D). We investigated BK
model identifiability systematically by computing lower
bounds on the relative parameter error (see Materi-
als and methods) around the base parameter values.
Many parameters have significant errors with respect
to each assay (Fig. 3 A). The model suffers from
non-identifiability.

It has been argued that non-identifiability in scientific
models arises because of sloppiness: the model output
is extremely sensitive to some combinations of parame-
ters but dramatically insensitive to other combinations
(Gutenkunst et al., 2007; Machta et al., 2013). We there-
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Figure 3. The BK model is sloppy. (A) Lower bounds on parameter error (95% confidence interval) for each of the P,, log(P,) assays.
The P, assay exhibits much worse identifiability than the log(P,) assay. (B) Ellipsoid of constant cost for a toy two-parameter model.
The center point of the ellipsoid are the best-fit parameters. The parameters 0, , are constrained in the stiff direction, but have large
error regions ¥, , because of the presence of a large sloppy direction. w; denotes the length of axis i. (C) Calculated log(1/w;?) values
for the P, assay (red) and log(P,) assay (black). Both exhibit a linear trend, the signature of a sloppy model. The dashed line is a visual

aid aimed to draw attention to the gap in the data points.

fore ask: do either of the P,, log(P,) assays exhibit sloppi-
ness with respect to the underlying BK model parameters?

Formally, sloppiness is a feature of a model’s approx-
imate “surface of constant cost.” To understand slop-
piness, it is therefore useful to consider a surface of
constant cost for a toy two-parameter model (Fig. 3 B).
The toy surface is an ellipse that sits in parameter space,
centered around the presumed best-fit parameters. In
general, the surface of constant cost will have dimen-
sion equal to the number of model parameters. Each
point on a surface of constant cost identifies parame-
ters whose model output is equivalently different from
the output generated by the best-fit parameters, as mea-
sured by a cost function. Most commonly, this cost func-
tion is the root-mean-squared (RMS) error.

The toy constant cost ellipse illustrates the two key
features of sloppiness. (1) One axis of the ellipse is
much longer than the other (wy >> w); one direction
of parameter space therefore constrains model behav-
ior much more than the other. (2) The ellipse is “tilted”
rather than aligned with the parameter axes, so each
ellipse axis corresponds to a combination of the two
parameters. The toy ellipse therefore asserts that some
combinations of parameters constrain the model be-
havior much more than others. The degree to which a
parameter combination constrains the model output is
encoded in the length of its axis (w;). The error bars for

JGP Vol. 149, No. 5

the toy parameters 0,, 0 are given by %, X,. Although
the model is constrained by the combination of the two
parameters in the “stiff” direction of parameter space,
neither individual parameter is well constrained.
Because the BK model has many more than two pa-
rameters, we cannot easily visualize its ellipsoid of con-
stant cost. We therefore assessed BK model sloppiness
by computing a quantity proportional to the lengths of
the axes of its constant cost ellipsoids, 1/ w} (Fig. 3 C).
Each assay exhibits the striking signature of sloppy mod-
els: the 1/w;} are exponentially spaced, corresponding
to a linear spacing in logarithm (Waterfall et al., 2006).
The P, assay (Fig. 3 C, red marks) exhibits a greater de-
gree of sloppiness than the log(P,) assay (Fig. 3 C, black
marks), consistent with the log(P,) assay having more
identifiable parameters than the P, assay (Fig. 3 A).
Note that each data point in Fig. 3 C corresponds to
an axis of the ellipsoid of constant cost, and in general,
each axis will correspond to a combination of param-
eters, as shown in Fig. 3 B. There exists a visible gap
(Fig. 3 C, dashed line) between the more sloppy (below
line) and more stiff (above line) widths for both assays.
Although such a clear gap does not likely exist in gen-
eral, we will later observe that the minimal number of
model reductions needed to produce an identifiable
model is equal to the number of axes having widths
below this dashed line. This foreshadowing is consistent
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with the fact that the model reduction procedure lever-
ages the geometry of the model parameter space to re-
move existing sloppiness.

A reduced model for the P, assay admits identifiable
emergent parameters

Having shown that the BK model has non-identifi-
able parameters because of sloppiness, we now aim
to exploit the model’s sloppiness to construct new BK
models whose parameters are both identifiable and
of mechanistic interest. To construct such models, we
use the MBAM (Transtrum and Qiu, 2014; Transtrum,
2016 Preprint).

The MBAM algorithm takes three items as input:
data, a mathematical model thought to describe the
data, and the parameters of the model thought to
best fit the data. The goal of the algorithm is to find
a point in parameter space having two properties: (1)
the model output generated by the parameters must fit
the data well; and (2) one or more parameters must be
divergent, having values close to 0 or co. To find such a
point, the algorithm searches through parameter space,
along a trajectory that minimizes the effect on model
output. The search terminates once divergent parame-
ters are found, and the model is reparameterized such
that no parameters equal to 0 or co remain. The algo-
rithm is made to repeat until the newly parameterized
models no longer fit the data well (see Materials and
methods). The algorithm is deterministic: run on the
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Figure 4. Results of model reduction
for the P, assay. (A, left) Schematic of
the model admitted by the third re-
duction; five parameters have been
eliminated from the original model
(red crosses) and two new emergent
parameters have been added (¢14) for
a total reduction of three parameters.
(A, right) This model fits the data (solid
lines) extremely well. (B, left) Schematic
of model admitted by the fourth reduc-
260 tion. (B, right) This model does not fit
the data well at low [Ca?*]. Synthetic
data are labeled as in Fig. 1 (B and C).

|
200

same data with the same initial conditions, it will return
the same reductions.

An overview of our MBAM output with respect to the
P, assay is shown in Fig. 4. MBAM was run on a set of
synthetic data points generated from the BK model and
initialized with the “true” BK model parameters that
generated these data points. The algorithm was termi-
nated after five iterations, each of which reduced the
number of model parameters by one. The first three
MBAM iterations produced models that fit the data
essentially exactly (Fig. S1). The model produced by
the third reduction step (Fig. 4 A) has eliminated five
parameters and introduced two new emergent parame-
ters, ¢, = zi/ED, ¢4 = CE. The model produced by the
fourth step (Fig. 4 B, left) does not fit the data well at
low calcium concentrations (Fig. 4 B, right).

To better understand how the reduced models arise,
we plotted the numerical values of the model param-
eters during MBAM searches (Fig. 5, left) and the re-
sulting reduced models (Fig. 5, right). Because MBAM
searches along a trajectory of essentially equivalent
model behavior, each x-axis “time point” corresponds to
a set of parameter values that produce essentially equiv-
alent model output (Fig. 5, left). The algorithm con-
tinues searching until one or more parameters diverge
to zero or infinity (Fig. 5, red lines). It is interesting to
note that as z;, goes to zero (Fig. 5 A, red line), several
nondivergent parameters must compensate (Fig. 5 A,
curved black lines) to fit the synthetic data. Subsequent
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Figure 5. Intermediate MBAM steps,
P, assay. The figure should be read left
to right, top to bottom. The left col-
~ umn displays the parameter values for
(@4 a given model as MBAM progresses.
The reduced model created upon com-
pletion of the parameter search is dis-
X played on the right. (A) MBAM run for
the full, original model. There are eight
lines, corresponding to eight param-
eters. One of the parameters goes to
X-Ca2t zero; this is z, and it is eliminated, giv-
4 ing our first reduced model, at right. (B)
In the second iteration, four parameters

are observed to diverge: L, D, E, C.

B These parameters are eliminated, and
C three new, emergent parameters are
. . created (¢1,3), yielding a net reduction
2 == ¢1=vLD I ¢2=VLC ot one parameter. (C) Two parameters
E ——— ,%7 %:F are observed to diverge: ¢,, ¢s3. Note
& o < that there are only six lines, correspond-
s ing to the six remaining parameters.
R X The resulting model (right) has five pa-
rameters and fits the data well (Fig. 4).
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reductions (Fig. 5, B and C) take place without such sig-
nificant compensation from nondiverging parameters.

The algebraic reparameterizations that give rise to
the reduced models in Fig. 5 are worked out in full in
the Supplemental text. To understand the emergent
parameters biologically, it is instructive to consider
the third and “final” reduced model, which is algebra-
ically governed by

Ud)" (1 +Kp)*

p(v.lca*]) = (o) (1+Kdpa)*+ (1+J+ K)Y 2

with equilibrium constants (J, K) given by

_ AT _ [ca*]
]— ]Oexp(ﬁ), K = I{[) .

The emergent parameter ¢4 = CE represents the ef-
fect of [Ca*] binding on the voltage-sensing process,
and ¢, = VL, D represents the coupling of voltage sens-
ing to the pore opening. Additionally, the remaining
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4

original parameter Kj, is the binding constant of the li-
gand, J, governs the midpoint voltage of the voltage-ac-
tivation curve, and z; controls its slope.

We next ask: do the reduced models have identifiable
parameters? To address this issue, we calculated lower
bounds on the relative error for each of the reduced
models and found that each reduction step leads to a
model with fewer unidentifiable parameters (Fig. 6). It
is important to note that although each model reduc-
tion step leads to a smaller number of non-identifiable
parameters than the one before it, it is not the case that
each parameter becomes more identifiable after each
reduction step. In the first reduced model, Ly, C, D, and
E and all have much greater relative errors than in the
original model (compare Fig. 6 A [table] with Fig. 3 A).
Care must therefore be taken in interpreting these in-
termediate models (Fig. 6, A and B).

In contrast, interpreting the third reduced model
(Fig. 6 C) is clear. The model fits the data extremely
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Figure 6. Model reduction results in identifiable param-
eters. Reduced models for the P, assay are presented in
the left column, and error lower bounds of their parame-
ters (95% confidence interval) are presented at right. A-C
correspond to model-error pairs after one, two, and three
reduction steps, respectively. The five-parameter model
produced by three model reductions (C, left) has identi-
fiable parameters (within one order of magnitude for all
parameters, right).

error (%)
Jo| 8452
=CE
R ¢a X ol 1799
JE)ZJ) <K> Kp Kp 47.89
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A, 0 X-Ca® |, YToD | 68.67

well (Fig. 4 A) and has parameters that are identifiable
and expressed in terms of mechanistically meaningful
parameters (Fig. 6 C, table). Variations in underlying
MWC parameters that keep these emergent parameters
constant may, but do not necessarily, leave assay output
unchanged. Conversely, any significant parameter vari-
ation that leaves the P, assay unchanged must keep the
emergent parameters constant. Observe that the differ-
ences in base and fit parameters that give rise to the
same dataset in Fig. 2 B do indeed keep the emergent
parameters essentially constant. Relative to the base pa-
rameter, the fit parameter Cincreased by a factor of 10%;
correspondingly, the parameter E decreased by a factor
of 10%, consistent with constant emergent parameter ¢y
= CE. Likewise, the value of I, decreased by a factor of
10%, and correspondingly the value of D increased by a
factor of 10, consistent with constant emergent param-

eter ¢, = VED.
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We interpret the emergent parameters as predictions
of the original MWC model about potential compensa-
tory mechanisms of the macromolecule. How can we
test for the presence of these parameter compensations
experimentally? By definition, the compensations are
not discernible from the P, assay. To address this issue,
we therefore turn to the log(P,) assay.

The log(P,) model reduction reveals parameter
differences unidentifiable by P,

Having found a reduced, identifiable model for the
P, assay, we now aim to find such a model for the
log(P,) assay. Because the log(P,) assay was observed
to have fewer “very sloppy” directions than the P, assay
(Fig. 3 C), we expected to find an identifiable model
after fewer reduction steps than needed for the P, assay.
Indeed, MBAM produces an identifiable model after
only one reduction step. In this model, each of the orig-
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Figure 7. Reduced log(P,) model. (A) A model resulting from one reduction (left) fits synthetic data (right; data legend as in Fig. 1)

very well (solid lines). (B) This model has identifiable parameters.

inal parameters is identifiable except for z;, which has
been eliminated (Fig. 7).

Can we use the reduced log(P,) model to detect the
presence of large compensatory parameter changes
that give rise to identical P, datasets? To address this
issue, we generated test and base parameters that pro-
duced equivalent P, data (up to 10% error), but con-
tained the type of large compensatory changes shown
in Fig. 2 B. The test and base parameters were then used
to generate noisy synthetic log(P,) data, to which the re-
duced log(P,) model was fit. Values of the base parame-
ters inferred by the reduced log(P,) model varied many
orders of magnitude less than when inferred from noisy
P, data generated from the same parameters (compare
the black points in Fig. 8 [A and B] with Fig. 2 [C and
D]J), reflecting the greater identifiably of the reduced
log(P,) model.

This increase in identifiability allows the reduced
log(P,) model to discern large compensatory parame-
ter changes that leave the P, assay constant (Fig. 8, red
points). Note that the mean of the inferred parameter
values (Fig. 8, solid lines) did not match the true val-
ues of the underlying parameters (Fig. 8, dashed lines).
This is expected because of compensations from the
other parameters (Fig. S2) and does not affect discern-
ibility. Our analysis is limited in that we did not exhaus-
tively sample the parameter space. Rather, we examined
several sets of test parameters and found that large com-
pensatory variations from the base parameters were dis-
cerned via the reduced log(P,) model in all cases, even
when the test parameters were degenerate (Fig. S3). We
wish here only to make the point that the log(P,) assay
can elucidate parameter variations hidden by the P,
assay in practice, not that it must in general.
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DISCUSSION

Our results demonstrate that reduced models produced
by MBAM allow for quantitatively accurate param-
eter information to be gleaned from models that are
non-identifiable with respect to most or all individual
parameters. Because the emergent parameters of our
reduced models indicate which coordinated changes in
parameter values are necessary to preserve the output
for a given assay, they may be interpreted as predictions
of the MWC model about which biophysical properties
can compensate for each other to maintain a functional
role. For what purposes would MBAM-elucidated com-
pensatory effects be used by allosteric macromolecules?
We propose experiments to test the role of parameter
compensation in functional and evolutionary adapta-
tion, both of which have been previously connected to
sloppiness (Daniels et al., 2008).

Emergent parameters may facilitate

functional adaptation

It is well known that macromolecules exhibit some
amount of functional robustness with respect to exper-
imental perturbations of temperature, pH, salt con-
ditions, and sequence structure (Rennell et al., 1991;
Somero, 1995; Suckow et al., 1996; Guo et al., 2004;
Weber and Pande, 2012). We propose that this func-
tional robustness may arise from compensatory mech-
anisms of the type identified here. That is, changes in
environment or sequence structure that have little ef-
fect on assay output should be observed to have large
but compensatory effects in the mechanistic parame-
ters, such that the value of MBAM-identified emergent
parameters remain constant. In BK, for example, we
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may expect that a change in temperature or sequence
that marginally effects the P, data nonetheless largely
increases C but equivalently decreases E.

To test for the presence of a compensatory effect,
an experimentalist generally needs at least two assays:
a “physiologically relevant” assay whose output should
not change upon environmental manipulation, from
which compensatory effects may be predicted, and one
or more secondary assays, from which the differences
in individual parameters can be observed. Obvious can-
didates for physiologically relevant assays include bind-
ing curves (as analyzed here) and physiologically and
thermodynamically relevant functions thereof (Wyman,
1967; Di Cera, 1995; Chowdhury and Chanda, 2012).
For BK, our results demonstrate that the log(P,) assay
serves as a good secondary assay for testing compensa-
tory mechanisms predicted from the P, assay.

Measurements of hemoglobin’s oxygen-binding curve
confirms that parameter compensations facilitate
functional adaptation

How speculative is this prediction? On one hand, the
existence of MBAM-identified parameter compensa-
tions is general. Compensations depend only on the
underlying sloppiness of the model and assay, which
have been demonstrated to be ubiquitous in multipa-
rameter models across systems biology (Gutenkunst et
al., 2007). On the other hand, the relevance of MWC
parameter compensations in allosteric macromolecules
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Figure 8. Inferred parameters from
the reduced log(P,) model. Values
inferred by fitting the once-reduced
log(P,) model to 100 noisy synthetic
measurements generated from base
(black) and test (red) parameter sets.
A-C correspond to inferred values of
Ly, D, Jo, respectively. Solid lines con-
nect the means of the inferred base and
test values; dotted lines connect the
true generating base and test values.
The test parameter set used was, in: L
= 10—3,7; 7z = 10—0.1 e JO = 10—0.89; z, =
107°"? ¢; Kp = 107*? M; C =107, D =
10%%¢; E = 10%%4. The horizontal spread
is only for ease of visualization.

is ultimately a question for experiment. To that end, we
note that an extensive meta-analysis of hemoglobin’s
oxygen binding confirms the physiological relevance of
MWC parameter compensations (Milo et al., 2007).

Milo et al. (2007) analyzed hemoglobin binding
curves under varying physiological conditions and in
different mammals. To quantitatively study these bind-
ing curves, Milo et al. (2007) used an MWC model that
assumed the hemoglobin tetramer to be in one of two
conformations: relaxed or tense. In each conformation,
all four subunits have the same independent affinity for
oxygen. The dissociation constants for the relaxed and
tense states are Kg, Kr, respectively. The equilibrium
constant between the fully deoxygenated tense and re-
laxed states is L. The three mechanistic parameters Kg,
Kr, L fully parameterize the model.

The authors found that this three-parameter model
was non-identifiable with respect to the saturation curve.
Using limit-style arguments that are possible for simple
models and essentially equivalent to MBAM (Transtrum
and Qiu, 2016), the model was reparameterized to have
the emergent, identifiable parameters

Lpwre = Lo Kk (3)

The authors demonstrated analytically that each emer-
gent parameter has a clear physiological interpretation:
Lgrs controls the half-saturation point of oxygen bind-
ing pso; Ly controls the cooperativity at this point, n.
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Figure 9. Analysis of hemoglobin oxygen saturation curves. These figures were generated with data published by Milo et al.
(2007). (A and B) Reproduction of Milo et al. (2007) Fig. 2 (a and b). (C and D) Reproduction of Milo et al. (2007) Fig. 4 (a and b).
(A and C) Each point corresponds to human hemoglobin at a different pH. (B and D) Each point corresponds to hemoglobin from
a different mammal, at the same physiological condition. We refer the reader to the appropriate figures in Milo et al. (2007) for full

descriptions of pH conditions and mammals used.

Moreover, the authors found that n remained constant
for human hemoglobin at varying pH (Fig. 9 A).

The results of Milo et al. (2007) therefore present
an exceptionally simple framework in which to test
our prediction. The n assay remains constant upon
physiological variation and is controlled by the single
emergent parameter L,. Is this assay constancy the re-
sult of compensations of the underlying MWC parame-
ters, as we predict?

Indeed it is. Across varying pH conditions, n stays
constant while ps varies. Correspondingly, L, stays con-
stant as Lgy varies (Fig. 9 C). It is immediate from the
definitions of L, and Lpgs (Eq. 3) that in order for L,
to remain constant as Lpg, varies, Ki* must compensate
for changes in L,- Ki*.

Emergent parameters may identify evolutionary
relevant “neutral spaces”

There is now significant theoretical (Draghi etal., 2010)
and experimental (Hayden et al., 2011) evidence, in-
cluding in allosteric proteins (Raman et al., 2016), that
biological systems may evolve by drifting in genotype
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space such that their primary function remains un-
changed. This is known as “neutral evolution” (Wagner,
2005, 2008). Neutral evolution proceeds via mutations
that leave current function unchanged but may be ad-
vantageous in a subsequent environment. Because the
utility of these mutations do not manifest until the cor-
rect environment arises, they are said to be cryptic. The
spaces of sequences, parameters, or network topologies
that give rise to equivalent behaviors are known as neu-
tral spaces (Daniels et al., 2008).

Emergent parameters identified here may define neu-
tral spaces. In particular, cryptic mutations in allosteric
macromolecules may give rise to cryptic MWC parameter
variations—large but compensatory effects in mechanis-
tic parameters such that the value of MBAM-identified
emergent parameters remain constant. This proposal
can be tested by searching for cryptic MWC parameter
changes between variants of an allosteric macromole-
cule within and across populations.

At first glance, the study of Milo et al. (2007) pro-
vides a way to interrogate this prediction as well. Milo
et al. (2007) noted that the assay ps stayed relatively
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constant across 25 different mammals, measured at the
same physiological conditions (Fig. 9 B). So too did the
emergent parameter that controls it: Lgs (Fig. 9 D).
This is indeed what we would expect if the emergent
parameter identified a neutral space.

Unfortunately, the study by Milo et al. (2007) cannot
be used to confirm the presence of a neutral space. If
the Lpgs constancy reflected a neutral space, we would
expect Ly and Kg' to vary cryptically between species.
Because L, and Ky cannot be estimated from the avail-
able data, we cannot determine whether p;’s constancy
across species results from this cryptic variation or from
Ly and K;' each remaining constant. The connection
between emergent parameters and neutral spaces re-
mains speculative, though we suspect it may prove an
interesting source of future work.

Conclusions

We have argued that parameter compensation under-
lies both non-identifiability and adaptability in allosteric
macromolecules. We therefore contend that non-iden-
tifiability should be expected in any adaptable allosteric
macromolecule, so long as the model is mechanistically
relevant and the functional assay adequately captures
the macromolecule’s function.

Non-identifiability does not itself imply that a model
or assay is physiologically relevant. Experimentally ver-
ifying that a predicted parameter compensation is ac-
tually used, as we have done with hemoglobin and its
cooperativity at the half saturation point of oxygen
binding, n, is paramount. It must also be kept in mind
that observed parameter compensations may be spu-
rious rather than meaningful and must be assessed in
context. In hemoglobin, the mechanistic relevance of
the model parameters and clear physiological relevance
of the half saturation point of oxygen binding support
the relevance of the compensation we identified.

The enormous success of MWC models in describing
allosteric macromolecules presents a wide array of op-
portunities for further experimentally testing the func-
tional utility of parameter compensations. We anticipate
that reduced models will prove essential for extracting
mechanistically meaningful quantitative information
from MWC models and provide a wealth of readily fal-
sifiable predictions about the emergent properties of
allosteric macromolecules.
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