

The HOOK region of voltage-gated Ca^{2+} channel β subunits senses and transmits PIP_2 signals to the gate

Cheon-Gyu Park,¹ Yongsoo Park,² and Byung-Chang Suh¹

¹Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea

²Izmir International Biomedicine and Genome Institute (iBG-izmir), Dokuz Eylul University, 35340 Balcova, Izmir, Turkey

The β subunit of voltage-gated Ca^{2+} (Ca_v) channels plays an important role in regulating gating of the α 1 pore-forming subunit and its regulation by phosphatidylinositol 4,5-bisphosphate (PIP_2). Subcellular localization of the Ca_v β subunit is critical for this effect; N-terminal-dependent membrane targeting of the β subunit slows inactivation and decreases PIP_2 sensitivity. Here, we provide evidence that the HOOK region of the β subunit plays an important role in the regulation of Ca_v biophysics. Based on amino acid composition, we broadly divide the HOOK region into three domains: S (polyserine), A (polyacidic), and B (polybasic). We show that a β subunit containing only its A domain in the HOOK region increases inactivation kinetics and channel inhibition by PIP_2 depletion, whereas a β subunit with only a B domain decreases these responses. When both the A and B domains are deleted, or when the entire HOOK region is deleted, the responses are elevated. Using a peptide-to-liposome binding assay and confocal microscopy, we find that the B domain of the HOOK region directly interacts with anionic phospholipids via polybasic and two hydrophobic Phe residues. The $\beta 2c$ -short subunit, which lacks an A domain and contains fewer basic amino acids and no Phe residues in the B domain, neither associates with phospholipids nor affects channel gating dynamically. Together, our data suggest that the flexible HOOK region of the β subunit acts as an important regulator of Ca_v channel gating via dynamic electrostatic and hydrophobic interaction with the plasma membrane.

INTRODUCTION

Voltage-gated Ca^{2+} (Ca_v) channels play essential roles in adjusting Ca^{2+} influx upon membrane depolarization. These channels are important for various physiological responses, such as neurotransmitter release, muscle contraction, tumorigenesis, hormone secretion, gene expression, and cell death. Dysfunctional regulation of Ca_v channels is associated with numerous diseases, including epilepsy, autism, chronic pain, and migraine (Catterall, 2011).

Ca_v channels can be classified into two subgroups according to their activation threshold: low-voltage activated (LVA) and high-voltage activated (HVA) channels. HVA Ca_v channels require auxiliary $\alpha 2\delta$ and β subunits for proper trafficking and gating, whereas LVA Ca^{2+} channels can perform their function without any other subunits. Among the auxiliary subunits, the Ca_v β subunit is broadly involved in regulating the surface expression and fine-tuning the gating of Ca_v channels (Lacinová, 2005; Buraei and Yang, 2010). The Ca_v β subunit is composed of five distinct regions: the variable N and C termini, the highly conserved Src homology 3 (SH3) and guanylate kinase (GK) domains, and the flexible and variable HOOK region connecting the SH3 and GK domains (Birnbaumer et al., 1998; Hanlon et

al., 1999; Colecraft et al., 2002; Chen et al., 2004; Opatowsky et al., 2004; Van Petegem et al., 2004; Buraei and Yang, 2010). The middle three regions of the β subunit (i.e., SH3, HOOK, and GK) are called the Ca_v β core (De Waard et al., 1994; McGee et al., 2004; Opatowsky et al., 2004; Chen et al., 2009). Of the five regions in the β subunit, the N terminus is key for determining the subcellular localization of β subunits and the inactivation kinetics of Ca_v channels, where N-terminal targeting of the β subunit to the plasma membrane generally slows the current inactivation (Olcese et al., 1994; Chien et al., 1996; Qin et al., 1998). In contrast, the HOOK region is also known to be largely engaged in modulating the inactivation kinetics of Ca_v channels (Qin et al., 1996; Takahashi et al., 2003; Stotz et al., 2004; Richards et al., 2007). For example, swapping the HOOK regions of the $\beta 1b$ and $\beta 2a$ cores made the inactivation of Ca_v channels like those of $\beta 2a$ and $\beta 1b$, respectively (He et al., 2007). In addition, deletion of the HOOK region from the $\beta 2a$ subunit increased the inactivation rate of $\text{Ca}_v 2.2$ channels (Richards et al., 2007). Recently, when the HOOK region of the Ca_v β subunit was divided into two segments, polyserine and polybasic, the polybasic segment was responsible for slowing the inactivation rate of $\text{Ca}_v 2.3$ channels (Miranda-Laferte et al., 2012).

Correspondence to Byung-Chang Suh: bcsuh@dgist.ac.kr

Abbreviations used: Ca_v , voltage-gated Ca^{2+} ; FRET, fluorescence resonance energy transfer; GFP, green fluorescent protein; GK, guanylate kinase; HVA, high-voltage activated; LVA, low-voltage activated; PIP_2 , phosphatidylinositol 4,5-bisphosphate; PJ, pseudojanin; PS, phosphatidylserine; Rapa, rapamycin; SH3, Src homology 3.

All these studies suggest that the HOOK region of the β subunit is another key regulator of Ca_v channel gating. However, the molecular mechanism of the channel regulation by the HOOK region remains unclear.

Ca_v channels are dynamically modulated by receptor-dependent intracellular signals (Hille, 1994; Catterall, 2000). Here, we focus on the regulation of Ca_v channels by the plasma membrane phosphoinositide phosphatidylinositol 4,5-bisphosphate (PIP₂). Direct evidence for PIP₂ regulation of Ca_v channels was obtained using Dr-VSP, a voltage-sensing lipid phosphatase from zebrafish. Dr-VSP is useful for the analysis of PIP₂ regulation of ion channels independent of the activation of G_q -coupled receptors or the generation of downstream second messengers (Murata et al., 2005; Okamura et al., 2009; Falkenburger et al., 2010). By using this technique, it has been found that the activity of HVA, but not LVA, Ca_v channels is suppressed by membrane PIP₂ depletion (Suh et al., 2010; Hille et al., 2015; Jeong et al., 2016). It has also been reported that some of the receptor-mediated slow inhibition of Ca_v current in sympathetic neurons is attributed to the arachidonic acid released from PIP₂ hydrolysis (Liu and Rittenhouse, 2003; Roberts-Crowley et al., 2009).

Our recent studies showed that the subcellular localization of the Ca_v β subunit is important for determining the PIP₂ sensitivity of Ca_v channels as well as the kinetics of current inactivation (Suh et al., 2012; Keum et al., 2014; Kim et al., 2015a,b, 2016). $\text{Ca}_v2.2$ channels coexpressed with a membrane-localized β subunit, such as $\beta 2a$ or $\beta 2e$, exhibit low PIP₂ sensitivity and slow inactivation, whereas channels with a cytosolic β subunit, such as $\beta 3$, exhibit high PIP₂ sensitivity and fast inactivation (Suh et al., 2012; Kim et al., 2016). The $\beta 2a$ subunit is usually posttranslationally palmitoylated at two cysteine residues in the N terminus and therefore localized at the plasma membrane (Olcese et al., 1994; Chien et al., 1996; Qin et al., 1998; Hurley et al., 2000). When the palmitoylation sites cysteine 3 and 4 are substituted by serine, the mutant $\beta 2a(C3,4S)$ is present in the cytosol in the absence of the $\alpha 1$ pore subunit. $\text{Ca}_v2.2$ channels coupled with the mutated $\beta 2a(C3,4S)$ subunit show relatively fast inactivation and high PIP₂ sensitivity, which is similar to channels with a cytosolic $\beta 3$ subunit. The addition of a membrane-targeting Lyn sequence to the N terminus of the $\beta 3$ subunit reversibly changes the subunit, making it express in the plasma membrane and act more like a $\beta 2a$ subunit. This suggests that both PIP₂ sensitivity and the inactivation of Ca_v channels are commonly regulated by the subcellular localization of coupled β subunits (Suh et al., 2012; Keum et al., 2014). In addition, the extent of current inactivation and PIP₂ sensitivity are positively correlated with each other.

Here, we examined the molecular mechanism and functional effects of the HOOK region of the Ca_v β subunit on the regulation of HVA $\text{Ca}_v2.2$ channels. Our

data demonstrate that the HOOK region actively participates in controlling Ca_v channel gating by interacting with the plasma membrane via electrostatic forces and that the coupling of the β subunit to the plasma membrane through the HOOK region slows the inactivation of these channels and decreases their PIP₂ sensitivity. Our results will shed light on how the receptor-mediated dynamic posttranslational modification of the HOOK region could influence Ca_v channel activity in physiological conditions.

MATERIALS AND METHODS

cDNAs

The following plasmids were given to us: the channel subunits $\alpha 1B$ of rat $\text{Ca}_v2.2e[37b]$ (GenBank accession no. AF055477) and rat $\alpha 2\delta 1$ (GenBank accession no. AF286488) from D. Lipscombe (Brown University, Providence, RI); Dr-VSP (AB308476) from J.B. Jensen (University of Washington, Seattle, WA); mouse M_1R (GenBank accession no. NM_001112697) from N.N. Nathanson (University of Washington, Seattle, WA); and RFP-PJ, RFP-dead, and LDR from B. Hille (University of Washington School of Medicine, Seattle, WA).

Molecular cloning

Mouse cDNAs of $\beta 2a$, $\beta 2c$, and $\beta 2c$ -short were cloned by V. Flockerzi (Saarland University, Homburg, Germany). For the C-terminal fusion of green fluorescent protein (GFP) to each $\beta 2$ subunit, the cDNAs encoding $\beta 2a$, $\beta 2c$, and $\beta 2c$ -short were amplified by PCR using nTaq DNA polymerase (Enzynomics), TA cloned into T-Easy Vector (Promega), and cloned in pEGFP-N1 vector (Takara Bio Inc.). The primers used for $\beta 2$ -GFP are listed in Table S1. For point and deletion mutants, $\beta 2$ -GFP was amplified by inverse PCR using Pfu Turbo DNA polymerase (Agilent Technologies), plasmid DNA was digested by Dpn I (Agilent Technologies), the PCR product was 5'-phosphorylated by T4 polynucleotide kinase (Enzynomics), and then PCR product was ligated by T4 DNA ligase (New England Biolabs, Inc.). The primers used for mutagenesis are listed in Table S2. The mutants were verified by DNA sequencing.

Cell culture and transfection

Human embryonic kidney tsA-201 cells were obtained from B. Hille. The cells were maintained in Dulbecco's modified Eagle's medium (Invitrogen) supplemented with 10% FBS (Invitrogen) and 0.2% penicillin and streptomycin (Invitrogen) in 100-mm culture dishes at 37°C with 5% CO₂. For transfection, Lipofectamine 2000 (Invitrogen) was used when the confluence of cells reached 50–70%. For Ca_v channel expression, cells were cotransfected with $\alpha 1$ of Ca_v , $\alpha 2\delta 1$, and various $\beta 2$ subunits in a 1:1:1 molar ratio. Transfected cells were plated onto coverslip chip coated with 0.1 mg/ml po-

ly-L-lysine (Sigma-Aldrich), and the fluorescent cells were studied in electrophysiological and confocal experiments 36–48 h after transfection, as described previously (Suh et al., 2012).

Solutions and materials

The bath solution used to record Ba^{2+} currents contained 10 mM BaCl_2 , 150 mM NaCl , 1 mM MgCl_2 , 10 mM HEPES, and 8 mM glucose (adjusted to pH 7.4 with NaOH). The pipette solution contained 175 mM CsCl_2 , 5 mM MgCl_2 , 5 mM HEPES, 0.1 mM 1,2-bis(2-aminophenoxy)ethane N,N,N',N' -tetraacetic acid, 3 mM Na_2ATP , and 0.1 mM Na_3GTP (adjusted to pH 7.4 with CsOH). The bath solution for confocal imaging contained 160 mM NaCl , 2.5 mM KCl , 2 mM CaCl_2 , 1 mM MgCl_2 , 10 mM HEPES, and 8 mM glucose (adjusted to pH 7.4 with NaOH).

Current recording

A whole-cell configuration was used to record Ba^{2+} currents using a HEKA EPC-10 amplifier with pulse software at room temperature (22–25°C). Electrodes pulled from glass micropipette capillaries (Sutter Instrument) had resistances of 2–4 M Ω . The whole-cell access resistance was of 2–6 M Ω , and series-resistance errors were compensated by 60%. Ba^{2+} currents were recorded with a membrane holding potential of –80 mV, applying a 10-ms or 500-ms test pulse. For Dr-VSP experiments, step depolarization to 120 mV for 1 s was applied to activate Dr-VSP and deplete PIP_2 in cells (Keum et al., 2014).

Confocal imaging

Images were taken with the LSM 700 confocal microscope (ZEISS) at room temperature (22–25°C). For time courses, images were obtained by scanning cells with a 40 \times (water) objective lens at 512 \times 512 pixels using digital zoom. During time course experiments, images were taken every 5 s in imaging software (Zen; ZEISS). For a single image, 1,024 \times 1,024 pixels were used. Analysis of line scanning and quantitative analysis of the plasma membrane or cytosolic fluorescence intensity was performed using the “profile” and the “measure” tools, respectively, for the region of interest in Zen 2012 lite imaging software (ZEISS). All images were transferred from LSM4 to JPEG format, and raw data from time-course experiments were processed with Excel 2010 (Microsoft) and Igor Pro (WaveMetrics), as described previously (Kim et al., 2016).

Preparation of liposomes

All lipids were purchased from Avanti Polar Lipids, Inc. Liposomes consisted of L- α -phosphatidylcholine, L- α -phosphatidylethanolamine, L- α -phosphatidylserine (PS), cholesterol, PIP_2 , and Rhodamine-DOPE (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-lis-

samine rhodamine B sulfonyl ammonium salt; 48%:14%:10%:25%:2%:1% molar percentage). In case of no PS or PIP_2 , L- α -phosphatidylcholine contents were adjusted accordingly. In brief, lipid mixture dissolved in chloroform/methanol mixture (2:1 ratio) was dried under a gentle stream of nitrogen in the hood, thereby generating lipid film. Lipid film was then dissolved with 100 μl buffer containing 150 mM KCl, 20 mM HEPES, pH 7.4, with KOH and 5% sodium cholate (Kim et al., 2015b). Detergent was removed using size exclusion column (Sephadex G50 in 150 mM KCl and 20 mM HEPES, pH 7.4).

Assay for peptide–liposome binding

Peptides were labeled at the N terminus with BODIPY 493/503 succinimidyl ester (D-2191; Invitrogen). Binding of peptide to liposomes was monitored using fluorescence resonance energy transfer (FRET) measurements in which rhodamine-DOPE incorporated in liposomes quenches the fluorescence of BODIPY 493/503. All measurements were performed at 37°C in 1 ml of buffer containing 150 mM KCl and 20 mM HEPES-KOH, pH 7.4; excitation at 490 nm and emission at 515 nm. FRET was normalized as F/F_0 , where F_0 and F represent fluorescence before and after liposome addition, respectively.

Curve fitting

The time course of Ca_V current inactivation was fitted by the double exponential function of the form:

$$I = A_{\text{fast}} \times \exp\left(\frac{-(t-t_0)}{\tau_{\text{fast}}}\right) + A_{\text{slow}} \times \exp\left(\frac{-(t-t_0)}{\tau_{\text{slow}}}\right) + C,$$

where τ_{fast} and τ_{slow} are the time constants of fast and slow, respectively. A_{fast} and A_{slow} are each the current amplitude of the time constants.

Data analysis

Data acquisition and analysis used Pulse/Pulse Fit 8.11 software in combination with an EPC-10 patch-clamp amplifier (HEKA). Additional data processing was performed with Igor Pro (WaveMetrics), Excel 2010 (Microsoft), and GraphPad Software Prism version 5.01. Time constants measured by double exponential fit. All quantitative data were expressed as the mean \pm SEM and analyzed by Student’s *t* test or one- or two-way ANOVA followed by Bonferroni or Dunnett’s post-hoc test (*, $P < 0.05$; **, $P < 0.01$; and ***, $P < 0.001$).

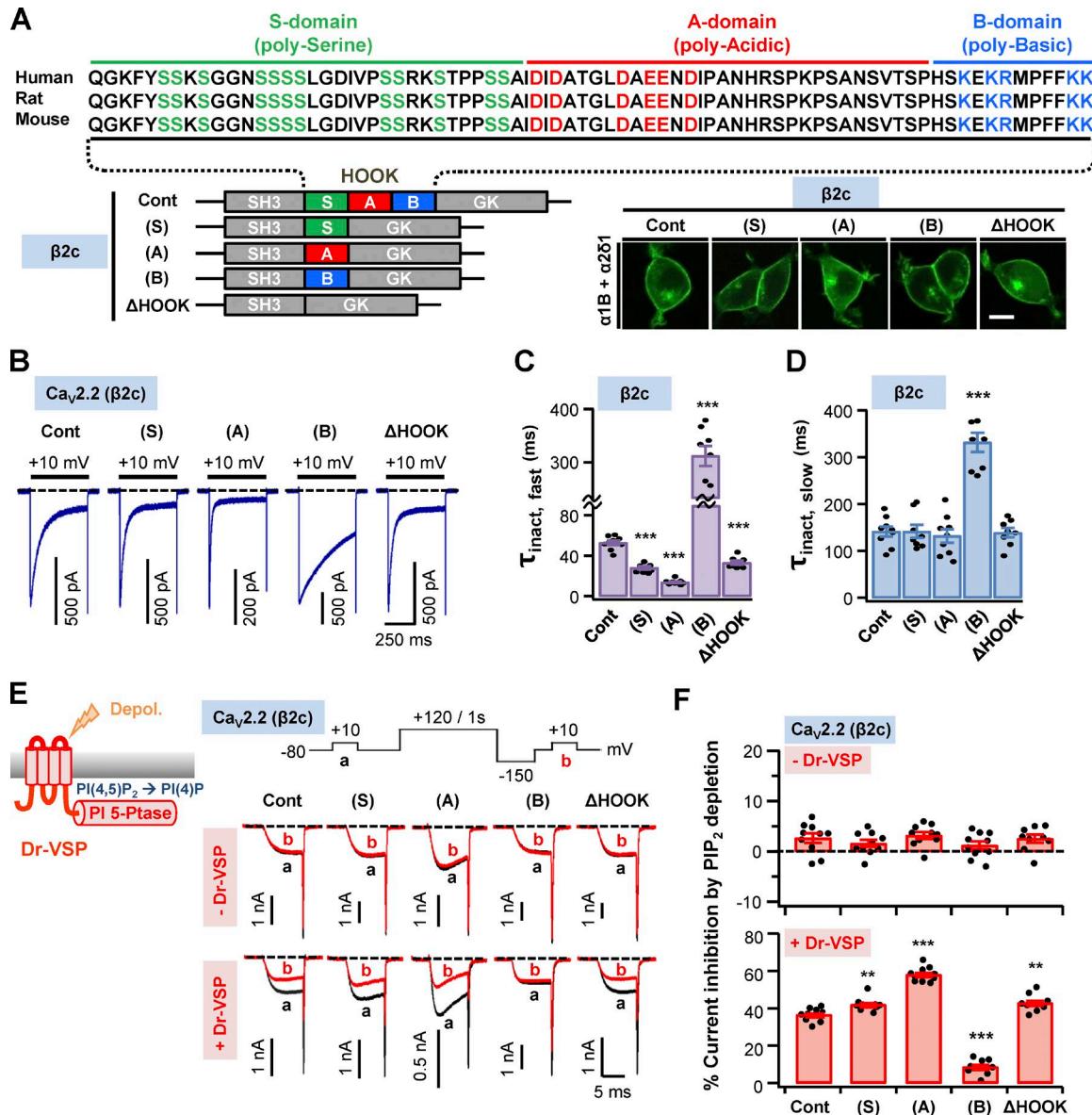
Online supplemental material

Table S1 shows primers for tagging GFP. Table S2 shows primers for $\beta 2$ mutagenesis.

RESULTS

The HOOK region of the $\beta 2$ subunit regulates inactivation kinetics and PIP_2 sensitivity of $Ca_v2.2$ channels

The amino acid sequences of the five isoforms of the $\beta 2$ subunit are the same, except for the N-terminal region because they are encoded by a single gene with multiple splicing (Takahashi et al., 2003; Link et al., 2009; Kim et al., 2015a). Here, we divided the HOOK region of the $\beta 2c$ subunit into three domains based on amino acid composition: S (polyserine), A (polyacidic), and B (polybasic; Fig. 1 A). The S domain retains the serine-rich sequence that includes possible phosphorylation sites. The A and B domains retain acidic and basic amino acid-rich sequences, respectively. $\beta 2c(S)$, $\beta 2c(A)$, and $\beta 2c(B)$ are $\beta 2c$ subunits with only S, A, and B domains in the HOOK region, respectively. $\beta 2c\Delta HOOK$ is a $\beta 2c$ subunit without the indicated whole HOOK region. In the presence of $\alpha 1B$ and $\alpha 2\delta 1$, all the $\beta 2c$ mutant derivatives labeled with GFP were located at the plasma membrane (Fig. 1 A, inset). This suggests that the HOOK region of the $\beta 2c$ subunit does not affect heteromeric Ca_v channel complex formation or targeting of Ca_v channels to the plasma membrane (Opatoowsky et al., 2004; Richards et al., 2007; Miranda-Laferte et al., 2012). Then, we compared the effects of $\beta 2c$ derivatives on the inactivation of $Ca_v2.2$ currents. As shown in Fig. 1 B, channels with $\beta 2c(A)$ showed faster inactivation than channels with control $\beta 2c$, whereas channels with $\beta 2c(B)$ showed much slower inactivation. Interestingly, the current inactivation was also significantly faster in $Ca_v2.2$ channels complexed with $\beta 2c(S)$ or $\beta 2c\Delta HOOK$. The inactivation of $Ca_v2.2$ currents was fitted to a double exponential function. The fast component of inactivation ($\tau_{inact, fast}$) was dramatically altered by deletion mutations of the $\beta 2c$ HOOK region, whereas the slow component of inactivation ($\tau_{inact, slow}$) showed no change, except for $\beta 2c(B)$ (Fig. 1, C and D).


In control experiments without Dr-VSP, the current amplitude of $Ca_v2.2$ channels with $\beta 2c$ derivatives was not significantly different before and after 120-mV depolarization (Fig. 1, E and F, top). In contrast, PIP_2 depletion by Dr-VSP-mediated depolarization inhibited $Ca_v2.2$ channels with $\beta 2c(S)$ by $42 \pm 1\%$, which was similar to channels with $\beta 2c\Delta HOOK$ ($43 \pm 1\%$) but more than channels with $\beta 2c$ control ($37 \pm 1\%$; Fig. 1, E and F, bottom). $Ca_v2.2$ channels with the $\beta 2c(A)$ subunit showed higher inhibition ($58 \pm 1\%$) after PIP_2 depletion, whereas channels with the $\beta 2c(B)$ subunit showed dramatically lower inhibition ($9 \pm 1\%$). These results indicate that the positively charged B domain of the HOOK region plays an important role in decreasing the PIP_2 sensitivity and inactivation rate of $Ca_v2.2$ channels, whereas the negatively charged A domain plays a role in increasing these responses. Because the HOOK-deleted

$\beta 2c\Delta HOOK$ and A/B domain-deleted $\beta 2c(S)$ subunits acted more like $\beta 2c(A)$, the net charge of the intact HOOK region seems to be slightly positive. Together, the data suggest that the HOOK region of the $\beta 2c$ subunit serves as an important regulator of not only ion conductance but also PIP_2 regulation of $Ca_v2.2$ channels.

We also examined whether the membrane-tethered $\beta 2a$ subunit regulates channel gating through the HOOK region (Fig. 2 A, left). Because the N terminus of the $\beta 2a$ subunit contains two cysteines that can be palmitoylated, thus targeting the subunit to the plasma membrane, we also constructed several HOOK region mutant derivatives using the palmitoylation-resistant mutant form $\beta 2a(C3,4S)$ ($\beta 2aMT$; Fig. 2 A, right). The functional effects of HOOK region mutants were similar to those seen with $\beta 2c$ derivatives (Fig. 1). For example, $Ca_v2.2$ channels coupled with (S), (A), or $\Delta HOOK$ derivatives of either WT $\beta 2a$ or $\beta 2aMT$ showed faster inactivation, whereas channels with the (B) derivative showed relatively slower inactivation. In addition, the current was mostly altered in $\tau_{inact, fast}$, but not in $\tau_{inact, slow}$ (Fig. 2, B and C). Similarly, PIP_2 depletion by Dr-VSP inhibited $Ca_v2.2$ channels with $\beta 2a$ control by $10 \pm 1\%$, which was more than with $\beta 2a(B)$ ($4 \pm 1\%$) but less than with $\beta 2a(A)$ ($17 \pm 1\%$; Fig. 2, D and E). The effects of $\beta 2a(S)$ and $\beta 2a\Delta HOOK$ on $Ca_v2.2$ inhibition by PIP_2 depletion were insignificant compared with $\beta 2a$ control ($10 \pm 1\%$ for $\beta 2a(S)$, $9 \pm 1\%$ for $\beta 2a\Delta HOOK$). PIP_2 depletion also inhibited $Ca_v2.2$ channels with $\beta 2aMT$ control by $38 \pm 1\%$, which was less than with $\beta 2aMT(A)$ ($56 \pm 1\%$), $\beta 2aMT(S)$ ($42 \pm 1\%$), and $\beta 2aMT\Delta HOOK$ ($42 \pm 1\%$) and more than with $\beta 2aMT(B)$ ($9 \pm 1\%$). These results show that the modulatory effects of the HOOK region on $Ca_v2.2$ channel biophysics were almost the same between membrane-tethered $\beta 2a$ and cytosolic $\beta 2c$, suggesting that the HOOK region independently regulates Ca_v channel gating and that regulation is not affected by N-terminal targeting of the β subunit to the plasma membrane.

Charged amino acids in HOOK region mainly determine PIP_2 sensitivity and inactivation kinetics of $Ca_v2.2$ channels

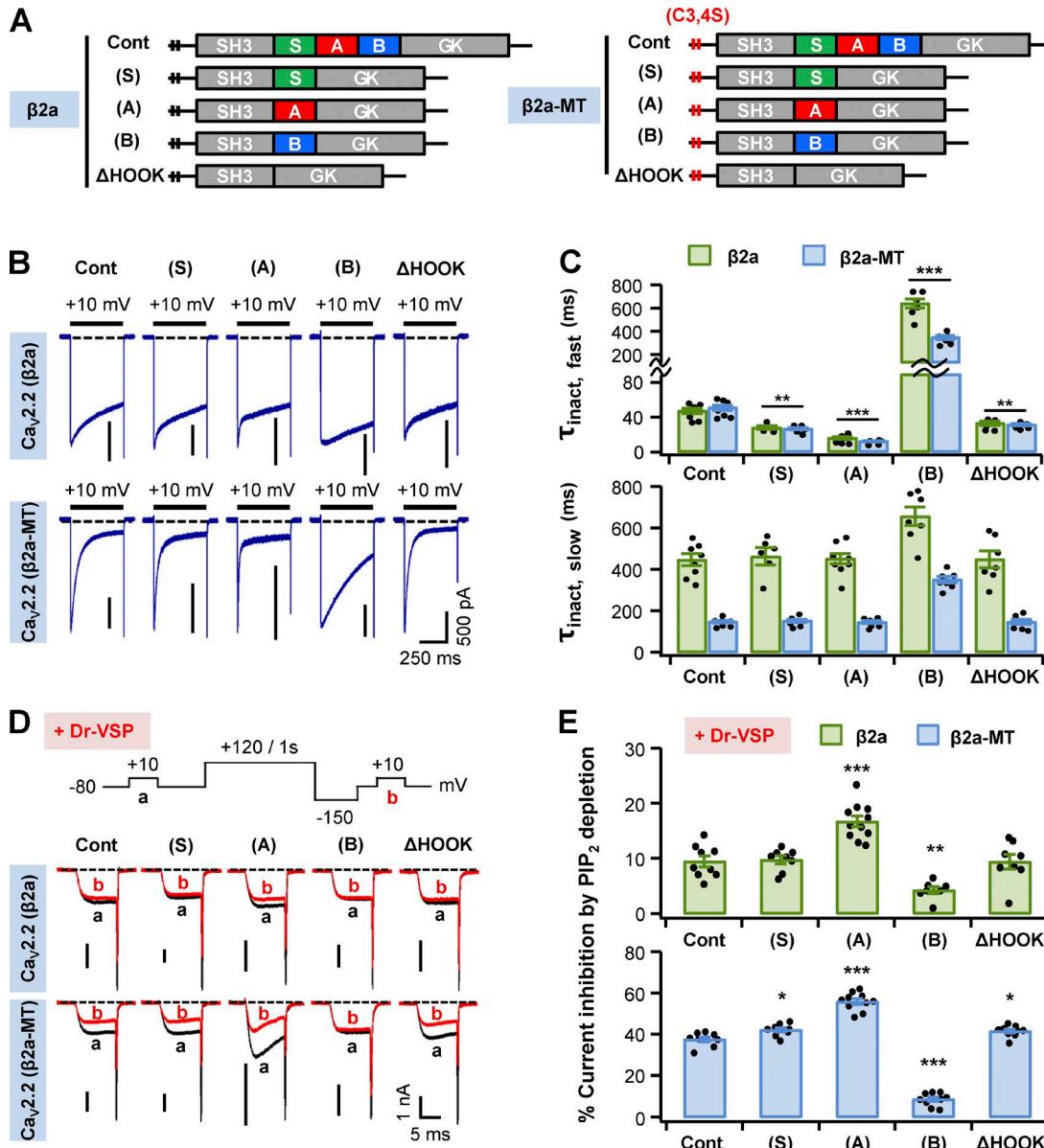

It has been reported that the basic amino acids of the polybasic linker segment of the $\beta 2a$ subunit are important in slowing the inactivation rate of $Ca_v2.3$ channels (Miranda-Laferte et al., 2012). To further test which amino acids of the basic B domain affect the PIP_2 sensitivity of $Ca_v2.2$ channels, we made several mutant constructs of the B domain and investigated their actions in gating regulation (Fig. 3 A). First, the B domain-deleted mutant $\beta 2c\Delta B$ or substitution of the basic residues for alanine within the B domain ($\beta 2c-B_{Ala}$) increased the inactivation and PIP_2 sensitivity of $Ca_v2.2$ channels (Fig. 3, B–E). These phenomena also similarly appeared in channels with the Phe-mutated

Figure 1. The HOOK region of $\beta 2c$ subunit plays an important role in determining current inactivation and PIP₂ regulation of $\text{Ca}_v2.2$ channels. (A) Schematic diagram of HOOK region deletion constructs of $\beta 2c$ used in this study. The domain structure of $\text{Ca}_v\beta$ subunit consists of the N terminus, SH3 domain (gray), HOOK region (green, blue, and red), GK domain (gray), and C terminus. Sequence alignment of the HOOK region of $\beta 2c$ from human, rat, and mouse is shown (top). The HOOK region of the $\beta 2c$ subunit was divided into three domains: S (polyserine), A (polyacidic), and B (polybasic). Serine residues within the S domain are indicated in green, acidic residues within the A domain are in blue, and basic residues within the B domain are in red. (inset) Confocal images of tsA-201 cells expressing $\alpha 1B$, $\alpha 2\delta 1$, and $\beta 2c$ deletion mutants fused to GFP. Bar, 10 μm . (B) Current inactivation of $\text{Ca}_v2.2$ channels with $\beta 2c$ mutant derivatives were measured during 500-ms test pulses to 10 mV. (C and D) The current decay of $\text{Ca}_v2.2(\beta 2c)$ was fitted to a double exponential function. Summary of time constants of fast ($\tau_{\text{inact, fast}}$; C) and slow ($\tau_{\text{inact, slow}}$; D) current inactivation. (E) Current inhibition of $\text{Ca}_v2.2$ channels with $\beta 2c$ derivatives by Dr-VSP-mediated PIP₂ depletion. Cells received a test pulse (a) and then a depolarization to 120 mV and a hyperpolarization to less than -150 mV, followed by the second test pulse (b). $\text{Ca}_v2.2(\beta 2c)$ currents before (a) and after (b) the depolarizing pulse are superimposed in control (top) and Dr-VSP-transfected (bottom) cells. (F) Summary of $\text{Ca}_v2.2(\beta 2c)$ current inhibition (percentage) by PIP₂ depletion in control (top) and Dr-VSP-expressing (bottom) cells. Dots indicate the individual data points for each experiment. **, $P < 0.01$; ***, $P < 0.001$, compared with control. Data are mean \pm SEM.

form ($\beta 2c\text{Phe}_{\text{Ala}}$). The results suggest that both basic amino acids and aromatic Phe residues of the B domain are important in slowing the inactivation of $\text{Ca}_v2.2$ channels and decreasing their PIP₂ sensitivity. We also examined the effects of acidic amino acids by

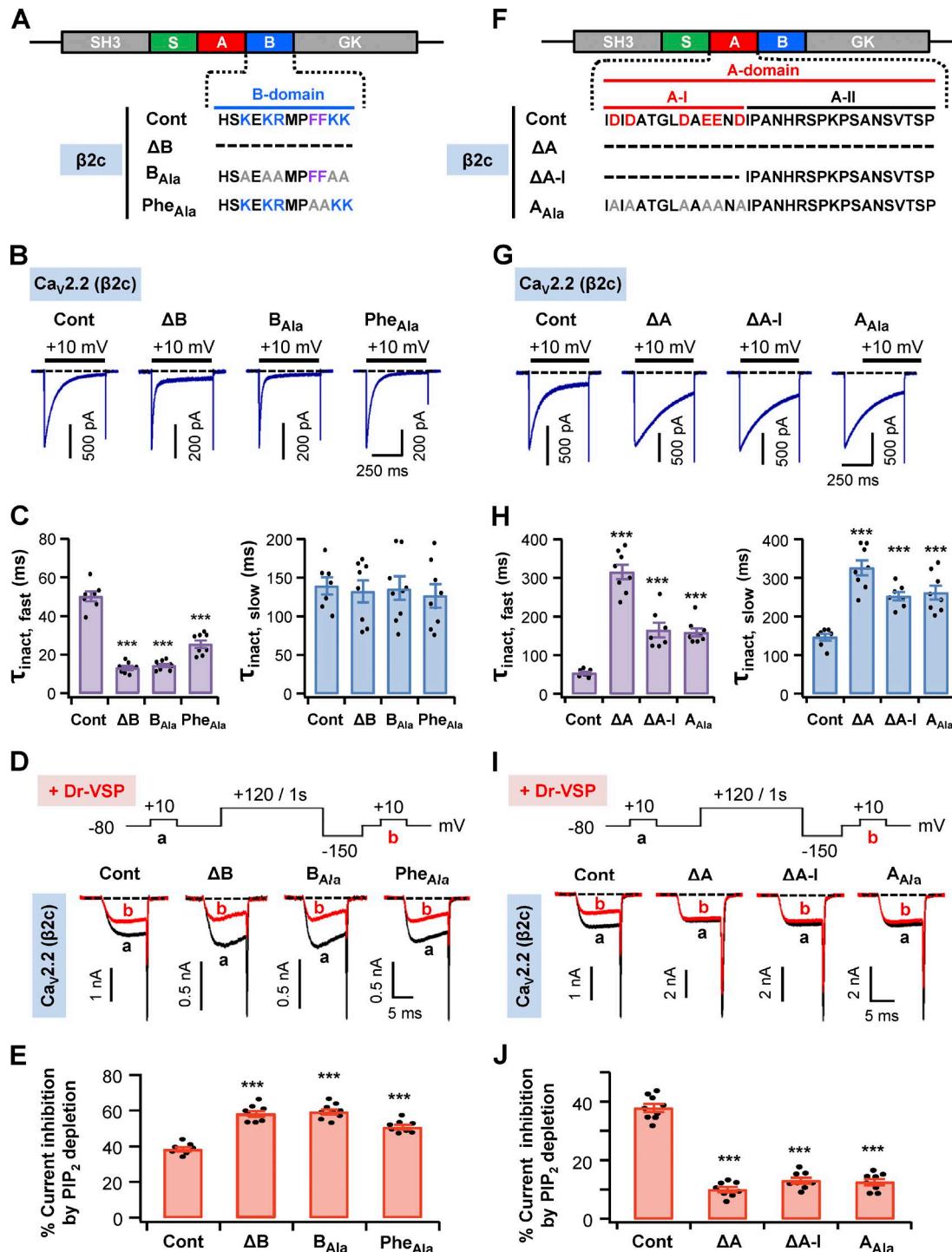

constructing A domain mutant forms. The A domain of the HOOK region can be divided further into A-I and A-II domains (Fig. 3 F). The A-I domain possesses all the acidic residues. When the acidic amino acids were replaced with alanine ($\beta 2c\text{A}_{\text{Ala}}$), the inactivation

Figure 2. Both the N terminus and the HOOK region are important in determining the current inactivation and PIP₂ regulation of Ca_v2.2 channels with a β2a subunit. (A) Schematic diagram of HOOK region deletion constructs of β2a (left) and β2aMT (right) used in this study. In the palmitoylation-resistant mutant β2aMT, the palmitoylation residues cysteine 3 and 4 (black) are replaced with serine (red). (B) Current inactivation was measured during 500-ms test pulses to 10 mV in cells expressing Ca_v2.2 channels with β2a derivatives (top) or β2aMT derivatives (bottom). (C) The current decay of the Ca_v2.2 channels was fitted to a double exponential function. Summary of the time constants for fast ($\tau_{\text{inact, fast}}$; top) and slow ($\tau_{\text{inact, slow}}$; bottom) current inactivation. (D) Current trace of Ca_v2.2 channels with β2a derivatives (top) or β2aMT derivatives (bottom) before (a) and after (b) depolarizing-pulse in Dr-VSP-expressing cells. (E) Summary of current inhibition (percentage) by PIP₂ depletion in cells with Ca_v2.2 channels with β2a derivatives (top) or β2aMT derivatives (bottom). Dots indicate the individual data points for each experiment. *, P < 0.05; **, P < 0.01; ***, P < 0.001 compared with control. Data are mean \pm SEM.

of Ca_v2.2 channels was slowed similarly to that of the A-I domain-deleted mutant (β2cΔA-I), but they showed slightly faster inactivation than the A domain-deleted mutant (β2cΔA; Fig. 3, G and H). Consistently, β2cΔA, β2cΔA-I, and β2cA_{Ala} showed significantly lower PIP₂ sensitivity than β2c control, and there was no difference among the mutant forms (Fig. 3, I and J). Therefore, our data suggest that the PIP₂ sensitivity and

inactivation of Ca_v channels are dependent on the net charges of the HOOK region; the positively charged HOOK region decreases these responses, whereas the negatively charged HOOK region increases them. These results also demonstrate that two hydrophobic Phe residues in the B domain play important roles in decreasing the responses together with the basic amino acid residues.

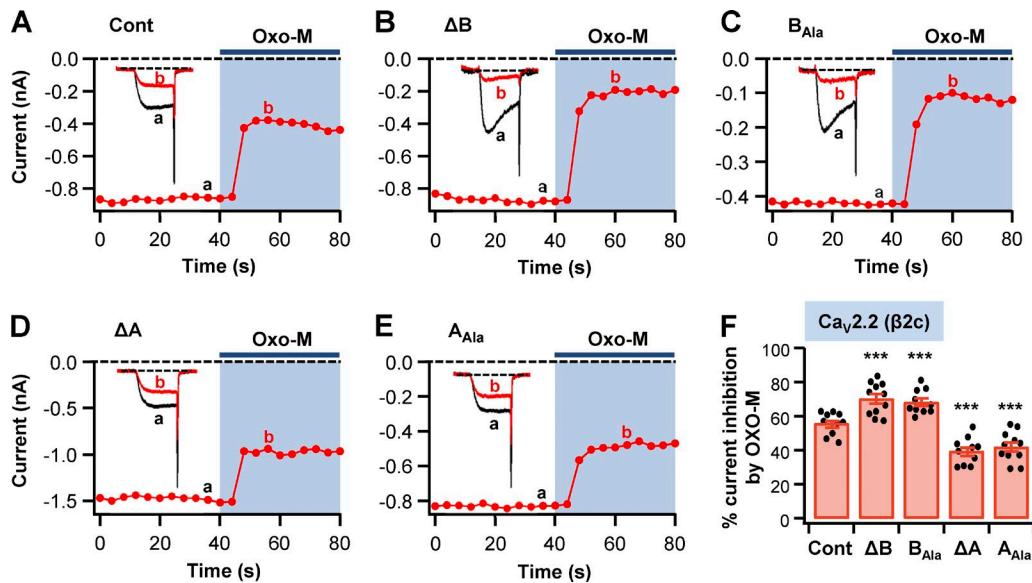
Figure 3. Charged amino acids in the HOOK region play important roles in determining the current inactivation and PIP₂ sensitivity of Ca_v2.2 channels. (A) Schematic diagram of β2c showing the amino acid sequence of WT B domain (control), B domain-deleted mutant (ΔB), basic residues replaced with alanine within the B domain (B_{Ala}) and two phenylalanines replaced with alanine (Phe_{Ala}). (B) Current inactivation of Ca_v2.2 channels was measured during 500-ms test pulses to 10 mV in cells with β2c control, ΔB, B_{Ala}, or Phe_{Ala}. (C) The current decay of the Ca_v2.2 channels was fitted to a double exponential function. Summary of time constants for fast ($\tau_{\text{inact, fast}}$; top) and slow ($\tau_{\text{inact, slow}}$; bottom) current inactivation. (D) Current inhibition of Ca_v2.2 channels with B domain derivatives of β2c subunit by Dr-VSP-mediated PIP₂ depletion. The currents before (a) and after (b) the depolarizing pulse are superimposed. (E) Summary of current inhibition (percentage) by PIP₂ depletion in cells with Ca_v2.2 channels with B domain derivatives of β2c. Note that basic residues of the B domain decrease the PIP₂ sensitivity of Ca_v2.2 channels. (F) Schematic diagram of β2c showing the amino acid sequence of WT A domain (control), A domain-deleted mutant (ΔA), A-I domain-deleted mutant (ΔA-I), and acidic residues substituted by alanine within the A-I domain (A_{Ala}). (G) Current inactivation of Ca_v2.2 channels was measured during 500-ms test pulses to 10 mV in cells with β2c control, ΔA, ΔA-I, or A_{Ala}. (H) Summary of time constants for fast ($\tau_{\text{inact, fast}}$; top) and slow ($\tau_{\text{inact, slow}}$; bottom) current inactivation.

Charged amino acids in the HOOK region affect muscarinic modulation of $\text{Ca}_v2.2$ channels

We then tested whether the HOOK region of the $\beta 2c$ subunit also affects the G_q -coupled receptor-mediated modulation of $\text{Ca}_v2.2$ channels by coexpressing M_1 muscarinic receptors (M_1 Rs; Fig. 4). Our data show that M_1 R activation with oxotremorine M inhibited $\text{Ca}_v2.2$ channels with $\beta 2c$ control by $56 \pm 2\%$, which is less than with $\beta 2c\Delta B$ ($70 \pm 3\%$) and $\beta 2cB_{\text{Ala}}$ ($68 \pm 2\%$) but more than with $\beta 2c\Delta A$ ($39 \pm 2\%$) and $\beta 2cA_{\text{Ala}}$ ($42 \pm 3\%$; Fig. 4 F), which are similar to the mode of regulation by Dr-VSP-mediated PIP_2 depletion. However, because M_1 muscarinic modulation of $\text{Ca}_v2.2$ channels depends not only on the PIP_2 -dependent pathway but also on the $\text{G}\beta\gamma$ -dependent pathway (Keum et al., 2014), the regulatory effects of HOOK region derivatives on the muscarinic modulation of the channels appear weak compared with Dr-VSP regulation.

The short form of the HOOK region in the $\beta 2c$ -short subunit shows similar regulatory effects on PIP_2 sensitivity and inactivation of $\text{Ca}_v2.2$ channels

The amino acid sequences of $\beta 2c$ and $\beta 2c$ -short are the same except for the HOOK region (Fig. 5 A). The polybasic (Bs) domain of $\beta 2c$ -short possesses half of the basic residues of the B domain of $\beta 2c$ without hydrophobic Phe residues (Fig. 5 A). In addition, there is no A domain in the $\beta 2c$ -short HOOK region. However, we could not detect any significant differences between $\text{Ca}_v2.2$ channels with $\beta 2c$ and $\beta 2c$ -short in terms of PIP_2 sensitivity and current inactivation (Fig. 5, B–F). When $\text{Ca}_v2.2$ channels were expressed with $\beta 2c$ -short containing only Bs, the current was not much different from that of $\beta 2c$ -short control. However, the channels exhibited faster inactivation and higher PIP_2 sensitivity compared with the channels with $\beta 2c$ containing only the B domain (Fig. 5, B–F). These results suggest that the three basic amino acids without hydrophobic residues in the Bs domain may be insufficient to slow the current inactivation and decrease the PIP_2 sensitivity of $\text{Ca}_v2.2$ channels.


The B domain of the HOOK region tethers a β subunit to the plasma membrane via electrostatic and hydrophobic interactions

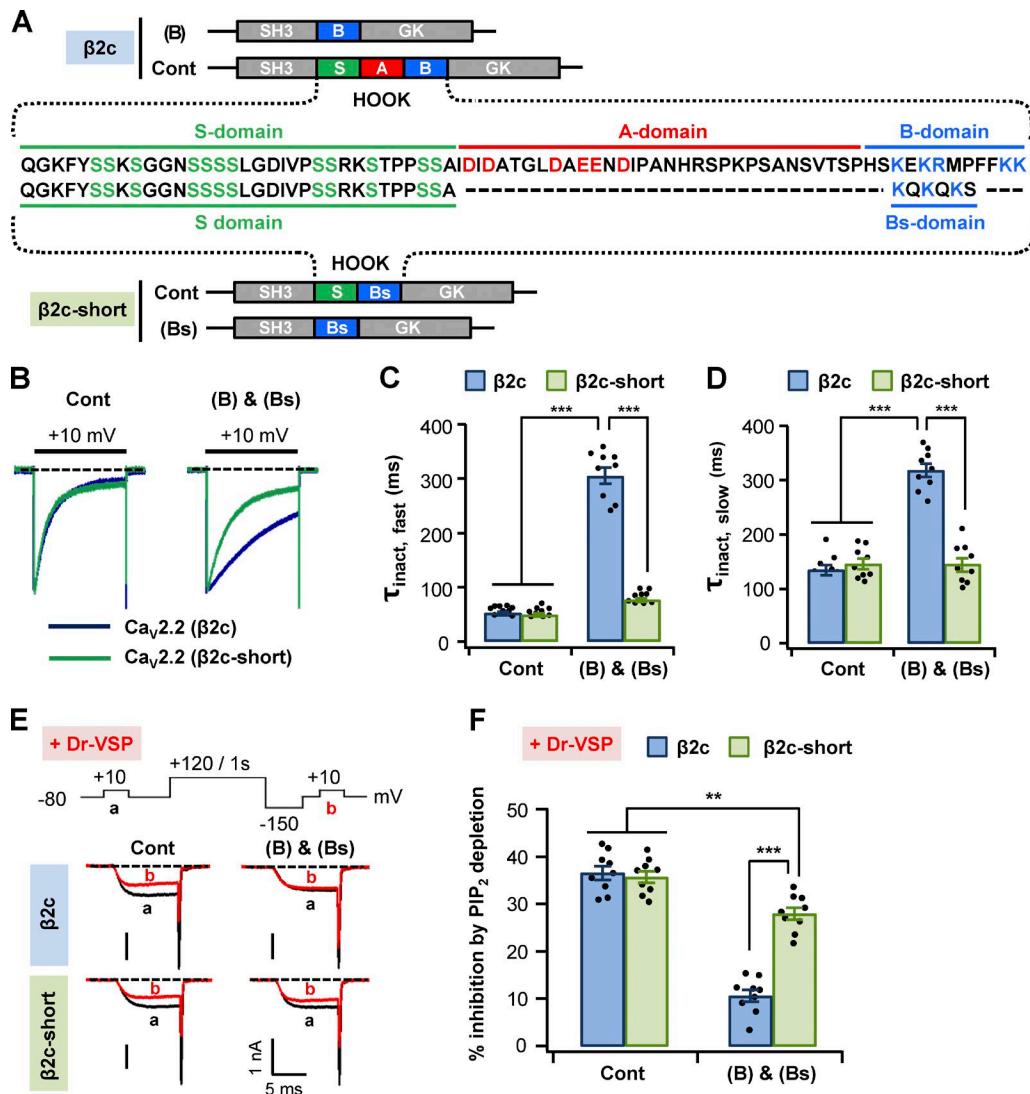
How does the HOOK region of the β subunit regulate Ca_v channel biophysics? $\beta 2c(B)$ decreased both PIP_2 sensitivity and current inactivation of the Ca_v channel like the membrane-tethering $\beta 2a$ subunit. Therefore,

we examined whether the B domain of the HOOK region can directly interact with the plasma membrane. First, we used a peptide-to-liposome FRET assay using synthesized peptides of the B domain of the HOOK region (Fig. 6 A). These peptides were labeled with the green fluorescence dye BODIPY 493/503 and served as the energy donor. Liposomes were labeled with the red fluorescence dye rhodamine and served as the energy acceptor. This FRET assay measures the change in emission intensity of green fluorescence (Fig. 6 A, left). When B domain WT peptides were added to liposomes lacking anionic phospholipids (Fig. 6 A, black traces), the intensity of green fluorescence was insignificantly attenuated, indicating no peptide–liposome interaction (Fig. 6 B). However, when 2% PIP_2 and 10% PS (Fig. 6 B, red traces) were added to the liposomes, there was a noticeable decrease in FRET, indicating the binding of B domain WT peptides to the liposomes (Fig. 6, B and C). It is known that basic amino acids and aromatic residues are major determinants of the membrane incorporation of peripheral proteins (Gelb et al., 1999; Miranda-Laferte et al., 2014; Kim et al., 2015a,b; Kim and Suh, 2016). Thus, we investigated whether mutant forms of B domain peptide (B_{Ala} and Phe_{Ala}) can interact with liposomes containing anionic lipids. When the mutant peptide forms of the B domain were added to the liposomes, FRET signals were not different between liposomes without (black traces) and with (red traces) anionic lipids (Fig. 6, B and C). This suggests that both basic amino acids and aromatic residues are essential for membrane binding of the B domain, which is consistent with the decreasing effects of the residues on inactivation kinetics and PIP_2 sensitivity (Fig. 4). We also examined whether the Bs domain peptide of $\beta 2c$ -short can bind liposomes. No differences in FRET signals of the Bs domain peptide of $\beta 2c$ -short were found between liposomes without (black) and with (red) anionic phospholipids (Fig. 6, B and C). This result indicates that the short Bs domain is not sufficient to make a stable interaction with the membrane, probably because this peptide does not have aromatic residues and has insufficient basic residues.

We then examined which phospholipids are responsible for the interaction with the B domain WT peptide. When either 2% PIP_2 (Fig. 6, D and E, green traces) or 10% PS (blue traces) was applied to the liposomes independently, the intensity of green fluorescence showed a slight attenuation compared with liposomes without both anionic lipids (Fig. 6, D and E, black traces). When

current inactivation. Dots indicate the individual data points for each experiment. *, $P < 0.05$; ***, $P < 0.001$ compared with control. (I) Current inhibition of $\text{Ca}_v2.2$ channels with A domain derivatives of the $\beta 2c$ subunit by Dr-VSP activation. The currents before (a) and after (b) the depolarizing pulse are superimposed. (J) Summary of current inhibition (%) by PIP_2 depletion in cells with $\text{Ca}_v2.2$ channels with A domain derivatives of $\beta 2c$. Note that acidic residues of the A domain increase PIP_2 sensitivity of $\text{Ca}_v2.2$ channels. Dots indicate the individual data points for each experiment. ***, $P < 0.001$ compared with control. Data are mean \pm SEM.

Figure 4. The HOOK region of the β subunit controls M₁ muscarinic modulation of Ca_v2.2 channels. (A-E) Current inhibition by M₁ muscarinic receptor activation with 10 μ M oxotremorine M (Oxo-M) in cells expressing Ca_v2.2 with β 2c derivatives. The current was measured at +10 mV every 4 s. Insets show that current traces of before (a) and during (b) Oxo-M application. (F) Summary of M₁ muscarinic inhibition of Ca_v2.2 currents in cells with β 2c derivatives. Dots indicate the individual data points for each experiment. ***, $P < 0.001$ compared with control. Data are mean \pm SEM.


both 2% PIP₂ and 10% PS (Fig. 6, D and E, red traces) were applied to the liposomes, the intensity of the emitted green fluorescence showed a greater reduction. These results indicate that both PIP₂ and PS mediate the interaction of the B domain to the plasma membrane.

The membrane interaction of the β 2c HOOK region was examined in intact live cells. In control tsA201 cells, the intact β 2c, β 2c(A), β 2c(B), and β 2cΔHOOK were all distributed throughout the cytoplasm in the absence of α 1 and α 2δ subunits (Fig. 7, A and B). However, when the anionic phosphoinositide PIP₂ was increased at the plasma membrane by overexpressing PIPK γ , β 2c(B) was selectively translocated to the plasma membrane (Fig. 7 B). The mutant β 2c(B_{Ala}) and β 2c(A+B), which is a β 2c subunit of the A domain and B domain in the HOOK region, were still localized in the cytosol, suggesting that basic residues of the B domain are important for the interaction with PIP₂ at the plasma membrane and the interaction can be blocked by adjacent A domain. We then applied the chemically inducible dimerization system to investigate whether the depletion of PIP₂ can trigger the dissociation of β 2c(B) from the plasma membrane. This chemically inducible dimerization system is used to irreversibly and rapidly deplete PIP₂ by membrane recruitment of pseudojanin (PJ), which contains both a lipid-4-phosphatase and a lipid-5-phosphatase (Hammond et al., 2012). Our results showed that recruiting PJ to the plasma membrane by rapamycin (Rapa) application leads to the release of plasma membrane β 2c(B) to the cytoplasm (Fig. 8, A-D). When we measured the fluorescence intensity of

RFP-PJ and β 2c(B)-GFP, the plasma membrane distribution of PJ increased upon Rapa application, whereas that of β 2c(B) decreased (Fig. 8 B). Consistently, the cytosolic fluorescence intensity of PJ decreased upon Rapa application, whereas that of β 2c(B) increased (Fig. 8, C and D). However, recruiting Dead, a mutant form with inactivated lipid-4-phosphatase and lipid-5-phosphatase, to the plasma membrane had no effects on the localization of β 2c(B) (Fig. 8 E). Consequently, the intensity of β 2c(B) of the plasma membrane and the cytosol remained unchanged after the addition of Rapa (Fig. 8, F-H). These results suggest that the B domain of the HOOK region of the β subunit can directly interact with the plasma membrane in intact cells.

DISCUSSION

In this study, we found that the HOOK region of the β 2 subunit regulates the PIP₂ sensitivity and inactivation kinetics of Ca_v channels. (a) When the HOOK region of the β 2 subunit was divided into three domains according to amino acid composition (i.e., S, A, and B), the charged amino acids of the A and B domains played important roles in determining the Ca_v2.2 channel gating properties. Acidic residues within the A domain increased the inactivation and PIP₂ regulation of Ca_v2.2 channels, whereas basic residues within the B domain decreased the responses. (b) The regulatory effect of the HOOK region was commonly detected in channels with either a membrane-tethered β 2a subunit or cytoso-

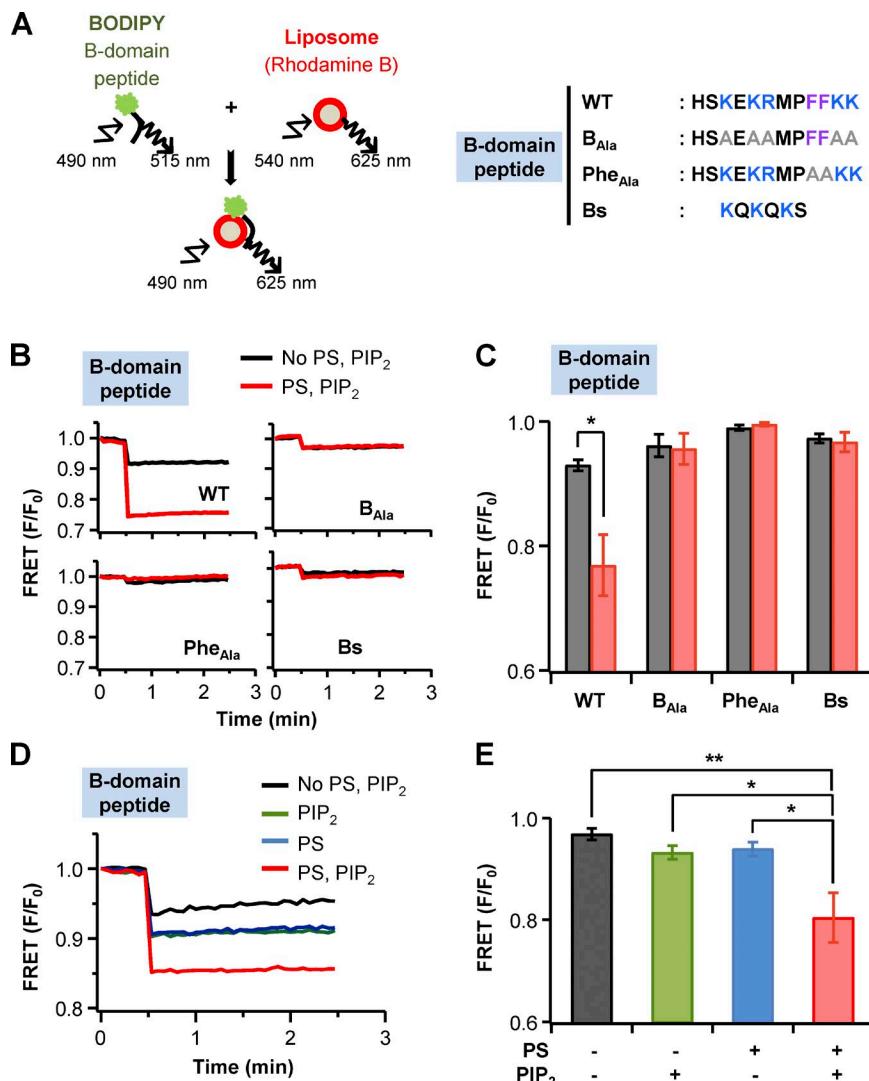


Figure 5. Current inactivation and PIP₂ sensitivity of Cav2.2 channels with β2c-short. (A) Schematic diagram of HOOK region deletion constructs of β2c (top) and β2c-short (bottom) used in this study. Amino acid sequence alignment of the HOOK region between β2c and β2c-short (middle). (B) Current inactivation was recorded during 500-ms test pulses to 10 mV in cells expressing Cav2.2 channels with β2c derivatives (blue traces) or β2c-short derivatives (green traces). Current traces with β2c-short derivatives (green traces) are scaled to the peak amplitude of current with β2c derivatives (blue traces). (C and D) Summary of time constants for fast ($\tau_{inact, fast}$; C) and slow ($\tau_{inact, slow}$; D) current inactivation. The decay of Cav2.2 currents was fitted to a double exponential function. (E) Current inhibition of Cav2.2 channels with β2c-short derivatives (top) or β2c derivatives (bottom) by Dr-VSP activation. Cells received a test pulse (a) and then were depolarized to 120 mV for 1 s and hyperpolarized to less than -150 mV for 0.4 s, followed by the second test pulse (b). Currents before (a) and after (b) the depolarizing pulse are superimposed. (F) Summary of current inhibition (percentage) by Dr-VSP activation in cells with β2c derivatives (blue bars) or β2c-short derivatives (green bars). Dots indicate the individual data points for each experiment. **, P < 0.01; ***, P < 0.001 compared with β2c-short derivatives. Data are mean \pm SEM.

lic β2c subunit. This suggests that the modulation of Cav channel gating by the HOOK region is independent of the regulation by N-terminal-mediated membrane targeting of the β subunit. (c) When the HOOK region-deleted β subunits were expressed, the inactivation and PIP₂ sensitivity of channels were increased compared with channels with a control β subunit and close to those with β2(A). The results suggest that the net charge of the HOOK region in the control β subunit is basic, and thus, the HOOK region is partially interact-

ing with acidic phospholipids in the plasma membrane. Nevertheless, because the targeting of the β subunit to the plasma membrane also required two aromatic Phe residues in the B domain, the HOOK region may bind to the plasma membrane through electrostatic and hydrophobic interaction.

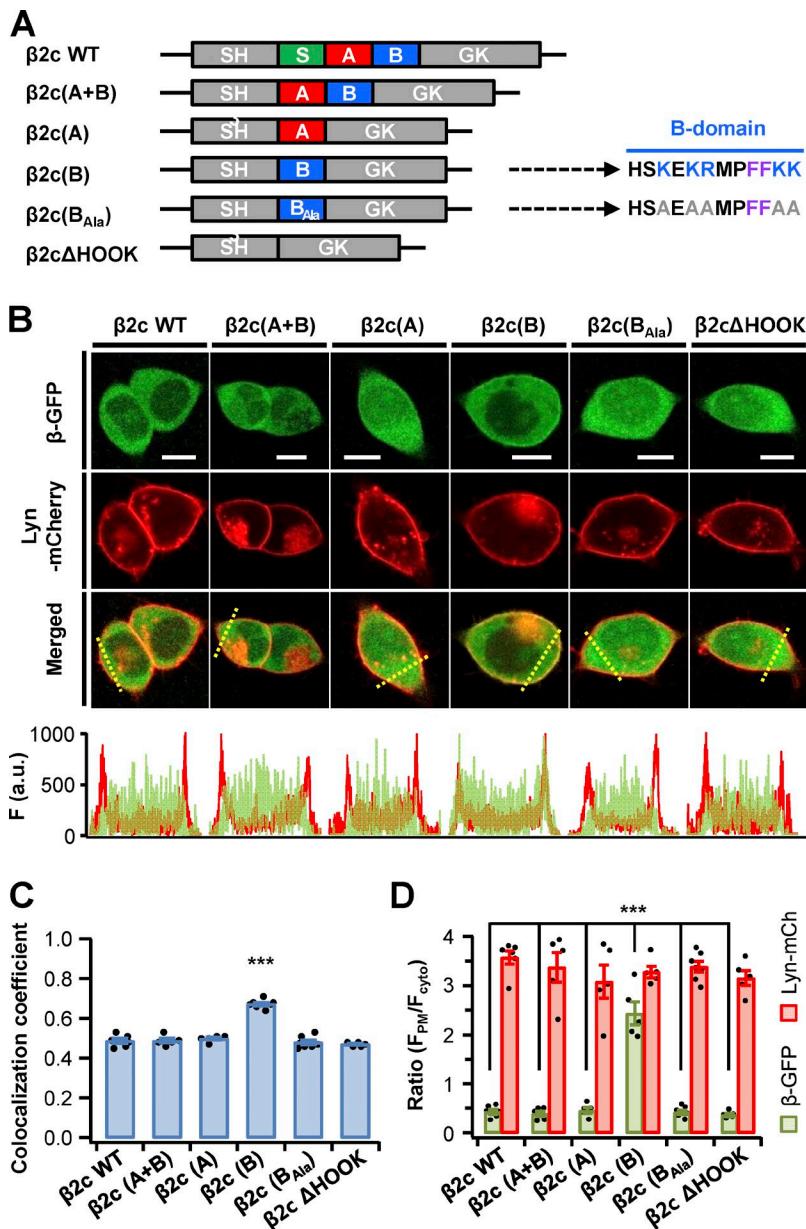

Previous studies have shown that the plasma membrane targeting of the cytosolic β subunit through N-terminal modification reduces both the current inactivation and PIP₂ sensitivity of Cav channels (Suh et

Figure 6. B domain of HOOK region electrostatically interacts with liposome anionic phospholipids through basic amino acids and two Phe residues. (A) Schematic diagram of FRET analysis (left) and amino acid sequence of B domain peptides (right). Binding was investigated using FRET between peptides labeled with BODIPY 493/503 (green fluorescence dye; donor) and liposomes labeled with rhodamine (red fluorescence dye; acceptor). Fluorescence emitted from BODIPY 493/503 is quenched by rhodamine, indicating peptides binding to liposomes. (B) Fluorescence intensity of BODIPY B domain peptides without (black traces) or with (red traces) 2% PIP₂ and 10% PS in the liposomes. (C) Summary of FRET changes with different peptides depending on liposomes without (black bars) or with (red bars) 2% PIP₂ and 10% PS ($n = 3$). *, $P < 0.05$ compared with liposome lacking PIP₂ and PS. (D) Fluorescence of BODIPY without anionic lipids (black trace) or with 2% PIP₂ (green trace), 10% PS (blue trace), or both 2% PIP₂ and 10% PS (red trace) in the liposomes. (E) Summary of FRET changes with different lipid compositions in the liposomes ($n = 3-5$). *, $P < 0.05$; **, $P < 0.01$, one-way ANOVA followed by Bonferroni post-hoc test. The initial fluorescence of BODIPY 493/503 was determined in the absence of liposomes (F_0) and the subsequent fluorescence was recorded after liposome application (F). FRET is presented as F/F_0 . Data are mean \pm SEM.

al., 2012; Keum et al., 2014). In this work, we showed that the HOOK region of the $\beta 2$ subunit also serves similar functions in regulating Ca_v channel gating. According to our findings, the mechanism of Ca_v channel regulation by the HOOK region is similar to the channel regulation by the N-terminal-dependent subcellular localization of the β subunit. $\beta 2c(B)$, the $\beta 2c$ subunit with only the B domain in the HOOK region, binds to the plasma membrane in the presence of high PIP₂ and exhibits slower inactivation and lower PIP₂ sensitivity on $\text{Ca}_v2.2$ channels, acting like the palmitoylation-mediated membrane-targeted $\beta 2a$ subunit. Actually, our data show that the synthetic peptide of the B domain can directly bind to the liposome-containing anionic lipids. However, the confocal data indicate that $\beta 2c(B)$ by itself does not interact with the plasma membrane in intact cells, but high PIP₂ levels are required. This may suggest that the $\beta 2c(B)$ subunit is too big to interact with the plasma membrane through only electrostatic interaction, whereas B domain peptides are small, and therefore, the presence of several acidic amino acids and two

aromatic residues is sufficient for the peptides to interact with liposomes. We also found that $\beta 2c(B)$ is localized at the plasma membrane when the concentration of PIP₂ is increased over 10-fold at the plasma membrane by overexpressing PIPK γ (Suh and Hille, 2007). This suggests that although the B domain alone is not sufficient to target the whole $\beta 2C$ protein to the plasma membrane in normal cells, $\beta 2c(B)$ may have a chance to interact with the plasma membrane when $\beta 2c(B)$ is coexpressed with the $\alpha 1B$ subunit and thus localized closely to the plasma membrane by binding to the I-II linker of the $\alpha 1B$ subunit (Fig. 9). It has been reported that both basic and aromatic residues of the N terminus play essential roles in the electrostatic interaction of the $\text{Ca}_v \beta 2e$ subunit with the plasma membrane (Miranda-Laferte et al., 2014; Kim et al., 2015a,b; Kim and Suh, 2016). Here, we also found that the interaction of the HOOK region with the plasma membrane depends on both polybasic and hydrophobic residues within the B domain. Based on these results, the mechanism by which the HOOK region regulates the inactivation ki-

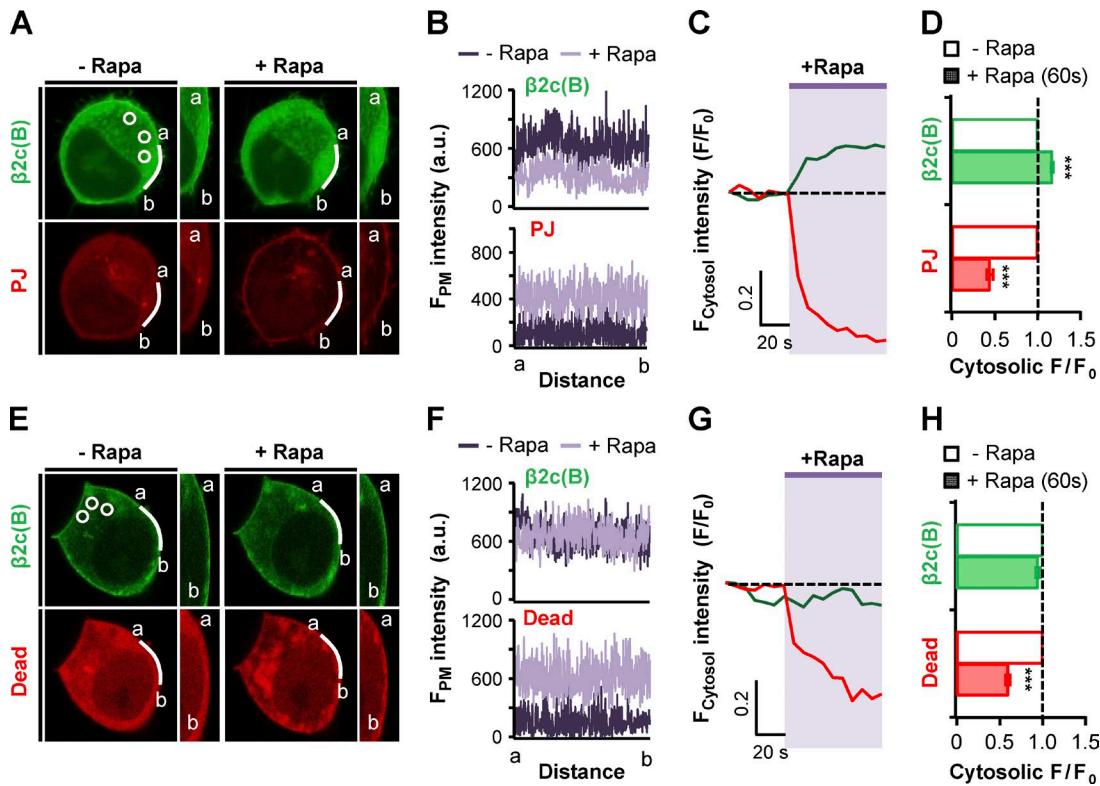


Figure 7. The B domain in the HOOK region of the β 2c subunit directly interacts with the plasma membrane in intact cells. (A) Schematic diagram of HOOK region deletion constructs of β 2c used in this study. (B) Confocal images showing subcellular distribution of GFP-tagged β 2c derivatives and Lyn-mCherry (the plasma membrane marker) in the presence of PIPK γ (top), with line scans crossing the cytosol and plasma membrane (bottom). a.u., arbitrary units. Bars, 10 μ m. Note that GFP-tagged β 2c(A+B) are distributed through both the cytosol and the plasma membrane. (C) The colocalization coefficients were obtained from merged images of cells expressing GFP-labeled β 2c derivatives and Lyn-mCherry. (D) Quantification of fluorescence intensity ratio of plasma membrane and cytosol (F_{PM}/F_{cyto}) was calculated from line intensity histograms of cells expressing β 2c derivatives-GFP and Lyn-mCherry in the presence of PIPK γ . Dots indicate the individual data points for each experiment. ***, $P < 0.001$, one-way (C) or two-way (D) ANOVA followed by Bonferroni post-hoc test. Data are mean \pm SEM.

netics and PIP₂ sensitivity of Ca_v channels is caused by the direct interaction of the HOOK region with the plasma membrane.

Our data show that the PIP₂ sensitivity and inactivation kinetics of Ca_v2.2 channels are not significantly different in channels with β 2c or β 2c-short, although the β 2c-short subunit has half of the basic residues compared with β 2c without the Phe residues in the B domain and no A domain. If the A and B domains in the HOOK region of the β 2c subunit bind each other through charge-charge interaction, the total net charge of the HOOK region of the β 2c subunit may not be different from that of β 2c-short (Fig. 9). Our data suggest that the net charge of the HOOK region of both β 2c and β 2c-short is weak basic because deletion of the whole HOOK region triggered the β subunit to be lo-

cated in the cytosol and the Ca_v2.2 channels with β 2cΔHOOK to present faster inactivation and higher PIP₂ sensitivity. These results suggest that even though the WT β 2c and β 2c-short are located in the cytosol in the absence of α 1 subunit, when bound to the α 1 through α 1-binding pocket, they are able to slightly interact with the plasma membrane via the basic amino acids of the HOOK region. Previous studies showed many of membrane-interacting proteins have a very low affinity to phospholipids to direct membrane targeting on their own but cooperate with other domains in the same protein or other membrane proteins to drive multivalent membrane binding through multidomain complex formation (Lemmon, 2008). For example, some proteins cooperate with tyrosine-phosphorylated membrane receptors through the phosphotyrosine-binding

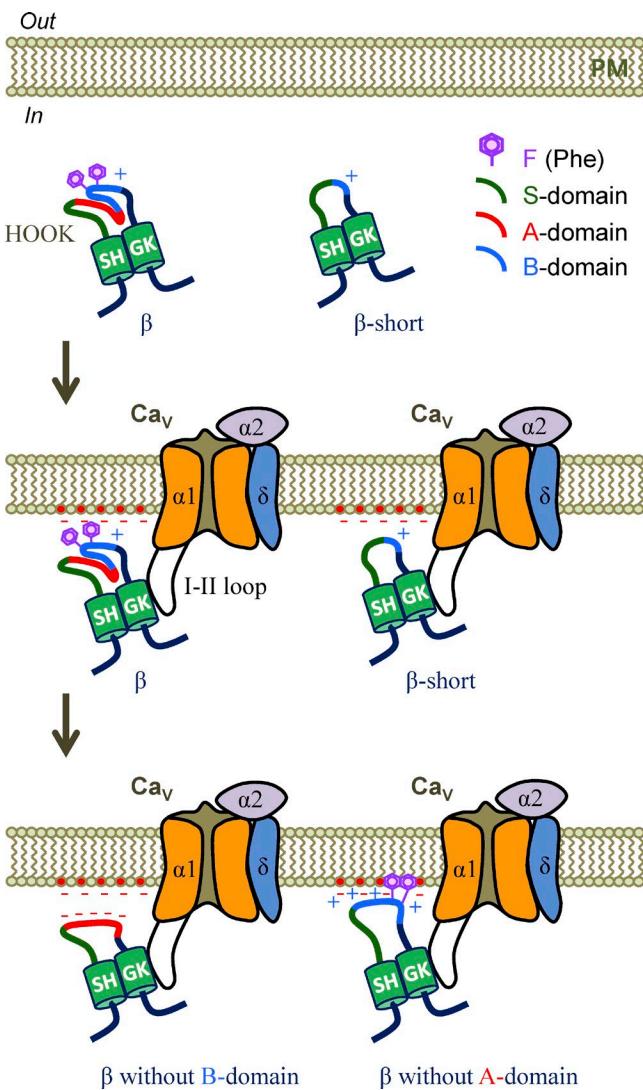


Figure 8. PIP₂ depletion induces the dissociation of β2c(B) from the plasma membrane. (A and E) Time-series confocal images of cells expressing β2c(B)-GFP, LDR and either RFP-PJ (A) or RFP-Dead (E). Images before and after 1 μM rapamycin (Rapa) addition for 60 s. Bar, 5 μm. (B and F) Analysis of the plasma membrane fluorescence intensity of β2c(B)-GFP and either RFP-PJ (B) or RFP-Dead (F) before (black) and after (purple) rapamycin application. a.u., arbitrary units. (C and G) Cytosolic fluorescence intensities of GFP (green) and RFP (red) for the cells shown in A (C) or E (G). Normalized fluorescence intensity is shown as a function of time. ΔF/F₀, fluorescence alteration divided by initial fluorescence. (D and H) Summary of normalized fluorescence intensity of GFP (green) and RFP (red) in the cytosol for the cells shown in A or E before (white bars) and after (colored bars) 60-s rapamycin addition. ***, P < 0.001. Data are mean ± SEM.

domain, such as SH2, to recruit a phospholipid-binding domain to the plasma membrane containing specific phospholipids (Schlessinger, 2000).

In this work, we used artificially modified β2c constructs after deletion or point mutation of the HOOK region. Is it possible to alter the net charge of the HOOK region of the β2 subunit *in vivo*? We envisage that the net charge of the HOOK region can be changed by phosphorylation of the S domain. As mentioned previously, the S domain retains a serine-rich sequence, and it is possible that the serine residues are phosphorylated by protein kinases (Brunet et al., 2015). So far, the crystal structure of the HOOK region is unresolved, but it is highly flexible (Chen et al., 2004; Opatowsky et al., 2004; Van Petegem et al., 2004; Buraei and Yang, 2010). Therefore, the structure and the net charge of the HOOK region could be dynamically changed by the degree of phosphorylation in the S domain. In addition, depending on the domains exposed by the phosphorylation of the S domain, the net charge of the HOOK region will be dynamically changed. In resting state, the net charge of HOOK region may be weak pos-

itive, because the A domain and B domain of the HOOK region can partially mask each other. Our data suggest that when the net charge of the HOOK region is changed to basic because of B domain exposure, the β subunit will move toward the plasma membrane and thereby decrease the current inactivation and PIP₂ sensitivity of Cav channels (Fig. 9). When the β subunit, meanwhile, moves toward the cytosol because of the exposure of acidic residues, it will increase both responses. Recent studies have reported evidence supporting our hypothesis. Those studies identified that two conserved sites of the S domain of the HOOK region can be phosphorylated *in vivo* and that the phosphomimetic mutations of these sites slowed Cav1.2 channel inactivation (Brunet et al., 2015). In addition, it has been recently reported that HOOK region mutation of the β2 subunit might be involved in autism spectrum disorders (Breiteneckamp et al., 2014). Those studies showed that rare missense mutations of the β2d subunit that altered Cav1.2 channel gating were discovered in autism spectrum disorder-affected families. In one of these mutations, serine was replaced by phenylalanine within the S

Figure 9. Schematic model of β subunit HOOK region-mediated regulation of Ca_V channels. In the absence of the $\alpha 1$ subunit, the β or β -short forms bind membrane phospholipids too weakly to direct stable membrane association on their own (top). They are localized in the cytosol in cells without an $\alpha 1$ subunit. In the presence of the $\alpha 1$ subunit (middle), they can be recruited to the plasma membrane through the cooperative interaction between GK domain and I-II loop, and the polyacidic (A) and polybasic (B) domains of the HOOK region may partially associate each other; thus, the HOOK region of the β subunit looks charged as weak positive with two hydrophobic Phe residues. Therefore, the HOOK region may interact with the anionic membrane phospholipids through electrostatic forces. The HOOK region of the β -short subunit does not have an A domain but contains three basic amino acids without Phe residues. The HOOK region of the β -short subunit is also charged as positive and can interact with the plasma membrane. When the B domain was deleted from β subunit (bottom), HOOK becomes acidic and cannot interact with the anionic membrane phospholipids. The dissociation of the β subunit HOOK region from the plasma membrane promotes the inactivation of Ca_V currents and augments the PIP_2 sensitivity of Ca_V channels like the cytosolic β subunits. In contrast, when the A domain was deleted from the β subunit, the HOOK region becomes more positive, can directly associate with the plasma membrane, and enhances

domain (S197F). $\beta 2d$ S197F exhibited slow inactivation of the $\text{Ca}_V 1.2$ channel compared with WT S197F. The HOOK region of this mutant may have a greater chance of interacting with the plasma membrane because of the mutation to the aromatic residue. Still, further studies should investigate which factor changes the net charge of the HOOK region in physiological conditions.

It seems clear that the plasma membrane PIP_2 regulates Ca_V channel gating through both direct and indirect pathways. Recently, Kaur et al. (2015) reported that several basic amino acids in the C terminus of the I-II link are involved in the PIP_2 binding to the $\text{Ca}_V \alpha 1C$ subunit and mediate the direct phospholipid regulation of Ca_V channel inactivation. In contrast, our recent studies with the $\beta 2e$ subunit showed that PIP_2 indirectly regulates the channel gating through the interaction with the N terminus of $\beta 2e$, where the PIP_2 in the plasma membrane acts as an anchoring site for the $\beta 2e$ subunit and thus slows the inactivation of Ca_V channels with $\beta 2e$. Here, we provide another case showing that the PIP_2 indirectly regulates Ca_V channels through the coupling with the HOOK region of the β subunit. The last pathway is relatively weak and needs the help of the $\alpha 1$ subunit to hold the β subunit adjacent to the plasma membrane.

In conclusion, our findings offer new insight into the mechanism by which the HOOK region regulates Ca_V channels. It has been reported that the HOOK region may directly associate with the $\alpha 1$ subunit to regulate the current inactivation of Ca_V channels (He et al., 2007; Richards et al., 2007), but the HOOK region flexible interaction site in the $\alpha 1$ subunit has not been determined. Here, we speculate that the HOOK region interacts with the plasma membrane through electrostatic and hydrophobic interactions independently from the isotypes of the β subunit. Future work should reveal this dynamic regulatory mode of the HOOK region in native neurons and investigate the physiological consequences of the flexible HOOK regulation of neuronal Ca_V channels.

ACKNOWLEDGMENTS

We are grateful to Dr. Veit Flockerzi for providing β subunit clones and discussion. We also thank many laboratories for providing the plasmids.

This work was supported by grants from the National Research Foundation of Korea funded by the Korea government (2016R1A2B4014253); the Daegu Gyeongbuk Institute of Science and Technology Research and Development Program of the Min-

the inactivation kinetics and PIP_2 sensitivity of Ca_V channels like the membrane-tethered β subunits. In this configuration, both the net charges and hydrophobicity of the HOOK region are important for deciding the interaction affinity of β subunits to the plasma membrane. All HOOK region deletion derivatives still remain stably bound to the I-II loop of the $\alpha 1$ subunit.

istry of Science, ICT and Future Planning (17-BD-06); and the Korea Brain Research Institute basic research program funded by the Ministry of Science, ICT and Future Planning (2231-415).

The authors declare no competing financial interests.

Author contributions: C.-G. Park and B.-C. Suh designed research; C.-G. Park performed biochemical and electrophysiological research; Y. Park performed liposome FRET assay; and C.-G. Park and B.-C. Suh wrote the paper.

Kenton J. Swartz served as editor.

Submitted: 3 August 2016

Revised: 12 December 2016

Accepted: 22 December 2016

REFERENCES

Birnbaumer, L., N. Qin, R. Olcese, E. Tareilus, D. Platano, J. Costantin, and E. Stefani. 1998. Structures and functions of calcium channel β subunits. *J. Bioenerg. Biomembr.* 30:357–375. <http://dx.doi.org/10.1023/A:1021989622656>

Breitenkamp, A.F.S., J. Matthes, R.D. Nass, J. Sinzig, G. Lehmkuhl, P. Nürnberg, and S. Herzog. 2014. Rare mutations of CACNB2 found in autism spectrum disease-affected families alter calcium channel function. *PLoS One.* 9:e95579. <http://dx.doi.org/10.1371/journal.pone.0095579>

Brunet, S., M.A. Emrick, M. Sadilek, T. Scheuer, and W.A. Catterall. 2015. Phosphorylation sites in the Hook domain of $\text{Ca}_v\beta$ subunits differentially modulate $\text{Ca}_v1.2$ channel function. *J. Mol. Cell. Cardiol.* 87:248–256. <http://dx.doi.org/10.1016/j.yjmcc.2015.08.006>

Buraei, Z., and J. Yang. 2010. The β subunit of voltage-gated Ca^{2+} channels. *Physiol. Rev.* 90:1461–1506. <http://dx.doi.org/10.1152/physrev.00057.2009>

Catterall, W.A. 2000. Structure and regulation of voltage-gated Ca^{2+} channels. *Annu. Rev. Cell Dev. Biol.* 16:521–555. <http://dx.doi.org/10.1146/annurev.cellbio.16.1.521>

Catterall, W.A. 2011. Voltage-gated calcium channels. *Cold Spring Harb. Perspect. Biol.* 3:a003947. <http://dx.doi.org/10.1101/cshperspect.a003947>

Chen, Y.H., M.H. Li, Y. Zhang, L.L. He, Y. Yamada, A. Fitzmaurice, Y. Shen, H. Zhang, L. Tong, and J. Yang. 2004. Structural basis of the $\alpha 1\beta$ subunit interaction of voltage-gated Ca^{2+} channels. *Nature.* 429:675–680. <http://dx.doi.org/10.1038/nature02641>

Chen, Y.H., L.L. He, D.R. Buchanan, Y. Zhang, A. Fitzmaurice, and J. Yang. 2009. Functional dissection of the intramolecular Src homology 3-guanylate kinase domain coupling in voltage-gated Ca^{2+} channel β -subunits. *FEBS Lett.* 583:1969–1975. <http://dx.doi.org/10.1016/j.febslet.2009.05.001>

Chien, A.J., K.M. Carr, R.E. Shirokov, E. Rios, and M.M. Hosey. 1996. Identification of palmitoylation sites within the L-type calcium channel $\beta 2a$ subunit and effects on channel function. *J. Biol. Chem.* 271:26465–26468. <http://dx.doi.org/10.1074/jbc.271.43.26465>

Colecraft, H.M., B. Alseikhan, S.X. Takahashi, D. Chaudhuri, S. Mittman, V. Yegnasubramanian, R.S. Alvania, D.C. Johns, E. Marbán, and D.T. Yue. 2002. Novel functional properties of Ca^{2+} channel β subunits revealed by their expression in adult rat heart cells. *J. Physiol.* 541:435–452. <http://dx.doi.org/10.1113/jphysiol.2002.018515>

De Waard, M., M. Pragnell, and K.P. Campbell. 1994. Ca^{2+} channel regulation by a conserved β subunit domain. *Neuron.* 13:495–503. [http://dx.doi.org/10.1016/0896-6273\(94\)90363-8](http://dx.doi.org/10.1016/0896-6273(94)90363-8)

Falkenburger, B.H., J.B. Jensen, and B. Hille. 2010. Kinetics of PIP_2 metabolism and $\text{KCNQ}2/3$ channel regulation studied with a voltage-sensitive phosphatase in living cells. *J. Gen. Physiol.* 135:99–114. <http://dx.doi.org/10.1085/jgp.200910345>

Gelb, M.H., W. Cho, and D.C. Wilton. 1999. Interfacial binding of secreted phospholipases A(2): more than electrostatics and a major role for tryptophan. *Curr. Opin. Struct. Biol.* 9:428–432. [http://dx.doi.org/10.1016/S0959-440X\(99\)80059-1](http://dx.doi.org/10.1016/S0959-440X(99)80059-1)

Hammond, G.R.V., M.J. Fischer, K.E. Anderson, J. Holdich, A. Koteci, T. Balla, and R.F. Irvine. 2012. PI4P and $\text{PI}(4,5)\text{P}_2$ are essential but independent lipid determinants of membrane identity. *Science.* 337:727–730. <http://dx.doi.org/10.1126/science.1222483>

Hanlon, M.R., N.S. Berrow, A.C. Dolphin, and B.A. Wallace. 1999. Modelling of a voltage-dependent Ca^{2+} channel β subunit as a basis for understanding its functional properties. *FEBS Lett.* 445:366–370. [http://dx.doi.org/10.1016/S0014-5793\(99\)00156-8](http://dx.doi.org/10.1016/S0014-5793(99)00156-8)

He, L.L., Y. Zhang, Y.H. Chen, Y. Yamada, and J. Yang. 2007. Functional modularity of the β -subunit of voltage-gated Ca^{2+} channels. *Biophys. J.* 93:834–845. <http://dx.doi.org/10.1529/biophysj.106.101691>

Hille, B. 1994. Modulation of ion-channel function by G-protein-coupled receptors. *Trends Neurosci.* 17:531–536. [http://dx.doi.org/10.1016/0166-2236\(94\)90157-0](http://dx.doi.org/10.1016/0166-2236(94)90157-0)

Hille, B., E.J. Dickson, M. Kruse, O. Vivas, and B.-C. Suh. 2015. Phosphoinositides regulate ion channels. *Biochim. Biophys. Acta.* 1851:844–856. <http://dx.doi.org/10.1016/j.bbapap.2014.09.010>

Hurley, J.H., A.L. Cahill, K.P.M. Currie, and A.P. Fox. 2000. The role of dynamic palmitoylation in Ca^{2+} channel inactivation. *Proc. Natl. Acad. Sci. USA.* 97:9293–9298. <http://dx.doi.org/10.1073/pnas.160589697>

Jeong, J.-Y., H.-J. Kweon, and B.-C. Suh. 2016. Dual regulation of R-type $\text{Ca}_v2.3$ channels by M_1 muscarinic receptors. *Mol. Cells.* 39:322–329. <http://dx.doi.org/10.14348/molcells.2016.2292>

Kaur, G., A. Pinggera, N.J. Ortner, A. Lieb, M.J. Sinnegger-Brauns, V. Yarov-Yarovoy, G.J. Obermair, B.E. Flucher, and J. Striessnig. 2015. A polybasic plasma membrane binding motif in the I-II linker stabilizes voltage-gated $\text{Ca}_v1.2$ calcium channel function. *J. Biol. Chem.* 290:21086–21100. <http://dx.doi.org/10.1074/jbc.M115.645671>

Keum, D., C. Baek, D.-I. Kim, H.-J. Kweon, and B.-C. Suh. 2014. Voltage-dependent regulation of $\text{Ca}_v2.2$ channels by G_q -coupled receptor is facilitated by membrane-localized β subunit. *J. Gen. Physiol.* 144:297–309. <http://dx.doi.org/10.1085/jgp.201411245>

Kim, D.-I., and B.-C. Suh. 2016. Differential interaction of $\beta 2e$ with phosphoinositides: A comparative study between $\beta 2e$ and MAR CKS. *Channels (Austin).* 10:238–246. <http://dx.doi.org/10.1080/19336950.2015.1124311>

Kim, D.-I., M. Kang, S. Kim, J. Lee, Y. Park, I. Chang, and B.-C. Suh. 2015a. Molecular basis of the membrane interaction of the $\beta 2e$ subunit of voltage-gated Ca^{2+} channels. *Biophys. J.* 109:922–935. <http://dx.doi.org/10.1016/j.bpj.2015.07.040>

Kim, D.-I., Y. Park, D.-J. Jang, and B.-C. Suh. 2015b. Dynamic phospholipid interaction of $\beta 2e$ subunit regulates the gating of voltage-gated Ca^{2+} channels. *J. Gen. Physiol.* 145:529–541. <http://dx.doi.org/10.1085/jgp.201411349>

Kim, D.-I., H.-J. Kweon, Y. Park, D.-J. Jang, and B.-C. Suh. 2016. Ca^{2+} controls gating of voltage-gated calcium channels by releasing the $\beta 2e$ subunit from the plasma membrane. *Sci. Signal.* 9:ra67. <http://dx.doi.org/10.1126/scisignal.aad7247>

Lacinová, L. 2005. Voltage-dependent calcium channels. *Gen. Physiol. Biophys.* 24:1–78.

Lemmon, M.A. 2008. Membrane recognition by phospholipid-binding domains. *Nat. Rev. Mol. Cell Biol.* 9:99–111. <http://dx.doi.org/10.1038/nrm2328>

Link, S., M. Meissner, B. Held, A. Beck, P. Weissgerber, M. Freichel, and V. Flockerzi. 2009. Diversity and developmental expression of L-type calcium channel β 2 proteins and their influence on calcium current in murine heart. *J. Biol. Chem.* 284:30129–30137. <http://dx.doi.org/10.1074/jbc.M109.045583>

Liu, L., and A.R. Rittenhouse. 2003. Arachidonic acid mediates muscarinic inhibition and enhancement of N-type Ca^{2+} current in sympathetic neurons. *Proc. Natl. Acad. Sci. USA.* 100:295–300. <http://dx.doi.org/10.1073/pnas.0136826100>

McGee, A.W., D.A. Nunziato, J.M. Maltez, K.E. Prehoda, G.S. Pitt, and D.S. Bredt. 2004. Calcium channel function regulated by the SH3-GK module in β subunits. *Neuron.* 42:89–99. [http://dx.doi.org/10.1016/S0896-6273\(04\)00149-7](http://dx.doi.org/10.1016/S0896-6273(04)00149-7)

Miranda-Laferte, E., S. Schmidt, A.C. Jara, A. Neely, and P. Hidalgo. 2012. A short polybasic segment between the two conserved domains of the β 2a-subunit modulates the rate of inactivation of R-type calcium channel. *J. Biol. Chem.* 287:32588–32597. <http://dx.doi.org/10.1074/jbc.M112.362509>

Miranda-Laferte, E., D. Ewers, R.E. Guzman, N. Jordan, S. Schmidt, and P. Hidalgo. 2014. The N-terminal domain tethers the voltage-gated calcium channel β 2e-subunit to the plasma membrane via electrostatic and hydrophobic interactions. *J. Biol. Chem.* 289:10387–10398. <http://dx.doi.org/10.1074/jbc.M113.507244>

Murata, Y., H. Iwasaki, M. Sasaki, K. Inaba, and Y. Okamura. 2005. Phosphoinositide phosphatase activity coupled to an intrinsic voltage sensor. *Nature.* 435:1239–1243. <http://dx.doi.org/10.1038/nature03650>

Okamura, Y., Y. Murata, and H. Iwasaki. 2009. Voltage-sensing phosphatase: actions and potentials. *J. Physiol.* 587:513–520. <http://dx.doi.org/10.1113/jphysiol.2008.163097>

Olcese, R., N. Qin, T. Schneider, A. Neely, X. Wei, E. Stefani, and L. Birnbaumer. 1994. The amino terminus of a calcium channel β subunit sets rates of channel inactivation independently of the subunit's effect on activation. *Neuron.* 13:1433–1438. [http://dx.doi.org/10.1016/0896-6273\(94\)90428-6](http://dx.doi.org/10.1016/0896-6273(94)90428-6)

Opatowsky, Y., C.-C. Chen, K.P. Campbell, and J.A. Hirsch. 2004. Structural analysis of the voltage-dependent calcium channel β subunit functional core and its complex with the α 1 interaction domain. *Neuron.* 42:387–399. [http://dx.doi.org/10.1016/S0896-6273\(04\)00250-8](http://dx.doi.org/10.1016/S0896-6273(04)00250-8)

Qin, N., R. Olcese, J. Zhou, O.A. Cabello, L. Birnbaumer, and E. Stefani. 1996. Identification of a second region of the β -subunit involved in regulation of calcium channel inactivation. *Am. J. Physiol.* 271:C1539–C1545.

Qin, N., D. Platano, R. Olcese, J.L. Costantin, E. Stefani, and L. Birnbaumer. 1998. Unique regulatory properties of the type 2a Ca^{2+} channel β subunit caused by palmitoylation. *Proc. Natl. Acad. Sci. USA.* 95:4690–4695. <http://dx.doi.org/10.1073/pnas.95.8.4690>

Richards, M.W., J. Leroy, W.S. Pratt, and A.C. Dolphin. 2007. The HOOK-domain between the SH3- and the GK-domains of $\text{Ca}_V\beta$ subunits contains key determinants controlling calcium channel inactivation. *Channels (Austin).* 1:92–101. <http://dx.doi.org/10.4161/chan.4145>

Roberts-Crowley, M.L., T. Mitra-Ganguli, L. Liu, and A.R. Rittenhouse. 2009. Regulation of voltage-gated Ca^{2+} channels by lipids. *Cell Calcium.* 45:589–601. <http://dx.doi.org/10.1016/j.ceca.2009.03.015>

Schlessinger, J. 2000. Cell signaling by receptor tyrosine kinases. *Cell.* 103:211–225. [http://dx.doi.org/10.1016/S0092-8674\(00\)00114-8](http://dx.doi.org/10.1016/S0092-8674(00)00114-8)

Stotz, S.C., W. Barr, J.E. McRory, L. Chen, S.E. Jarvis, and G.W. Zamponi. 2004. Several structural domains contribute to the regulation of N-type calcium channel inactivation by the β 3 subunit. *J. Biol. Chem.* 279:3793–3800. <http://dx.doi.org/10.1074/jbc.M308991200>

Suh, B.-C., and B. Hille. 2007. Electrostatic interaction of internal Mg^{2+} with membrane PIP_2 Seen with KCNQ K^+ channels. *J. Gen. Physiol.* 130:241–256. <http://dx.doi.org/10.1085/jgp.200709821>

Suh, B.-C., K. Leal, and B. Hille. 2010. Modulation of high-voltage activated $\text{Ca}^{(2+)}$ channels by membrane phosphatidylinositol 4,5-bisphosphate. *Neuron.* 67:224–238. <http://dx.doi.org/10.1016/j.neuron.2010.07.001>

Suh, B.-C., D.-I. Kim, B.H. Falkenburger, and B. Hille. 2012. Membrane-localized β -subunits alter the PIP_2 regulation of high-voltage activated Ca^{2+} channels. *Proc. Natl. Acad. Sci. USA.* 109:3161–3166. <http://dx.doi.org/10.1073/pnas.1121434109>

Takahashi, S.X., S. Mittman, and H.M. Colecraft. 2003. Distinctive modulatory effects of five human auxiliary β 2 subunit splice variants on L-type calcium channel gating. *Biophys. J.* 84:3007–3021. [http://dx.doi.org/10.1016/S0006-3495\(03\)70027-7](http://dx.doi.org/10.1016/S0006-3495(03)70027-7)

Van Petegem, F., K.A. Clark, F.C. Chatelain, and D.L. Minor Jr. 2004. Structure of a complex between a voltage-gated calcium channel β -subunit and an α -subunit domain. *Nature.* 429:671–675. <http://dx.doi.org/10.1038/nature02588>