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Epithelia define the boundaries of the body and often transfer solutes and water from outside to inside (absorp-
tion) or from inside to outside (secretion). Those processes involve dual plasma membranes with different trans-
port components that interact with each other. Understanding those functions has entailed breaking down the
problem to analyze properties of individual membranes (apical vs. basolateral) and individual transport proteins.
It also requires understanding of how those components interact and how they are regulated. This article outlines
the modern history of this research as reflected by publications in The Journal of General Physiology.

Introduction

Epithelia separate the inside of the body from the
outside. In multicellular organisms they enable ab-
sorption of nutrients from the environment or from
ingested food, underlie extracellular volume and elec-
trolyte homeostasis, and drive the secretion of fluids
necessary for digestion, respiration, reproduction, and
temperature regulation. They are, therefore, suitable
subjects for the exploration of general physiology, de-
fined by The Journal of General Physiology (JGP) to
cover “basic biological, chemical, or physical mecha-
nisms of broad physiological significance.” Although
many epithelial functions obviously meet those crite-
ria, the tissues are often difficult to study because of
their complexity, generally involving two cell mem-
branes in series with each other and in parallel with
paracellular pathways. They may also include multiple
cell types with different functions. Although not al-
ways a mainstay of JGP’s mission, research on epithe-
lial function became an important component of its
content in the 1950s, reaching a peak in the 1990s,
before declining somewhat in recent years. This review
will explore some of the most important topics in this
field published in JGP. The discussion will certainly
not be exhaustive; it would be impossible to cover the
hundreds of relevant articles in this brief format. In-
stead, this review will focus on a few areas that have
generated sustained coverage and interest in JGP,
in many cases for several decades. This report is not
meant to be a complete or unbiased review of the lit-
erature in each area. I will focus sharply on articles
published in JGP, with reference to a few key papers
appearing elsewhere.
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Early years (1918-1950)

Epithelial biology appeared only sporadically in JGP
during its early years. There were occasional articles
on secretion of acid by the stomach (Teorell, 1939)
and organic dyes by liver (Hober, 1939; Hober and
Moore, 1939), and on the spontaneous voltage across
frog skin (Amberson and Klein, 1928; Ponder and Ma-
cleod, 1937). However, even those topics did not de-
velop sustained activity in the pages of JGP. Reasons
for this include the complexities I've noted, as well as
the lack of good experimental models. The frog skin,
of course, ultimately became such a model, after the
breakthrough paradigms of Ussing and Zerahn (1951);
see "The Ussing model"). Stomach permeabilities
could be studied to some extent in situ, although that
approach obviously had its limitations. Liver function
was assessed with an isolated, perfused organ from the
frog, evidently not an easy preparation because that line
of investigation ended after two studies. Micropuncture
was one technique developed during the 1930s to study
renal function in detail, but that approach did not ever
gain a foothold in the studies in JGP.

Clearly, however, at least by the 1940s, JGP investiga-
tors were thinking about the basic principles underlying
absorption and secretion. Winthrop Osterhout, one of
the original editors of JGP and a prolific contributor to
its pages, used his favorite model organism, the alga Ni-
tella, to investigate those phenomena. Those same cells,
which can grow to lengths of 5-10 cm, were also used to
study bioelectric properties, including action potentials
(Osterhout, 1934). In a series of experiments designed
to explore trans-tissue fluid absorption and secretion,
Osterhout bathed two halves of an isolated Nitella cell
in separate aqueous compartments, separated by insu-
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Figure 1. H,O movement through

cells of Nitella. (Top) Device for mea-
suring fluid movement. A, Half of a

single cell immersed in L; B, half of a
single cell immersed in R; C, seal sepa-
rating L and R; L, left aqueous compart-
ment; R, right aqueous compartment.
The compartments were insulated with
a rubber pencil eraser or a piece of
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cork, anticipating later development
of sucrose-gap preparations. (Bottom)
Time course of movement of water
from compartment L to R. The distance
on the y axis indicates the movement
of the water meniscus in the narrow
neck of the capillary in compartment
L. Curve 1 shows movement from L to
R when the fluid in R is switched from
H,0O to 0.4 M sucrose with distilled H,O
in L. Curve 2 shows movement in the
reverse direction when solution R is
replaced with 0.3 M sucrose, showing
water flows from a more concentrated
compartment to a more dilute compart-
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lating material, and measured water flow between the
compartments (Fig. 1). To demonstrate movement of
water from a solution of high osmolarity to one of lower
osmolarity, as occurs in the mammalian kidney under
conditions of antidiuresis, one half of the cell was im-
mersed in 0.4 M sucrose and the other in pure HyO to
set up an osmotic gradient within the cytoplasm (Os-
terhout, 1949). When the concentration was suddenly
reduced from 0.4 to 0.3 M, water moved toward the
more-dilute compartment. This “uphill” movement of
fluid was driven by osmotic forces within an interme-
diate compartment, namely the cell. A similar setup
demonstrated osmotically driven fluid secretion (Oster-
hout, 1947). One side of the cell was again immersed
in a sucrose solution, raising the intracellular osmolar-
ity. When the sucrose solution was replaced with water,
fluid moved from that compartment to the other, even
though the two compartments had the same osmolarity.
As described in "HyO transport in epithelia," his basic
idea anticipated the explanation of both fluid secretion
and isotonic fluid absorption in epithelia, such as the
small intestine, renal proximal tubule, and gall bladder.

Absorptive epithelia

The Ussing model. The work of Hans Ussing introduced
two new paradigms for the understanding of epithelial
function. The first was the recognition of active transep-
ithelial Na" transport and its quantitative assessment
based on measurements of unidirectional fluxes using
tracers and the short-circuit—current (voltage—clamp)
technique (Ussing and Zerahn, 1951). This provided an
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ment. In curve 3, compartment R is re-
placed with distilled water, bringing the
system back to its original state. From
Osterhout (1949).
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operational definition of active transepithelial trans-
port but revealed little about the underlying mecha-
nism. The second was the idea that the spontaneous
voltage developed across an epithelium reflects very dif-
ferent permeability properties of the plasma mem-
branes facing the outside (apical or mucosal membrane)
and the inside (basolateral or serosal membrane; Koe-
foed-Johnsen and Ussing, 1958). Thus, Ussing showed
that the way to overcome the complexity of epithelial
transport was to break the system down into its compo-
nent parts, in this case, the two cell membranes.

In the years and decades after the appearance of this
seminal work (in Acta Physiologica Scandinavica) JGP
published many studies extending the basic findings to
other epithelia. One of those was the toad urinary blad-
der (Leaf et al., 1958; Maffly and Edelman, 1963), in
which the short-circuit current again was accounted for
by the active transport of Na'. This tissue proved to be
an invaluable model to study the actions of hormones,
such as antidiuretic hormone and aldosterone (Leaf
and Hays, 1962; Sharp and Leaf, 1968; Fig. 2).

However, not all epithelia turned out to be so simple.
In the skin of a South American species of frog, in con-
trast to that used by Ussing and Zerahn, the short-cir-
cuit current was smaller than the net flux of Na*, with
net active absorption of CI™ accounting for the differ-
ence (Zadunaisky et al., 1963). Later work with toad
skin indicated that this CI” transport was powered by
active H" transport coupled to an apical CI7/HCO;™ ex-
change mechanism (Jensen et al., 1997). The gills of
the freshwater fish also exhibited independent Na* and

Epithelial transport in JGP | Palmer

920z Areniged 20 uo 1senb Aq ypd-'gzgL 1210z dbl/8296.1/.68/01/61 | 4Pd-ejonie/dbl/Bio sseidnu//:dpy woy pepeojumoq



40f

20+ No

SHORT - CIRCUIT CURRENT
w
Q
]

MINUTES

L . A -d

500 1000 1500
plasma aldosterone (ng/dl)

ot

F(Vna- Va)/RT

—@— wtNa'
—— 0S589A Na*
—&— (S589C Na*
—¥— aS589N Na'
—O— wtK'

—{ 1~ oS589A K’
—— 0S8589C K"
—7/— 0S589N K'

-1.0

relative |,

-1.5

Figure 2. Epithelial Na* channels in absorptive epithelia. (A) Short-circuit current across the toad urinary bladder and its depen-
dence on Na* and oxidative metabolism are shown. The short-circuit current under normal conditions was equal to the net flux of
Na measured with Na?? and Na?*. Transport was stimulated by oxytocin or vasopressin and was enhanced in the presence of O,.
From Leaf et al. (1958). (B) Flux-ratio analysis of Na* permeation in frog skin. The value n’ = 1 is consistent with single-ion perme-
ation through channels. From Benos et al. (1983). (C) Dependence of Na* channel activity on aldosterone in rat collecting duct.
From Pacha et al. (1993). (D) Conduction through WT ENaC and channels with point mutations in the putative selectivity filter. The
WT channel is almost perfectly selective for Na*, rather than K*, whereas mutations in the second transmembrane domain of the «

subunit confer conduction of K*. From Kellenberger et al. (2001).

Cl” uptake systems (Maetz and Garciaromeu, 1964).
These complexities anticipated the coupled transport
systems described in "Coupled transport systems."

At about the same time, the idea of active Na* trans-
portwas found to apply to mammalian intestinal epithe-
lia, studied both in vivo (Curran and Solomon, 1957)
and in vitro (Curran, 1960; Schultz and Zalusky, 1964).
These models also led to the understanding of the cou-
pling of Na® and solute movement and of salt and water
movement (see "Coupled transport systems"). The Uss-
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ing approach was also extended to the renal proximal
tubules of Necturus (Giebisch, 1961) and rat (Giebisch
et al., 1964) perfused in vivo. Similar to the frog skin,
the permeabilities of luminal and contraluminal mem-
branes were asymmetric, and short-circuit current ap-
proximated the net Na' flux, inferred from changes in
the volume of fluid within the lumen.

Isolating the two membranes. Starting mostly in the
1970s, investigators began to use intracellular recording
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techniques to quantify individual membrane conduc-
tances as well as intracellular ion activities in transport-
ing epithelia. In the classic frog skin model,
microelectrode recordings demonstrated a negative
cell potential under most conditions and the much
greater resistance of the apical membrane compared
with the basolateral (Helman and Fisher, 1977; Schoen
and Erlij, 1985; Harvey and Ehrenfeld, 1988). These ap-
proaches generated electrical models in the form of cir-
cuit diagrams. Circuit diagrams were also obtained for
other high-resistance epithelia, including the rabbit uri-
nary bladder (Lewis et al., 1977) and the Amphiuma
collecting duct (Horisberger and Giebisch, 1988), as
well as “leaky” epithelia that have low-resistance paracel-
lular pathways, exemplified by the Necturus proximal
tubule (Anagnostopoulos etal., 1980) and the Necturus
gall bladder (Cotton and Reuss, 1991).

That work also revealed an electrical behavior more
complex than that of a simple ohmic resistance; the ba-
solateral membrane conductance of frog skin exhibited
rectification and time dependence. Detailed examina-
tion of those properties was impeded by the difficulty of
controlling the membrane voltage in an intact system.
Furthermore, apical and basolateral membranes inter-
act with each other (Davis and Finn, 1982). This “cross
talk” may reflect in part the sensitivity of conductances
to intracellular pH (Harvey and Ehrenfeld, 1988) and
intracellular Ca** (Chase and Al-Awqati, 1983), both of
which depend on intracellular Na® and hence on Na'
transport rates.

Recognizing individual transporters. The next level of
understanding of transport entailed more analytic de-
scriptions of the individual components of those sys-
tems, ultimately at the level of defined transport
proteins. This trend is exemplified by studies of the ep-
ithelial Na" channels that form the basis of the apical
Na' permeability of frog skin, toad urinary bladder, and
mammalian renal collecting duct and colon. In that
case, the recognition of a very specific transport system
started early with studies of saturation kinetics (Frazier
et al., 1962) and block with the K-sparing diuretic ami-
loride (Benos et al., 1979). Advanced techniques, in-
cluding fluctuation analysis, flux-ratio analysis, and
single-channel recordings, showed those channels have
a small, single-channel conductance that is exquisitely
selective for Na* over K', slow and weakly voltage-depen-
dent gating, minimal single filing, and control by the
mineralocorticoid aldosterone (Benos et al., 1983; Hel-
man et al., 1983; Palmer and Frindt, 1988; Pacha et al.,
1993). With the cloning of the epithelial Na channel
(ENaC) subunits comprising these channels, studies
broadened to identify aspects of the channel important
for ion selectivity (Schild et al., 1997; Kellenberger et
al., 1999) and gating (Haerteis et al., 2012; Collier etal.,
2014), moving the dissection of the system components
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to the intramolecular level. They have also included in-
vestigations of intracellular trafficking of the protein
(Butterworth et al., 2005; Frindt et al., 2016).

On the other side of the cell, basolateral K* channels
have proven to be more difficult to study in detail or to
identify. This is due, in part, to the technical challenge
of assessing the properties of that membrane and may
also reflect the presence of multiple K'-channel types
(Germann et al., 1986). The inner membrane of the
frog skin expresses low-conductance inwardly rectifying
the K' channels (Urbach et al., 1994), presumably ac-
counting for the high K* permeability of that membrane
in the Koefoed—Johnsen and Ussing model. Other ba-
solateral K'-channel types were identified at the sin-
gle-channel level in the renal collecting duct (Wang,
1995), the proximal tubule (Mauerer et al., 1998), and
the thick ascending limb of Henle’s loop (Paulais et al.,
2006). In the last study, the channels were tentatively
associated with the SLO2.2 gene product, but in most
cases, the molecular identify of the basolateral K" chan-
nels remained uncertain.

The Na/K pump in the basolateral membrane forms
the third critical component of the Na* absorbing sys-
tem. Those pumps have been studied in epithelial cells
(Sackin and Boulpaep, 1983). Furthermore many other
articles in JGP have dealt with the properties of that
transporter, but because those articles were not specific
for epithelia, I will not review them here.

A final key component of absorptive epithelia, the
shunt pathway, also received some attention. In the
amphibian skin, mitochondria-rich cells comprise
a major part of the shunt, at least with respect to the
movement of CI” that accompanies Na'" uptake. That
pathway includes apical membrane CI” channels in
those cells (Sgrensen and Larsen, 1996). In “leaky”
epithelia, paracellular transport through tight junc-
tions becomes more important. A study of Necturus
gall bladder showed that the organic cation triamin-
opyridium selectively blocked Na® transport through
that route (Moreno, 1975). Later work correlated that
permeability with specific amino acid side chains in
the tightjunction protein Claudin-2 (Yu et al., 2009).
Rather than acting as a simple shunt, the paracellular
pathway turned out to have its own complex behavior.

Cl™-secreting epithelia

Ussing and colleagues were also the first to recognize
active epithelial C1” secretion (Koefoed-Johnsen et al.,
1952). They applied the same measurements of tracer
fluxes and short-circuit currents, and even the same
frog skin preparations, but in this case, the skins were
stimulated with norepinephrine to activate secretion,
probably through glands embedded in the epithelium.
Some of the most significant early work on Cl™-secreting
epithelia published in JGP involved the regulation of
the process. Hokin and Hokin (1960, 1967) stimulated
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Figure 3. Control of epithelial fluid secretion. (A) Incorporation of [**P]phosphatidic acid in goose nasal salt gland in response
to a secretagogue. From (Hokin et al., 1960). (B) Control of airway surface liquid in cultured lung epithelial cells from healthy sub-
jects (NL) and from patients with cystic fibrosis (CF). In CF or in the presence of bumetanide, a drug that blocks CI~ entry into the
cells, the height of the surface layer is diminished. From Tarran et al. (2006). (C) Gating of CFTR by ATP. From Vergani et al. (2003).
(D) Effect of specific negative charges in the outer mouth of the CFTR pore on channel conductance. From Aubin and Linsdell (2006).

secretion in the avian salt gland using acetylcholine,
analogous to the stimulation of the skin by epineph-
rine. That prescient work, together with similar anal-
yses of brain and pancreas, first identified changes in
phospholipid metabolism in the regulation of cellular
function (Fig. 3). It ultimately anticipated the role of
G-protein—coupled PIP2 metabolism in the responses
of cells to hormones and neurotransmitters.

In the canonical secretion process, CI™ enters the ep-
ithelial cells through secondary active transport across
the basolateral membrane and exits through apical,
anion-selective channels. Regulation of those channels
controls secretion rates, and as such, they are analo-
gous to the Na’ channels of absorptive epithelia. This
field received a huge boost in the early 1990s with the
cloning of the CFTR gene and its identification as a
cAMP-regulated ClI™ channel. JGP provided an import-
ant forum for detailed studies of this transporter at the
level of specific channel entities. Indeed, those chan-

JGP Vol. 149, No. 10

nels mediate Cl” secretion in the glands of the frog skin
(Sgrensen and Larsen, 1998). This and further studies
demonstrated that CFTR channels have broad selec-
tivity for anions that follow the lyotropic series (Smith
etal.,, 1999, 2001; Aubin and Linsdell, 2006). They are
blocked by glycine hydrazide compounds (Muanprasat
et al.,, 2004) and appear to interact with other trans-
port systems (Tarran et al., 2006; Bertrand et al., 2009).
Two long series of publications from the laboratories
of Gadsby (e.g., Vergani et al., 2003) and Hwang (e.g.,
Bompadre et al., 2005) elucidated some of the com-
plex events governing the gating of CFTR by nucleo-
tides, linking the operation of the channels with that of
ATP-driven pumps.

Ca*-activated CI” channels in the apical membrane
offered an alternative pathway for CI” secretion in
some epithelia. Recent work has identified those chan-
nels with the TMEM16 gene family, and JGP has been
a home for several detailed studies of them. Those
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proteins form dimers with independent, conducting
pores (Jeng et al., 2016; Lim et al., 2016). Ca* opens
the channels through direct interactions that do not re-
quire calmodulin (Yu et al., 2014). The open channels
conduct a range of anions, and permeation and gating
are interdependent (Betto et al., 2014).

Other secretory pathways

As described in "Early years (1918-1950)," acid secre-
tion by the stomach was a topic of early interest in JGP.
Some further studies investigated the relationship be-
tween transport of H" and CI™ by the gastric mucosa
(Durbin, 1964; Spenney et al., 1975), although that
topic has not received much recent attention. JGP also
had a role in the elucidation of H' secretion by renal
epithelia, typified by the turtle urinary bladder. That
tissue mimics the mechanism of acid secretion by the
mammalian renal collecting duct. When active Na®
transport is blocked, the short-circuit current reverses
and can be accounted for by H' secretion into the urine
through an active transport process tightly coupled to
metabolism (Beauwens and Al-Awqati, 1976). Intracel-
lular acidification stimulates, and mucosal acidification
inhibits, H' secretion, which ultimately depends on a
V-type proton pump in the luminal membrane (Cohen
and Steinmetz, 1980; Andersen et al., 1985).

The kidneys and colon also secrete K'. Although JGP
has not published many studies of this process at the
organ or epithelial level, similar to the case for CI” se-
cretion, it has provided a forum for the detailed investi-
gation of the individual channels involved. The luminal
membrane of collecting-duct principal cells contains
low-conductance, K'selective channels that are regu-
lated by ATP and protein kinases (Wang and Giebisch,
1991; Lu et al., 2000). Their density increases with di-
etary K, supporting a role in K homeostasis (Palmer
et al., 1994). The identification of those channels with
the inward rectifier Kirl.1 (ROMK) facilitated struc-
ture—function studies of permeation (Choe et al., 2000;
Yang et al., 2012).

Pancreatic ducts secrete HCO3™ into their luminal
fluid, a process that helps to neutralize stomach acid
in the duodenum. Solomon and colleagues (Swanson
and Solomon, 1973, 1975) were the first to examine
that transport system in JGP. Based on micropuncture
measurements, they concluded that Na" and HCO;~
were both actively secreted, and that Na*/H" and Cl™/
HCOs;™ exchangers both had significant roles. A later
study using isolated perfused pancreatic ducts localized
Na'/H" exchange to the basolateral membrane and
Cl"/HCOs™ exchangers to both membranes (Zhao et
al., 1994). Although those anion exchangers could fa-
cilitate HCO3~ movement into the secreted fluid, CFTR
could also directly conduct HCO3™ out of the cell into
the lumen, analogous to the movement of ClI™ in other
secretory epithelia (Ishiguro et al., 2009).
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Coupled transport systems

Although the frog skin and related absorptive organs
use ion channels to take up Na® from the outside envi-
ronment, other epithelia couple Na influx with that of
other solutes. Curran (1960) noted the strong depen-
dence of intestinal Na® transport on luminal glucose
but presumed that this reflected metabolic support for
the active transport machinery. Crane (1962), whose
main interest was in sugar rather than salt absorption,
reinterpreted that phenomenon in terms of the simul-
taneous, interdependent transport of the two solutes.
The cotransport concept eventually lead to the devel-
opment of simple, oral rehydration solutions contain-
ing both salt and sugar to treat acute diarrheal diseases,
such as cholera.

Again, JGP fostered an understanding of those sys-
tems at increasing resolution from whole tissue to in-
tramolecular levels. Schultz and Zalusky (1964) refined
the idea of coupled transport, describing the sugar
specificity and kinetics of what is now known as the
sodium-glucose cotransporter (Fig. 4). Subsequently
the notion was extended to include the absorption of
amino acids (Schultz et al., 1967).

As was the case with epithelial ion channels, the clon-
ing of the SGLTI gene and its expression in heterolo-
gous systems has permitted even more detailed studies
of properties of the sodium-glucose cotransporter,
producing a comprehensive kinetic model based on
voltage-clamp and fluorescence labeling experiments
(Loo etal., 2005, 2006). The availability of x-ray crystal
structures of the protein, lead to further exploration of
the conformational changes involved in the cotransport
mechanism (Gagnon et al., 2006; Longpré et al., 2012).

Exchange with H' provides another major route for
Na' entry into epithelial cells. This was demonstrated
in gall bladder (Weinman and Reuss, 1982) and renal
proximal tubule (Boron and Boulpaep, 1983b) using
intracellular pH measurements. These findings also led
to the idea that parallel operation of Na'/H" and Cl™/
HCO3™ exchangers could present as a coupled NaCl
cotransport system (Reuss, 1984).

In the proximal tubule, Na'/H" exchange serves to
reabsorb HCO3™ from the renal ultrafiltrate. To com-
plete the process, the cells transport HCOs™, formed
along with H in the cytoplasm, across the basolateral
membrane. That process is electrogenic, independent
of CI” and coupled to Na* (Boron and Boulpaep, 1983a;
Alpern, 1985). That cotransporter is unusual because
the normal direction of Na" movement is out of the
cell. Its cloning and expression in heterologous systems
enabled detailed examination of its kinetics (Grichtch-
enko et al., 2000).

H,O transport across epithelia

Transepithelial movements of fluid have intrigued the
JGP community for a long time, as revealed by the early
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Figure 4. Sodium-glucose cotransport. (A) The effect of a nonmetabolizable glucose analogue on Na* transport (short-circuit
current) by rabbit ileum. (B) Cell model of Na-dependent glucose transport. From Schultz and Zalusky (1964). (C) Effect of sugar on
voltage-dependent protein conformational changes in SGLT1, measured with a fluorescent label. sMDG, a-methyl-b-glucopyrano-
side. From Loo et al. (2006). (D) Structure-based kinetic model of sodium-glucose transport. From Longpré et al. (2012).

work of Osterhout described in "Early years (1918-
1950)." The discovery of active transport of salt across
many epithelia suggested that the resulting ion gradi-
ents could drive water flow through osmotic forces. How-
ever, the finding that, at least in some epithelia, fluid
can be absorbed without a measurable change in os-
molarity (Curran and Solomon, 1957; Fig. 5) remained
difficult to explain. To account for that phenomenon in
the small intestine Curran (1960) proposed a restricted,
intermediate compartment of increased osmolarity,
very similar to the idea of Osterhout; the precise ana-
tomic location of the compartment was not specified.
Later Diamond (1964) demonstrated isotonic trans-
port in the rabbit gall bladder and proposed that NaCl
transport increased the osmolarity in the lateral spaces
between cells. Osmotically driven HoO movement in-
creased hydrostatic pressure within those spaces, pro-
viding a driving force for its subsequent transport into
the interstitium.

JGP Vol. 149, No. 10

That basic idea has become widely accepted, but the
details have been controversial. Diamond and Bossert
(1967) proposed the “standing-gradient” model for
isotonic fluid movement, in which the osmolarity of
the interspaces increased from a closed end (the tight
junction) to an open end of the paracellular channel.
The model could account quantitatively for transport
of fluid, at physiologically meaningful rates, with an
osmolarity not measurably differently from that of the
source compartment. That idea inspired several ex-
perimental and theoretical tests. Sackin and Boulpaep
(1975) reanalyzed the problem assuming a tight junc-
tion that was permeable to salt and water and showed
that, for the proximal tubule, a hypertonic interspace
could produce a nearly isotonic reabsorbate without
the requirement for a gradient within the interspace.
Later measurements of apical and basolateral mem-
brane hydraulic water flow in the Necturus gall bladder
showed that the water permeabilities of the cell mem-
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branes were quite high (Fig. 6), suggesting that, in
that epithelium, nearly isotonic fluid transport could
be realized more simply with transcellular HyO fluxes
driven by osmotic gradients of <3 mOsm, which would
be difficult to detect (Persson and Spring, 1982; Cotton
etal., 1989).

A more recent model for fluid absorption included
the idea of recirculation of Na* from the serosal com-
partment to the interspaces. That process involves pas-
sive uptake of Na into the cell, presumably across the
basal membrane, and active pumping across the lateral
membranes into the interspaces (Larsen et al., 2000).
That idea accounts for the uphill movement of fluid
from a higher to a lower osmolarity, anomalous solvent
drag in which solutes are reabsorbed against the net
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flow of fluid in the opposite direction, and fluid reab-
sorption in the absence of net transepithelial transport.

The issue of fluid movements across epithelia also
arises in the context of control of the airway surface lig-
uid (ASL) layer mucosal surface of the lung. The depth
of that layer may be reduced in cystic fibrosis, leading
to impaired clearance of mucous and infective agents
(Fig. 3 B). Na" and Cl™ concentrations in the surface
liquid of cultured airway cells were similar to those in
plasma, implying that fluid transfer across the epithe-
lium was nearly isotonic and that the thickness of the
layer (~7 pm) was controlled by relative rates of Cl™ se-
cretion and Na' absorption (Tarran et al., 2001). The
sensor for the regulation of the height of the ASL is
thought to be a set of soluble components of the lig-
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Br-cAMP, 8-bromoadenosine 3’,5'-cyclic monophosphate. From Shi et al. (1990).

uid (Tarran et al., 2006). The issue, however, is contro-
versial. In direct studies of small airways, no effects of
blocking ENaC or CFTR on the height of the ASL could
be demonstrated (Song et al., 2003).

A different type of fluid movement occurs in the col-
lecting duct of the kidney, particularly in response to
antidiuretic hormone (ADH). Here, water can be ab-
sorbed from a concentrated fluid (the urine) into a
more dilute fluid (the blood). This “uphill” movement
also involves an intermediate compartment—in this
case, the renal medullary interstitium—what has an os-
molarity at least slightly higher than that of the urine,

JGP Vol. 149, No. 10

providing a driving force for reabsorption of water
across the epithelium. The toad urinary bladder proved
to be a good in vitro model for studying the ADH-
dependent water permeability (Bentley, 1958). Hays
and Leaf (1962) made a key observation that, in the
presence of the hormone the hydraulic water permea-
bility (Py), assessed as bulk water flow, increased much
more than the diffusional permeability (P4), measured
with tracers. High values of P;/P,, and the relative mag-
nitude of changes in water and solute permeability were
later interpreted to indicate that water flowed through
long, aqueous pores (Finkelstein, 1976; Levine et al.,
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1984). Eggena (1972) had presented a similar hypothe-
sis based on the temperature dependence of bulk water
flow. That idea was eventually confirmed by the identi-
fication of the apical water channel AQP2. The mech-
anism underlying the control of the channels by ADH
has also generated interest. Endosomes from toad blad-
der had very high water permeability, suggesting that
water channels were inserted into the apical membrane
from those vesicles in response to the hormone (Shi et
al., 1990). This supported ultrastructural studies iden-
tifying putative channel proteins in both surface and
tubulovesicular membranes (Muller et al., 1980). Since
that time, control by transporter protein insertion into
and retrieval from the plasma membrane has become
an important paradigm in epithelial biology.

Conclusions

Particularly during the past 60 yr, JGP has published
important work in the area of epithelial transport. As
befits the mission of JGP, this research involves topics
of widespread, fundamental interest, such as the mech-
anisms underlying absorption and secretion in a variety
of epithelia. The work has progressed from a phenome-
nologic description of active transport to elucidation of
the properties of individual cell membranes, and finally
to the identification of specific molecules (and parts of
molecules) conferring these properties and their regu-
lation. Future work will likely continue this trend and,
at the same time, deepen our understanding of how the
various parts of the epithelia work together as a system
to move solutes and water.
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