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The structure of binding curves and practical identifiability of
equilibrium ligand-binding parameters

Thomas R. Middendorf'? and Richard W. Aldrich'?
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A critical but often overlooked question in the study of ligands binding to proteins is whether the parameters
obtained from analyzing binding data are practically identifiable (Pl), i.e., whether the estimates obtained from
fitting models to noisy data are accurate and unique. Here we report a general approach to assess and under-
stand binding parameter identifiability, which provides a toolkit to assist experimentalists in the design of
binding studies and in the analysis of binding data. The partial fraction (PF) expansion technique is used to
decompose binding curves for proteins with n ligand-binding sites exactly and uniquely into n components,
each of which has the form of a one-site binding curve. The association constants of the PF component curves,
being the roots of an n-th order polynomial, may be real or complex. We demonstrate a fundamental connec-
tion between binding parameter identifiability and the nature of these one-site association constants: all bind-
ing parameters are identifiable if the constants are all real and distinct; otherwise, at least some of the
parameters are not identifiable. The theory is used to construct identifiability maps from which the practical
identifiability of binding parameters for any two-, three-, or four-site binding curve can be assessed. Instruc-
tions for extending the method to generate identifiability maps for proteins with more than four binding sites
are also given. Further analysis of the identifiability maps leads to the simple rule that the maximum number
of structurally identifiable binding parameters (shown in the previous paper to be equal to n) will also be PI

only if the binding curve line shape contains n resolved components.

INTRODUCTION

The thermodynamic theory of ligands binding to mac-
romolecules containing multiple binding sites is re-
viewed in several monographs (Poland, 1978; Hill,
1985; Wyman and Gill, 1990; Ben-Naim, 2010). A re-
markable feature of the theory is that the mathemati-
cal form of the partition function for these systems
(also known as the binding polynomial) is conserved
for virtually all physically reasonable binding models
(Wyman and Gill, 1990). The total binding isotherm,
which is derived from the partition function, also takes
on a conserved form (see companion article Midden-
dorf and Aldrich in this issue). For all models consist-
ing entirely of bimolecular association reactions and
conformational equilibria, the canonical form of the
total binding relation is

pixt+ 2 xt . Anp, X"

’v =
T+ pox’+ prat+ pox?+ . 4p,x"’

(1)

where n is the number of ligand-binding sites on the pro-
tein and v is the mean number of occupied sites at free
ligand concentration x (Middendorf and Aldrich, 2017).
The parameters {p, pi, ..., p,} in Eq. 1 are functions of
molecular properties such as the association constants of
the ligands for the binding sites on the protein, the quan-
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titative effect of binding at a subset of the sites on binding
at othersites (cooperativity), and protein conformational
equilibrium constants. (Parameter p, in Eq. 1 is zero if
the protein is assumed to occupy a single conformation.)
Eq. 1 applies specifically to total binding curves, which
are obtained from binding measurements that detect the
net occupancy of all binding sites in a protein without
specifying the occupancies of the individual sites.

The binding parameters in Eq. 1 cannot be mea-
sured directly, but rather are quantified by fitting mod-
els to binding data. Knowledge of the parameter values
can yield meaningful insights into mechanism, but
only if the parameters are identifiable, meaning that
the fitted estimates of them are accurate and unique.
This problem has been addressed previously (Col-
quhoun, 1969; Reich and Zinke, 1974; Reich et al.,
1974a,b). However, the lack of a general understand-
ing of the factors determining binding parameter
identifiability has hampered the development and val-
idation of quantitative models for molecular systems
that are governed by multiple, coupled equilibria,
such as ligand-activated receptors.

In our companion paper (Middendorf and Aldrich,
2017), we showed that the conserved form of the total
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binding relation (Eq. 1) implies that simple, general
rules govern binding parameter structural identifiabil-
ity: equilibrium total binding data constrain n struc-
turally identifiable (SI) parameters if the binding
model consists only of bimolecular binding reactions
and n + 1 SI parameters for binding models compris-
ing any combination of binding and conformational
equilibria. Structural identifiability is a “best-case” sce-
nario that assumes that the binding data contain no
noise or systematic artifacts (Bellman and Astrom,
1970). Parameter estimation fails for models contain-
ing more than the number of SI parameters, as infinite
ranges of parameter values yield perfect fits to any
binding curve line shape (see Fig. 1 of Middendorf
and Aldrich [2017]).

Noise in experimental data creates an additional bar-
rier to obtaining meaningful parameter estimates
(Ljung, 1987; Walter and Pronzato, 1997). Parameters
are practically identifiable (PI) if they can be deter-
mined accurately and with acceptable precision under
these more stringent, real-world experimental condi-
tions (Raue et al., 2009). Here, we develop a technique
for deconstructing binding curves into their simplest
components. The method is the basis of a general ap-
proach for assessing and understanding the practical
identifiability of binding parameters for proteins with
any number of binding sites.

An important goal of this work is to provide tools to
investigators that are simple to implement and have
broad applicability to the design of binding experi-
ments and to the analysis of binding data. Our ap-
proach is essentially model independent, so that the
identifiability assessment need only be performed
once for a given binding curve rather than being re-
peated for each candidate model under consideration.
Identifiability maps, which classify the identifiability of
binding parameters for all possible binding curve line
shapes for a specified number (n) of binding sites, are
constructed for the specific cases of n = 2, 3, and 4.
Instructions are provided for extending the theory to
generate these maps for systems with n > 4. In situa-
tions in which the parameters are not PI, this knowl-
edge is useful for guiding the design of alternative
experimental approaches. We also introduce a useful
method for displaying parameter uncertainties that
avoids many of the problems normally encountered
when visualizing error surfaces for systems with more
than a few parameters.

MATERIALS AND METHODS

All numerical computations were performed using Igor
Pro version 6.37 (WaveMetrics). Parameter fit-error
curves (Figs. 1, 3, 4, 6, 7, and 11) were generated from
nonlinear least-squares fits to synthetic binding curves
that used the Levenberg—Marquardt algorithm.
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RESULTS

Nonidentifiability of calmodulin (CaM)

binding parameters

An example of a protein with nonidentifiable total
binding parameters is CaM, which contains four non-
identical EF-hand calcium-binding sites. Many pub-
lished studies have used a foursite Adair—Klotz model
(Fig. 1 A, top) to fit the Ca®" total binding curve for
CaM. The model parameters K;—K,; are macroscopic
equilibrium association constants that quantify ligand
binding to receptors containing 0-3 bound ligands, re-
spectively. The model assumes a single protein confor-
mation and does not distinguish between the individual
binding sites in the protein nor the multiple ligation
states with a given total number of bound ligands. For
example, Ry in Fig. 1 A (top) represents all six ligation
states containing two bound calcium ions. The total
binding relation for this model is

v = I{]Xl+2K1K2X2+SI{]KQK;X3+4I<]K2K3K1X4 (2)

1+le] +K1K2x2+K1K2K3x3+K1K2K3K4x4 ’

which has the form of Eq. 1 with p, =0, p; = K;, ps = K|
Ky, ps = K; Ky Ks, and ps = K; Ky K5 K.

The previous paper (Middendorf and Aldrich, 2017)
showed, based on structural identifiability consider-
ations, that total binding data for a protein with n sites
constrains a maximum of n binding parameters (if a
single conformation of the protein is assumed). This is
an important limitation because it excludes single-
conformation models with distinct affinity parameters
for the n binding sites and any additional, explicit coop-
erativity factors for quantifying interactions between
the sites. All such models require more than n parame-
ters. The Adair—Klotz model avoids this problem, but at
a cost in mechanistic insight: parameters K;—K; do not
distinguish between affinity and cooperativity.

To explore practical identifiability of the Adair-Klotz
binding parameters for CaM, a synthetic, noiseless total
binding curve (Fig. 1 A, middle left and right, solid
curves) was generated using Eq. 2 and the parameter
estimates from one study (Linse et al., 1991). Curves
nearly identical to this reference curve were obtained
using other combinations of parameters with values
very different from those in the reference set. For exam-
ple, the curves represented by circles in Fig. 1 A (mid-
dle left) and triangles in Fig. 1 A (middle right) were
calculated using comparable values of parameters K
and K, but K; was >3,000 times larger, and K was >3,500
times smaller, for the circles compared with the trian-
gles. The considerable flexibility in these parameter val-
ues indicates that the Adair-Klotz parameters are likely
not PI when constrained by CaM total binding data.

Parameter identifiability for CaM was studied system-
atically by quantifying the full range of parameter val-
ues consistent with the synthetic binding data. These
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Figure 1. Evidence that calcium total binding parameters for CaM are not PI. (A, top) Four-site, sequential Adair-Klotz model.
R; represents CaM with i Ca®* ions bound; K=K, are macroscopic association equilibrium constants. (A, middle left) Solid curve
represents total fraction of binding sites occupied by ligand (Y), computed using Adair parameters reported in Linse et al. (1991).
The function Y (with a maximum value of 1) is the normalized version of the function v (maximum value of 2) appearing in Eq. 2.
Parameters are (in M™"): {K;, K;, K3, Ky} = {79,433, 3.98 x 10%, 25,119, 398,107}. Circles represent total binding curve computed
using parameter set {160,344, 1.85 x 10%, 37,678, 287,086}. (A, middle right) Same as A (middle left), except triangles represent
total binding curve computed using parameter set {50.3, 6.6 x 10°, 15,093, 617,904}. (A, bottom) Parameter fit-error plots. Each
curve represents the results of 300 curve fits in which Kj, K;, K3, or K; was held at one of 300 values ranging from 10 to 10'° M~". At
each of these values, the chosen K was held constant while the other association constants were varied freely to achieve the best
least-squares fit to the synthetic data (solid lines in middle graphs) using nonlinear regression. Curves depict rms error in best fit
for systematic variation of K; (red), K; (blue), K3 (black), or K (green). Dashed line shows 5% rms error threshold. (B) Effect of noise
on parameter estimates. (top left) Each curve is a histogram representing the distribution of estimates of parameter K; obtained
from 1,000 separate nonlinear regression fits in which all four parameters were allowed to vary freely. For each fit, random, Gauss-
ian-distributed noise with a standard deviation of 0.05 (corresponding to 5% rms noise) was added to the noiseless, synthetic data
(solid curve in middle graphs of A). Each histogram corresponds to a different starting value for K. Starting values are indicated by
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ranges are represented compactly in parameter fit-er-
ror curves. For example, the blue curve labeled K, in
Fig. 1 A (bottom) depicts the results of 300 curve fits.
For each fit, K, was held constant at a value in the range
10 M~ < K, < 10" M™! (indicated on the abscissa), and
parameters K;, Ks, and K; were adjusted to yield the
best least-squares fit to the synthetic data using nonlin-
ear regression. The ordinate plots the root mean
square (rms) error for the fits. (Similar approaches
were used in Colquhoun and Ogden [1988] and Solc
and Aldrich [1990].) The minimum in the blue curve
(which is not visible because the fit error of zero can-
not be shown on the logarithmically scaled ordinate)
corresponds to the point at which K, was fixed at the
“correct” value (i.e., the value used to generate the syn-
thetic data). The fit error increased when K, was held
constant at a value above or below the correct value. A
remarkable feature of this curve is the large range of K,
values over which the fit error maintains a small, nearly
constant value. In fact, the abscissa in Fig. 1 A (bottom)
is truncated for display purposes at an upper limit of K,
= 10" M™'; the magnitude of the “asymptotic error”
(blue horizontal arrow) remains nearly constant for all
K > 10" M. Asymptotes with small, nearly constant
error extending over an infinite range of parameter
values were also present in the fit-error curves for pa-
rameters K; (red curve), K; (black curve), and K,
(green curve; Fig. 1 A, bottom).

The noise in an experimental binding curve will mask
the true value of a parameter if it is larger than the as-
ymptotic error in that parameter’s fit-error curve. In
such cases, the parameter is not PI because an infinite
range of values yield indistinguishably good fits to the
data. Parameters K;—K, for CaM are not PI because the
typical noise in experimental binding curves (~5%,
dashed black line; Stefan et al., 2009) is much larger
than the asymptotic errors for these parameters
(~0.27% rms for K; and K, and ~0.48% rms for K; and
K;; Fig. 1 A, bottom). For this example, the only con-
straints on the parameter values are a lower limit of 2 x
10* M~ for K, and an upper limit of 4 x 10° M™! for K,
based on the intersections of the corresponding fit-
error curves with the assumed noise threshold. Typical
total binding data would place no constraints on the
values of K, and K; because the fit errors are <5% for all
values of these parameters.

Fig. 2 shows how this enormous flexibility in parame-
ter estimates is achieved: as a given parameter is stepped
through a range of values, the other parameters un-
dergo systematic variations that compensate for the in-
correct value of the given parameter to produce close

fits to the data. A major goal of this paper is to under-
stand the mechanisms of these extremely effective com-
pensations because this knowledge may contribute to
the design of experiments that provide more powerful
constraints on the binding parameters.

To mimic experimental data more realistically, Gauss-
ian noise with a standard deviation of 0.05 (equivalent
to 5% rms noise) was added to the noiseless solid curve
in Fig. 1 A (middle left). Each arrow in Fig. 1 B (top
left) shows the starting guess for parameter K; used in
fitting 1,000 of such noisy simulated binding curves; the
curves below the arrows represent the distribution of
estimates for K; obtained from the fits. It is noteworthy
that (a) the starting guesses vary over many orders of
magnitude, yet the peaks of the distributions are gener-
ally very close to the initial guess; (b) the peaks of the
distributions are often very different from the “correct”
value of the parameter (indicated by the dashed vertical
line); and (c) the distributions are generally very nar-
row. Similar results were obtained for parameters Ko—K;
(Fig. 1 B, top right and bottom left and right). These
results lead to the same conclusion as the fit-error plots
in Fig. 1 A (bottom): the Adair-Klotz parameters K;—K;
are not PI when constrained by CaM total binding data.

The narrow parameter distributions in Fig. 1 B (all
graphs) are misleading, as the individual distributions
give the incorrect impression that the estimates are pre-
cise and reliable. This observation may partially explain
the wide range of values (15-, 6-, 101-, and 66-fold for
K,-K,, respectively) reported for CaM binding parame-
ters by different groups. These estimates are summa-
rized in Stefan et al. (2009). These wide ranges are in
fact a vast underestimate of the true uncertainties in the
binding parameter values, which are infinite (Fig. 1 A,
bottom), and thus provide little insight into the mecha-
nism of ligand binding to CaM. The asymptotic errors
in the fit-error curves for parameters K,—K, are so low
(tenths of a percentage; Fig. 1 A, bottom) that it is un-
likely that experimental refinements could improve the
quality of binding data sufficiently to make the CaM
binding parameters identifiable. Thus, even well-exe-
cuted total binding studies (Stefan et al., 2009) are in-
sufficient to overcome the inherently low constraining
power of total binding measurements for this system.
The inescapable conclusions of this analysis are that pa-
rameter estimates obtained from fitting CaM total bind-
ing data are meaningless and that reliable estimates are
only possible if more powerful experimental ap-
proaches are used.

A natural question arises concerning the generality of
the results in Fig. 1: is CaM an atypical, pathological

inverted arrows. (B, top right and bottom left and right) Same as top left graph of B, except the histograms represent distributions of
estimates for parameter Kj, K3, and K, respectively, for different starting values of these parameters (indicated by inverted arrows).
Dashed vertical lines represent “correct” values of parameters (taken from Linse et al. [1991]).
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Figure 2. Parameter compensations in fitting of synthetic
CaM binding data. (A-D) Values of best-fit values of Adair-
Klotz parameters, taken from fits used to generate parame-
ter fit-error curves in Fig. 1 A (bottom). (A) Best-fit values of
parameters K—K; as parameter K; (shown in bold) was varied
systematically from 10 to 10" M~ (corresponding to red curve
labeled Kj in Fig. 1 A, bottom). (B-D) Similar to A, except that
parameters K; (B), K3 (C), or K; (D) were held constant at values
in the range from 10 to 10'© M~" while the other parameters
were freely varied to achieve best least-squares fit to synthetic
binding curve in Fig. 1 A (middle left).

case, or do binding curves for real proteins frequently
lack the power to provide meaningful constraints on
binding parameters? To answer this question satisfacto-
rily, it is necessary to analyze binding curves for proteins
with different numbers of binding sites (specified by
the factor n in Eq. 1) and, further, to examine all possi-
ble line shapes for each value of n. In the following,

JGP Vol. 149, No. 1

binding parameter identifiability is investigated system-
atically, starting with two-site binding curves.

Shape and location parameters for two-

site binding curves

For a protein that contains two ligand-binding sites and
occupies a single conformation, Eq. 1 simplifies to

v = p1x+2[)2x2 ] (S)

1+ prx+ pox?
Because the units of p; and ps are M™' and M™%, respec-
tively, a unitless proportionality constant, a, can be de-
fined by the relation

P = a’p’. (4)

Substituting this expression into Eq. 3 yields the repa-
rameterized binding relation

prx+2a’p?a?
1+ px+a®p?x*

®)

Because p; and x always appear together and raised to
the same power in Eq. 5, multiplying p; by a constant, k,
is equivalent to scaling the concentration axis by
the same constant:

(kp)x+2a® (kpr)?x?

k _ pu(kx) + 247 i (kx)?
1+ (kp)x+a® (kpy)2x® —

1+ pi(kx) + a® pr 2 (kx)*

(6)

Two important conclusions can be drawn from this
analysis: if the bound fraction is plotted against the log-
arithm of ligand concentration, then (1) multiplying p,
by a factor k is equivalent to shifting the binding curve
horizontally by an amount log(k) because log(kx) =
log(k) +log(x); and (2) varying p; has no effect on the
shape of the binding curve. These effects are illustrated
in Fig. 3 (A-C, left). In each panel, two two-site binding
curves were computed for the indicated value of param-
eter a. Multiplying p; for the dashed curves by 1,000
yields solid curves that are shifted leftward by three log
units, with no change in line shape. In contrast, increas-
ing parameter a 1,000-fold from 0.0025 (Fig. 3 A, left)
to 2.5 (Fig. 3 C, left) changes the line shapes of the
curves significantly.

A simple substitution (Eq. 4) has separated the bind-
ing parameters into two classes that are “orthogonal” in
the sense that parameters from each class have distinct
effects on two-site binding curves: p; is a location pa-
rameter that determines the position of a curve on the
concentration axis without affecting its shape, whereas
a is a unitless shape parameter that determines the
curve’s line shape.

Practical identifiability of parameters for two-

site binding curves

The two parameter classes are also orthogonal with re-
spect to parameter identifiability. Increasing p; by a
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Figure 3. Practical identifiability of two-site binding curves depends on shape parameter a but not on location parameter p;.
(A-C, left) Simulated two-site total binding curves for indicated values of shape parameter a. Location parameter p; was equal to (in
M1 10" (A, solid curve), 107 (A, dashed curve), 102 (B, solid curve), 10° (B, dashed curve), 108 (C, solid curve), and 10° (C, dashed
curve). (A-C, middle) Fit-error plots for location parameter for binding curves in A-C (left). (A-C, right) Shape parameter fit-error
plots for binding curves in A-C (left). Dashed horizontal lines in A-C (middle and right) denote 5% error threshold. Binding parame-
ters are denoted “PI” if the asymptotic value of the rms fit error is >5% and “NOT PI"” if <5%.

factor of 1,000 does not change the identifiability of A convenient metric for characterizing binding curve
parameters p; (Fig. 3, A-C, middle, solid vs. dashed  line shapes is their midpoint slope, which can be com-
curves) or a (Fig. 3, A-C, right, solid vs. dashed  puted from Eq. 3 as follows. The logarithmic derivative

curves). In contrast, if the shape parameter is in-  of the binding relation is given by
creased by the same factor of 1,000, the binding curve 3 3
line shape changes in such a way that both parame- a(1o1§x) = XIH(IO)B—Z> (7)

ters, which were initially identifiable (Fig. 3 A, middle
and right), become nonidentifiable (Fig. 3 C, where the substitution logx = (Inx)/(In10) was used.
middle and right). The regular derivative of the binding relation is given by
The results in Fig. 3 simplify the task of understand-
ing parameter identifiability. It is unnecessary to con-
sider the infinite number of parameter combinations
{p1, a} that give rise to all possible two-site binding  The ligand concentration at which the binding curve
curves. Rather, the universe of possible line shapes is  reaches half-saturation, x;, is derived by setting Eq. 3
confined to a single axis representing the values of the equal to 1 and is given by x;, = (1/py)"/%. Substituting Eq.
continuous variable a. 8 into Eq. 7 and evaluating the resulting expression at
Fig. 4 A shows the effect of parameter a on the line  x; yields the midpoint slope
shape of two-site binding curves. To facilitate the com-

du _ prtdpxtpippx’ 8)
dx (l+[)1x+p2x2)2 '

parison, thfe Val}le of p, for each curve_gwas adjusted so a(liz:éx) I X = 13% a, 9)
that the midpoints are all equal to 107 M. The curves

exhibit two clearly resolved components for small val-  where Eq. 4 was used to simplify the expression.

ues of a. As a is increased, the resolution between these As predicted above, the midpoint slope depends on

components is decreased until the curve appears as a  shape parameter a but not on location parameter p.
single component for shape parameter values in the  For small values of a, the midpoint slope increases
range 0.1 < a < 1. Above this range, increasing a has al-  sharply as ais increased (Fig. 4 B, solid curve). For large
most no effect on the line shape. values of a, the midpoint slope is much less sensitive to
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the asymptotic error undergoes a transition near the critical value of a shown in B.

increases in a and approaches a limiting value of In(10).
The transition between these two regimens occurs at a
critical value of the shape parameter, a., equal to 1/2
(Fig. 4 B, dashed vertical line).

The uncertainty in a parameter estimated by fitting
experimental data should become large if there are
conditions for which the experimental observable (the
binding curve line shape in our case) becomes insensi-
tive to changes in that parameter. For example, the re-
sults in Fig. 4 B suggest that the identifiability of shape
parameter a should deteriorate as this parameter in-
creases. Consistent with this prediction, the asymptotic
fiterror (Fig. 4 C) is large (>20% rms) for two-site bind-
ing curves with small values of a but drops well below
typical experimental noise levels when a is close to unity
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or higher, indicating that the shape parameter is PI in
the “small-a” regime and not Pl in the “large-a” regime.
The transition between the two identifiability regimes
(Fig. 4 D, dashed vertical line) occurs close to the criti-
cal value, a, identified in Fig. 4 B. These results suggest
that (a) two distinct mechanisms couple changes in the
shape parameter magnitude to changes in the binding
curve line shape; (b) a switch between the mechanisms
occurs at a = a; (¢) “mechanism I,” operative for a < a,,
produces relatively large changes in line shape per unit
change in a, and because of this strong coupling, the
shape parameter is identifiable in this range; and (d)
“mechanism II,” operative for a > a., produces relatively
small changes in line shape per unit change in a, and
because of this weak coupling, the shape parameter is
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not identifiable in this range. In the following sections,
mathematical analysis of two-site binding curve line
shapes identifies the nature of these mechanisms, re-
veals why they operate over specific ranges of a values,
and explains quantitatively why the transition between
mechanisms occurs at a=a.=1/2.

Partial fraction (PF) expansion of two-site

binding relation

To clarify the relationship between shape parameter
magnitude, binding curve line shape, and binding pa-
rameter PI, it is useful to express the two-site binding
relation (Eq. 5) in terms of simpler components using
a PF expansion:

prx+2a®p?x? qx rx

1+ piatapr?x? = 1+qx+1+rx' (10)

In Eq. 10, the basis functions for the expansion are two
one-site binding curves with association constants q and
r. It is tempting to relate q and r to the microscopic af-
finities of the protein binding sites. However, this rela-
tion is not always correct, and for our purposes, it is
unnecessary to attribute any particular mechanistic sig-
nificance to g and r. Combining the terms on the right
side of Eq. 10 yields

x+2a*p ? x*
1 1

(gt r)x+2grx?
T+px+ap?a®

1+ (g+n)x+gra® (11)

The equality in Eq. 11 holds if the coefficients of like
powers of x are equal, so that

b= q+r (12a)

and

a2p12 = qr_ (12b)
Solving for rin Eq. 12a and substituting this expression
into Eq. 12b yields a quadratic equation (the two-site
“PF polynomial”):

¢ -pg+raip’® =0, (13)

The PF expansion constants g and r for any two-site
binding curve specified by parameters {p;, a} are the
roots of the corresponding PF polynomial. Because Eq.
13 has solutions for all real values of p; and a, it follows
that every two-site binding relation can be expanded ex-
actly using this mathematically equivalent form (Eq.
10). Furthermore, binding curves with distinct parame-
ters {p;, a} have unique PF components that specify their
underlying structure.

Fig. 5 (A-D, left) shows the PF component curves
(red and blue traces) corresponding to the two-site
binding curves in Fig. 4 A. The reason for choosing one-
site binding curves as the basis functions for the PF ex-
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pansion is that all one-site binding curves have the same
line shape. Thus, the essential information obtained
from the expansion is conveyed in the simplified form
of “PF spectra,” which depict the midpoints x, = 1/rand
x, = 1/q of the PF components as vertical lines

q
(Fig. 5, A-D, right).

Critical value of shape parameter a

The shape parameter can be expressed explicitly in
terms of the onesite PF constants by substituting Eq.
12a into Eq. 12b:

a = % (14)

Eq. 14 can be rewritten in the equivalent form

a = (1/2)GM/AM, (15)

where GM and AM represent the geometric and arith-
metic means of g and r, respectively. An important in-
equality of classical analysis requires GM < AM for any
two real, positive numbers (Hardy et al., 1934), with
equality applying when the two numbers are equal.
Applying this inequality to Eq. 15 indicates that a <
1/2 for real values of q and r and that a = 1/2 when
q = r. This value is equal to the critical value of the
shape parameter, a., deduced above from line shape
(Fig. 4 B) and parameter identifiability (Fig. 4 D)
considerations.

How are values of a>1/2 achieved? The nature of the
roots of a polynomial are given by its discriminant, D
(Gelfand et al., 1994). The roots are real and unequal if
D> 0, real and equal if D = 0, and complex if D < 0. The
discriminant of the two-site PF polynomial (Eq. 13) is

D= p2(1-4a2). (16)

Eq. 16 indicates that shape parameter values larger than
the critical value of 1/2 are only possible if q and r are
complex. In fact, because the coefficients of the PF
polynomial are real numbers derived from real physical
quantities, g and r must be complex conjugates for a >
1/2 (Uspensky, 1948):

q = Greal — i Gimag (173)

and

T = Qa1 Ginag (17b)
where i represents the square root of —1 and the real
numbers e, and Qimag are the real and imaginary
parts of g and r.

We have demonstrated a striking correlation between
the nature of the PF expansion constants and the iden-
tifiability of two-site binding parameters. In the range 0

Binding curves and parameter identifiability | Middendorf and Aldrich

920z Arenuged 0| uosenb Aq 4pd'€0. 11910z dBly0.26.1/121/LI6Y 1 /pd-8onie/dbl/Bio sseidny//:dpy wouy pepeojumoq



2 ar a2 a1
Vi /% [— log(4,) i real,unequal 0.001 10° 0O
0 |

real, unequal 0.01 10

<
o - N
| |

ii real, unequal 0.1 102 0

<
o = N
| | |

D

2 —y
V1 F iv real, equal 0.5 1 0

0 T 1T T 1T 1T 171 I | [ | | | 1

Xq=Xr

E

2 o=
V14 / v complex 10 1 20

conjugate
0 1T 1T 17T 17T 171 | T | | T T 1 ) g
Xqr

E q

2 -
V14 vi complex 100 1 200

/ ni
0 1T 1T 17T 17T 7171 T T [ | | T 1 =0 Jugate
10" 10" 107 10" 10" 10" 10® 10° 10?
[Ligand], Molar [Ligand], Molar
G
—~ x10 \% Vi

S = 100 JETHE S T
E E i i

- G S - $iv
= = Vi
T g-1004 0 T I ISRREOR
o 1 T T T T T T 1

0.001 0.01 0.1 1 10 100 1000 0.001 0.01 0.1 1 10 100 1000
Shape parameter a Shape parameter a
H - a ;
Mechanism | : Mechanism Il
4= q, I' = real, unequal —}E{— q, r=complex |e—p
Parameters = PI ! Parameters NOT PI
i i ii ' v vi
0.0001 0.001 0.01 0.1 [\ 10 100 1000

Shape parameter a

Figure 5. PF decomposition of two-site total binding curves. (A-F, left) Black curves are two-site binding curves computed
for values of shape parameter equal to 0.001 (A), 0.01 (B), 0.1 (C), 0.5 (D), 10 (E), and 100 (F). Red and blue curves represent the
one-site PF component curves whose sum is equal to the two-site (black) curve. Striped curves in E and F (left) represent two-
site curves that cannot be decomposed into real-valued PF components because the association constants g and r are complex
conjugates. (A-F, right) PF spectra showing midpoints x, (red) and x, (blue) of one-site curves from A-D (left) as vertical lines.
Midpoints of one-site curves are given by the reciprocals of the association constants: x, = 1/rand x4 = 1/q. Striped lines in E and
F (right) represent situations in which g and rare complex conjugates; in these cases the midpoint x, is for the two-site curve. Also
shown are the values of the shape parameter a, the spacing parameter A, (see Eq. 18), and the slope parameter I' (see Eq. 20).
(G) Real (left) and imaginary (right) parts of component association constants g (blue) and r (red) as function of shape parameter
a. Roman numerals i-vi relate components of g and r to spectra with the same labels in A-F (right). (H) Graphical representation
of relation between magnitude of shape parameter, PF component constants g and r, and parameter identifiability for scenarios
labeled i-vi in A-F (right). Dashed vertical line depicts critical value of a at which transition occurs between the two mechanisms
controlling magnitude of shape parameter.
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< a<a, qand rare real and distinct, and the binding
parameters p; and a are identifiable, whereas in the
range a > a,., q and r are complex conjugates, and the
binding parameters are not identifiable (Figs. 3 and 4).
The next two sections describe how the mathematical
nature (real versus complex) of the PF constants for a
binding curve determines the identifiability of the
curve’s binding parameters.

Strong-coupling mechanism (mechanism 1) and real-
valued PF components

The PF component spectra in Fig. 5 (A-F, right) pro-
vide a visual representation of the relationship between
shape parameter magnitude and binding curve line
shape. When the midpoints of the PF components are
plotted against the logarithm of ligand concentration,
the spacing between them, A, is given by the ratio of
the one-site association constants,

A= 1/q, (18)

because log(A;) = log(r/q) = log(x,/x,) = log(xy) —
log(x,). (Without loss of generality, it is assumed that
r > q, so that A; > 1.) Substituting Eq. 18 into
Eq. 14 yields

a= A" (19)

Eq. 19 is the mathematical representation of mecha-
nism I, the coupling between the shape parameter and
the binding curve line shape for a < a.. The shape pa-
rameter is increased from 0.001 (Fig. 5 A, right) to 1/2
(Fig. 5 D, right) by decreasing A, from 10° to 1. In other
words, for values below the critical value, the shape pa-
rameter is increased by moving the PF components
closer together until they overlap at a = a.. Because the
change in line shape per unit change in the shape pa-
rameter is large (compare curves for a<1/2in Fig. 4 A),
the coupling is strong, and the shape parameter is iden-
tifiable in this range.

Weak-coupling mechanism (mechanism Il) and
complex-valued PF components

For a > a,, the PF constants are complex conjugates,
and the binding curve cannot be decomposed into
two real-valued one-site components. Thus, there is
no spacing between components as there is when
the PF constants are real-valued, and so mechanism
I is not operative. Instead, we define the real num-
ber I' as the ratio

r= (20)

which, when substituted along with Egs. 17a and 17b
into Eq. 14, yields
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a=-—g—. (21)

Eq. 21 is the mathematical representation of mecha-
nism II, the coupling between the shape parameter and
the binding curve line shape for a> a.. For example, the
shape parameter is increased from 1/2 (Fig. 5 D, right)
to 100 (Fig. 5 F, right) by increasing the ratio of the
imaginary to the real components of g and r from 0 to
200. Because the change in line shape per unit change
in the shape parameter is relatively small (compare
curves for a>1/2 in Fig. 4 A), the coupling is weak, and
the binding parameters are not identifiable in this
range. Because the main effect of I' is to (slightly) alter
the steepness of two-site binding curves, we will refer to
it later as a slope factor.

Interpretation of complex-valued PF constants

For a > a,, the PF constants q and r are complex con-
jugates (Egs. 17a and 17b), and hence the one-site PF
component curves cannot be represented on a physi-
cally meaningful (i.e., real-valued) concentration axis.
Our interpretation is that two-site binding curves with
shape parameters in this range cannot be decomposed
meaningfully into simpler components (Fig. 5, E and
F). Consistent with this idea, two-site curves with a >
1/2 have the appearance of single components, with
no indication of wunderlying resolved structure
(Fig. 4 A). It is worth noting that there is no inconsis-
tency between the complex-valued one-site compo-
nents q and r and the real-valued two-site binding
parameters p; and a. The expressions for parameters
p1 and a in Eqs. 12a and 12b depend on the sum q +
rand the product q r, both of which take on real values
when g and r are complex conjugates.

Summary of root-locus and identifiability analyses for
two-site binding curves

The practical identifiability of parameters for two-site
total binding curves is summarized in Fig. 5 H. Mathe-
matical analysis of Eq. 14 indicates that the line repre-
senting all possible values of shape parameter a (or,
equivalently, all possible two-site binding curve line
shapes) can be divided into two segments at the point a
= a.. The mapping of PF constants g and r onto the line
of shape parameter values (the “root-locus map”) is sim-
ple: gand rare real and distinct in the left segment, real
and equal at a = a., and complex conjugates in the right
segment. This map coincides with the identifiability map
for the shape parameter, which is PI when smaller than
a. and not PI when larger than a.. The differences in
identifiability are caused by the quantitatively different
effects of the shape parameter on the binding curve line
shape in these two regimens. For example, the midpoint
slope becomes 50 times steeper when the shape param-
eter is increased 100-fold from 0.005 to 0.5, but only in-
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creases by a factor of 2 when a is increased 100-fold
from 0.5 to 50.

Parameter compensations in the fitting of two-

site binding curves

It is instructive to examine individual curve fits from
fit-error plots to gain insight into the parameter com-
pensations that render binding parameters nonidenti-
fiable. Fig. 6 A (top) shows the shape parameter
fit-error plot for a simulated two-site binding curve
with a = 100. When a was forced to take on various in-
correct values (Fig. 6 A, top, the points labeled A-C
and E-H), the nonlinear regression algorithm ob-
tained the best fits by matching the midpoint of the fit
to that of the simulated data (Fig. 6 A, second panel).
We showed earlier that the midpoint, x;, of a two-site
binding curve is given by x;, = (1/py)'/?, which, using
Eq. 4, is equivalent to

X = (22)

Thus, when ais forced to take on an incorrect value, the
midpoint of the fit curve can still be matched perfectly
to that of the simulated data curve by varying p; so that
the product of parameters a and p, remains constant
(Fig. 6 A, third and fourth panels). Because this strategy
yields excellent fits over a large range of shape parame-
ter values (Fig. 5 A, second panel, points C-H), the
shape parameteris not PIfor binding curves with a=100.

The reason why this strategy works is that the mid-
point slopes of the simulated data and fit curves are all
close to the limiting value of In(10) (Eq. 9) and do not
change much as a is varied around the correct value of
100 (see Fig. 4 B). Only when the shape parameter is
forced to take on values close to or below the critical
value (as in Fig. 6 A, top, points A and B) do the line
shapes of the fit curves deviate significantly from that of
the synthetic data curve.

For synthetic data curves with shape parameters
smaller than the critical value, such as a= 0.1, the fitting
software uses the same strategy of matching the mid-
points of the data and fit curves (Fig. 6 B). This strategy
is less successful in this case, however, because the mid-
point slope changes significantly as a is varied away from
the correct value of 0.1 (see Fig. 4 B). As a result, the fit
error increases sharply for values of a above and below
the correct value (Fig. 6 B, second panel), the asymp-
totic error is higher than typical experimental noise,
and the shape parameter is PI.

Shape and location parameters for three-site

total binding curves

The analysis of parameter identifiability for three-site
binding curves proceeds similarly as for two-site curves,
and starts with the canonical form of the binding rela-
tion. For a protein that contains three ligand-binding
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sites and occupies a single conformation, Eq. 1
simplifies to

_ pix+ 2 x4 3 psx’
T Tt pixt xS

(23)

This equation can be reparameterized by noting that
the units of parameters p;, py, and ps are ML, M2, and
M, respectively, so that unitless proportionality con-
stants a and b can be defined by the relations

= ap? (24a)
and

by o= b (24b)

Substituting these relations into Eq. 23 yields

prx+2a®p?x*+30% p 0 K
Tt pixt @20 K

(25)

As for two-site curves (Eq. 6), p; and x always appear
together and raised to the same power, so that replacing
p1 by k p; is equivalent to replacing x by k x:

(kpn)x+2a? (kpr)2x2 + 35 (kpr)*x®
L+ (kp)x+ a® (k)26 + 0% (kpr)* x>
pr(kx) +2a* pr? (kx)2 +30° i (k)
1+ pr(hx) +a?pr 2 (kx) 2+ 0% i (k)™

(26)

This substitution has the effect of shifting the binding
curve along the concentration axis by a factor of log (k)
without altering its line shape.

The effects predicted in Eq. 26 are illustrated in
Fig. 7 (A-E, left). In each panel, two three-site bind-
ing curves were computed for the indicated values of
shape parameters a and b. Multiplying p, for the
dashed curves by 1,000 yields curves that are shifted
leftward by three log units (solid curves), with no
change in line shape. In contrast, increasing parame-
ters a and b changes the curves’ line shapes signifi-
cantly. Again, simple reparameterizations (Eqs. 24a
and 24b) have created two orthogonal classes of
binding parameters: p; is a location parameter that
determines the horizontal position of the curves,
whereas the two shape parameters a and b determine
their line shape.

Approach to understanding parameter identifiability for
three-site binding curves

The identifiability of parameters constrained by two-site
total binding curves deteriorates as shape parameter ais
increased (Fig. 4, C and D). This simple relationship is
maintained for location parameter p; (Fig. 7, A-E, mid-
dle) and shape parameter b (Fig. 7, A-E, right, blue
curves) for three-site binding curves. However, shape
parameter a is not PI for three-site curves with small
(Fig. 7 A, right) or large (Fig. 7, D and E, right) values
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Figure 6. Parameter compensations affecting binding parameter identifiability for two-site binding curves. (A and B, top)
Parameter fit-error curves for binding curves with a = 100 (A) and a = 0.1 (B). Dashed horizontal lines indicate 5% rms error level.
(A, second panel) Examples of fits to synthetic data curve from selected points on shape parameter fit-error curve in A (top). Fits
were obtained using nonlinear regression while holding shape parameter a fixed to the value indicated by the corresponding letter
in A (top) and varying parameter p; to achieve best (i.e., least-squared error) fit. Synthetic data curve in A (second panel) is indicated
by red dots. (B, second panel) Same as A (second panel), except fits are from selected points labeled A—K in B (top). (A and B, third
panel) Trajectories of parameters a and p; for all fits used to construct fit-error curves in A (top and second panels). (A and B, bottom)
Midpoints of all fits from fit-error curves in A (top and second panels). The fit midpoint (black) matches the midpoint of the synthetic
data (1078 M, red dashed line) for nearly all values of shape parameter a that were tested.

of a and b but is PI for intermediate (Fig. 7, B and C,
right) values of a and b.

In the following, we show that this confusing identi-
fiability pattern can be understood using a strategy
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similar to the one described above for two-site binding
curves. Many of the insights gained there will carry
over to the analysis of three-site curves. However, new
phenomena will be encountered in the three-site case
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parameters are denoted “PIl” if the asymptotic value of the rms

that have no equivalent for two-site curves. Our ap-
proach consists of the following steps: (1) the PF ex-
pansion is used to decompose three-site binding curves
into their simplest components; (2) a root-locus map
is computed, in which the regions of the (a, b) shape
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fit error is >5% and “NOT PI"” if <5%.

parameter space are characterized according to
whether they yield real- or complex-valued PF compo-
nents; (3) parameter fit-error curves are computed for
numerous binding curves throughout the (a, b) space,
and these results are used to create a parameter iden-
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tifiability map of this space; (4) the identifiability pat-
tern is interpreted in terms of the effects of real versus
complex PF components on the binding curve line
shapes; and (5) the validity of this interpretation is
tested by its ability to explain why parameter compen-
sations are effective in some cases, leading to noniden-
tifiable parameters, and ineffective in other cases,
leading to identifiable parameters.

PF expansion of three-site total binding relation

The canonical three-site total binding curve (Eq. 25)
can be expressed as the sum of three one-site binding
curves with association constants g, r, and s:

prx+2a®p?x?+30%p 0 K qx rx sx

1+ paxt+ap?x?+b°p°x° - 1+qx+l+rx+ T+sx"

(27)

Combining the terms on the right side of Eq. 27 yields

pix+2a P22 +30° 0%
T+pixtap 2+ 07 p > x%

(q+7+s)x+2(gr+ gs+ rs)x* + Sqrsx® (28)
1+ (g+r+s)x+ (qr+ gs+rs)x+ grsx®
Equating the coefficients of like powers of x
in Eq. 28 yields
o= qtr+s, (29a)
a*p? = qr+gs+os, (29b)
and
Vot = s (29c¢)

Eliminating variables r and s from Eqgs. 29a, 29b, and
29cyieldsacubicequation (the three-site PF polynomial):

C-p@E+aipiq-v>p® = 0. (30)

The association constants g, r, and s of the one-site PF
components are the roots of Eq. 30. Because the coeffi-
cients in Eq. 30 are products of the real numbers py, a,
and b, there are two possibilities for the three roots of
this equation: they are either all real, or else one is real
and two are complex conjugates (Uspensky, 1948). The
family of PF spectra in Fig. 8 A provide a concrete pic-
ture of these abstract scenarios. The PF constants q, r,
and s are all real and distinct in subpanels —i, o, and i;
they are all real, and two are equal in subpanels —ii and
ii; and one is real, and two are complex conjugates in
the case of three binding sites (but not for two sites) is
that there are two distinct ways in which the complex
conjugates can be paired: (1) sreal and (q, r) complex
conjugate (Fig. 8 A, subpanels —ivand —iii) or (2) g real
and (r, s) complex conjugate (Fig. 8 A, subpanels iii and
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iv). We show below that these two pairings behave dif-
ferently with respect to parameter identifiability.

Root-locus maps and the shape parameter space

We showed above that the universe of all possible two-
site line shapes can be represented as points on the
line of values of shape parameter a (Fig. 5 H). The
critical value of the shape parameter divides this line
into two segments and completely specifies the two-
site. root-locus map. This map provides a simple
framework for interpreting the identifiability of two-
site binding parameters.

The universe of all possible three-site line shapes can
be represented as points in the plane of shape parame-
ter pairs (a, b; Fig. 8 B). In the next several sections, we
show how real and complex values of the PF compo-
nents {q, r, s} project onto the (a, b) parameter space.
This rootlocus map will be essential for interpreting
parameter identifiability for three-site binding curves.

Critical values of shape parameters for three-
site binding curves
In this section, we determine the critical values of shape
parameters a and b, which are needed to create the
root-locus map of the (a, b) parameter space. The quan-
titative relationship between shape parameter a and the
PF constants for three-site binding curves is obtained by
solving Eq. 29b for a and substituting Eq. 29a into this
expression, yielding
1/2

a= % (31a)
A similar procedure using Eqgs. 29a and 29c yields the
corresponding relationship for shape parameter b:

1/3
b = (q‘ff% (31b)
Eq. 31b can be rewritten as
b= (1/3)GM/AM. (32)

Because AM > GM for real, positive values of g, r, and s
by the AM-GM inequality (Hardy et al., 1934), Eq. 32
requires that the PF components cannot all be real if b
exceeds the critical value b.=1/3.

The AM-GM inequality is not applicable to Eq. 31a.
However, the numerator and denominator of this equa-
tion are related to the elementary symmetric polynomi-
als in three variables of degree two and one, respectively
(Uspensky, 1948). Maclaurin discovered a family of in-
equality relations between these polynomials (Cvet-
kovski, 2012). The inequality relevant to Eq. 31a states
that, for real, positive numbers g, r, and s,

grr+s (qr+ gs+rs)'/?
3 - gl/2 ’

(33)
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Figure 8. Mapping PF component diagrams onto space of shape parameters for three-site binding curves. (A) Family of PF
spectra for three-site binding curves. Scale parameter A,, the spacing between the outermost midpoints, was equal to 10° for all of
the spectra. The midpoints x, (red), x; (black), and x, (blue) of the one-site components, shown as vertical lines, are given by x, = 1/s,
X, = 1/r, and x, = 1/q. Striped lines in subpanels —iv and —iii represent situations in which g and r are complex conjugates; in these
cases, the midpoint x,, is for the corresponding two-site component. Striped lines in subpanels iii and iv are similar, except that here
rand s are complex conjugates, and the midpoint of the two-site PF component is x,.. The PF constants g, r, and s have the following
relationships: all real and distinct in —i, o, and i, all real with two equal in —ii and ii, and one real and one pair of complex conjugates
in —iv, —iii, iii, and iv. (B) Root-locus map for PF components of three-site binding curves. Bold lines represent (a, b) pairs for which
the corresponding PF constants g and r are equal (blue line) or for which r and s are equal (red line). The points inside the region
demarcated by these two lines represent all (a, b) pairs whose PF expansions give rise to real, distinct values of g, r, and s. Lowercase
roman numerals identify points in the (a, b) parameter space corresponding to the PF spectra in A. Sum of thin blue, black, and red
lines comprise all (a, b) pairs whose PF spectra have a spacing A, = 10°. Uppercase roman numerals |-V identify the four quadrants
demarcated by the critical values (a. and b,) of the shape parameters. (C) Relationships between location and shape parameters
{p1, a, b}, PF constants {q, r, s}, and spacing and slope factors {A1, A,, I'} for three-site binding curves. Equations for interconverting
between these factors are also given. Symbols such as |g| represent the magnitude of the complex number g, not its absolute value.

with equality applying when the numbers are all equal.
Comparison of Eq. 33 with Eq. 3la indicates that the
maximum value of a that yields all real values for the set
{g, , s} is the critical value a, = (1/3)"2. 1t is worth not-
ing that this critical value is different than the critical
value a. = 1/2 for the case of two binding sites (Table 1).

The critical values a. and b, partition the (a, b) shape
parameter space into four quadrants (labeled I-IV in
Fig. 8 B). Shape parameter pairs in quadrants II, III,
and IV correspond to binding curves whose PF compo-
nents must include a pair of complex conjugate values

JGP Vol. 149, No. 1

because one or both of the shape parameters exceed
their critical value. However, knowledge of the critical
values a. and b, is not sufficient to complete the three-
site root-locus map. It remains to establish the nature of
the PF constants that map to quadrant I. This question
is addressed in the next section.

Mapping real-valued PF constants to quadrant | of the
(a, b) shape parameter space

Three-site binding curves whose PF spectra consist of all
real values of g, r, and s are completely specified by two
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Table 1. Relationship between shape parameters of n-site binding curves and one-site binding parameters derived from
PF expansion

n and shape parameters as Critical value Shape parameters as function of spacing Shape parameters as function of spacing and

function of PF constants of shape factors (q, r, s, t = real) slope factors (q, r = complex conjugates)
parameter
2
_ a=1/2 8, (119"
a= < “= T4 a= 5
3 . ) 2\ 1/2 172
“ (qr+gs+rs)'? a.=(1/8)2 a (A +As+ A0y [(1 ) +2(1 T ) Az]
=Y . k = "ot fe iy _
qtr+s T+A+A, a 2+(1+F2)I/2A2
po )" b.=1/3 (4,49 (1+1) a8
T oqtrts “ - b:l+A+A =
e 2+ (1+77) Ay
4 —
a= a=
s+ qtt s+t st)'? /2 - ) . 172 12
PECIAL s Gt o q’irf;; ) a = (6"%)/4 (Ar+Dg+ Dy 4 Ay dg + Ay Ag + Aghy) V2 [(1+T2) 1+ 8089 2 (14T2) " (a,89)]
Trdithet b 24 (1478 (Ay+ Ay
b=
(grs+ qrt+ qst+rst)'? b, = (41/3) /4 (AyAs+ A1 Ay +AgAs + Ay AgAy) !/ 2\ 3/2 o /3
b= e .= (47%)/ b= R A, [(1+r) (A2+AR)+2(1+F)(A3A5)]

24 (1+72) (A + Ay)

) 1/4 O\ 179
oo o)™ c=1/4 C(AdsA™ (1+1%)" (asa5)1
qtr+s+it C = —F—— =

c= A
L+di+hstdy 2+ (1+7%) (A +Ay)

Symbol n represents number of binding sites. Factors a, b, and c are shape parameters of n-site total binding curves (see main text). Factors g, r, s, and t are association
constants of one-site binding curve components obtained by PF decomposition of n-site binding curves. Critical values of shape parameters are values above which
PF constants (q, 1, s, etc.) cannot all have real values. Spacing parameters (A;, Ay, As) are defined in Fig. 13. The parameter I' is the ratio of the imaginary to the real

parts of complex conjugate PF constants (assumed to be q and rin the last column).

spacing factors. The factor Ay = s/q represents the dis-
tance between the midpoints of the outermost PF com-
ponents (Fig. 8 A, subpanelii, red and blue components)
because log(A,) =log(x,) —log(x,). Similarly, the factor
A, = r/qrepresents the distance between the midpoints
of the middle and rightmost one-site components
(Fig. 8 A, subpanel i, black and blue components) be-
cause log(A;) =log(x,) — log(x;). (Without loss of gen-
erality, it is assumed that s > r > @, so that Ay > A; > 1.)
Substituting these relations for A; and A, into Egs.
3la and 31b yields

a = (A + Ay +A Ay 2

1+ A1+ A2 (34:3.)
and
_ (AiAy
b= (34b)

Eqgs. 34a and 34b were used to map the PF spectra in
subpanels —i, o, and i of Fig. 8 A onto quadrant I in the
(a, b) parameter space (Fig. 8 B), where they are shown
as black circles. This process was repeated for many ad-
ditional values of A; while holding A, constant at 10°;
the locus of points so obtained is shown by the thin
black line in Fig. 8 B.

It should be possible to use Eqs. 34a and 34b to iden-
tify all points in quadrant I corresponding to real values
of g, r, and s. We will demarcate this region, which con-
tains infinitely many (a, b) pairs, by determining its
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boundaries, of which there are two. One boundary cor-
responds to all sets of real PF constants for which r= q
(equivalent to A; = 1; see Fig. 8 A, subpanel ii). This
boundary is represented by the bold blue curve marked
“r=q” in Fig. 8 B, which was calculated using a range of
A, values in Egs. 34a and 34b while holding A, = 1. The
second boundary corresponds to all sets of real PF con-
stants for which r=s (equivalent to A; = Ay; see Fig. 8 A,
subpanel ii), and is represented by the bold red curve
marked “r = s” in Fig. 8 B. This curve was calculated
using a range of A, values in Egs. 34a and 34b while
holding A, = A,. The triangular region enclosed by the
bold blue and red curves in Fig. 8 B thus represents all
(a, b) pairs thatyield real and distinct values of g, r, and s.

Mapping complex-valued PF constants to the (a, b)
shape parameter space
By default, the area in quadrant I not enclosed by the
bold red and blue curves must correspond to (a, b)
pairs whose PF expansion contains a pair of complex
conjugate association constants. The PF spectra in those
cases consists of a one-site component (derived from
the real-valued PF association constant) and a two-site
component (derived from the pair of complex conju-
gate association constants). There are two possibilities
to consider.

The first possibility is that s is real and q and r are
complex conjugates (such as Fig. 8 A, subpanels —ivand
—iii). In this case, the midpoint of the one-site PF com-
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ponent is given by x, = 1/s. By combining Eqs. 12b, 17a,
17b, and 22, the midpoint of the two-site component is
Xgr = 1/(Qreal” + Qimag”)"/*. By generalizing the previous
definition of the spacing factor to include complex val-
ues, we obtain A, = s/|q|, where |g| represents the mag-
nitude of the complex number g and is given by |q| =
(Greal” + Qimag’)"/*. Thus, A, represents the separation
between the midpoints of the one-site and two-site com-
ponents because log(As) = log(s/|q|) = log(xq/x,) =
log(x,) — log(x,).

The spacing factor A, is not useful here because it is
always equal to 1 when g and r are complex conjugates.
We use instead the slope factor I', which is the ratio of
the imaginary to the real parts of q and r (Eq. 20). Sub-
stituting the above relations for A, and I' into Egs.
3la and 31b yields

[(1+12) +2(1412) 0] v

= 35
a 2_'_(1_‘_1_2)1/2&2 ( a)
and
2\ /2 ) 1/
b= % (35b)
2+ (1+72)77 Ay

Eqgs. 35a and 35b were used to map the PF spectra in
Fig. 8 A (subpanels —iv, —iii, and —ii; for which Ay = 10°)
onto the (a, b) parameter space, where they are shown
as blue circles (Fig. 8 B) This process was repeated for
many additional values of I' while holding A, constant
at 10% the locus of points obtained is shown by the thin
blue line in Fig. 8 B.

It is worth noting that in the transition from PF com-
ponents with all real values of g, r, and s (Eqgs. 34a and
34b) to PF components containing a complex conju-
gate pair (Egs. 35a and 3bb), one degree of freedom
has been transformed from a spacing factor, A, to a
slope factor, I' (see Fig. 8 C). We show later that this
phenomenon helps to explain the parameter compen-
sations that underlie parameter nonidentifiability.

The second possibility for complex-valued PF con-
stants is that q is real and r and s are complex conju-
gates (such as Fig. 8 A, subpanels iii and iv):

S = Spart isimag (363)

and

= Spal — isimngv (36b)

Using the same approach as for the previous case, we
define the spacing factor, Ay = |s|/q, which again rep-
resents the separation between the midpoints of the
one-site and two-site components. The spacing factor
A, is not useful here because it is always equal to A,
when r and s are complex conjugates. We use instead
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the slope factor I', which in this case is defined by
I'= Simag/srcal'
Substituting the above expressions for Ay and I' into
Egs. 31a and 31b yields
[+ e (112) /0,

= 37
a 2+(]+F2)1/2/A2 ( a)

and

b _ (1+F2)1/2/A21/3 (37b)
2+ (1+F2)1/2/A2'

Eqs. 37a and 37b were used to map the PF spectra in
the (a, b) parameter space and are shown as red circles
(Fig. 8 B). This process was repeated for many addi-
tional values of I' while holding A, constant at 10°% the
locus of points obtained is shown by the thin red
line in Fig. 8 B.

Contours of constant A, reveal a second level of
organization in the (a, b) space

The union of the thin blue, black, and red segments in
Fig. 8 B represents a “contour of constant Ay,” for A, =
10°. The pattern of these roots hints at another level of
organization in the root-locus map beyond the distinc-
tion between real and complex roots that defines the
boundaries between quadrants I-IV. In this finer level
of organization, complex PF constants segregate into
two distinct regions according to whether q and r are
complex conjugates (thin blue line) or rand s are com-
plex conjugates (thin red line).

A more complete three-site root-locus map (Fig. 9)
was constructed by calculating many additional con-
tours of constant A, for values of A, ranging from 1 to
10*" using Eqs. 34a, 34b, 35a, 35b, 37a, and 37b. Consis-
tent with the pattern in Fig. 8 B, all of the contours of
constant A, in Fig. 9 are composed of segments that
cluster into three areas. Sets of {q, r, s} that are all real
are located inside the red/blue triangle in quadrant I
(region A, black), whereas sets for which r and s are
complex conjugates cluster to a connected region in
the right part of the space (region B, red), and sets for
which g and r are complex conjugates cluster to a con-
nected region in the left part of the space (region C,
blue). Also shown in Fig. 9 are the values of A, for the
points in region A and the values of I'" for the points in
regions B and C. We show later that this second level of
organization in the root-locus map is functionally signif-
icant, because parameter identifiability is different in
regions A, B, and C.

Identifiability map for three-site binding curves

The blue, black, and red circles in Fig. 9 represent a
sample of 64 points distributed over a large area in the
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Figure 9. Root-locus map for PF components of three-site binding curves. The blue, black, and red circles represent 64 shape
parameter pairs spanning a large region of the (a, b) parameter space. Each of these pairs corresponds to a different three-site bind-
ing curve line shape (see Eq. 25). The thin blue-, black-, and red lines indicate regions in which g, r, and s are real and distinct (black,
region A); g is real and rand s are either real and equal or are complex conjugates (red, region B); or sis real and g and r are either
real and equal or are complex conjugates (blue, region C). In region A, the shape parameters depend on the spacing factors Aj and
A, (see Egs. 34a and 34b), the values of which are indicated below each black circle. In Region B, the shape parameters depend on
spacing factor A, and on slope factor I' = s;;,.4/Se.s (see Egs. 37a and 37b). In region C, the shape parameters depend on spacing
factor A; and on slope factor I' = Gimag/ Greal (se€ Eqs. 35a and 35b). The values of I are indicated below each red and blue circle. Lines
of constant A,, which connect binding curves with similar line shapes, are shown for numerous values in the range 1 < A, < 107"
Uppercase roman numerals |-V identify the four quadrants demarcated by the critical values (a. and b,) of the shape parameters.

(a, b) parameter space. Binding curves for each pair of
(a, b) values are shown at the corresponding locations
in Fig. 10 and illustrate the wide variety of line shapes
that are possible for three-site binding curves.

We explored parameter PI systematically by comput-
ing fit-error curves for parameters p;, a, and b for each
of the three-site binding curves in Fig. 10. The values
next to each binding curve represent, from top to bot-
tom, the asymptotic errors from the fit-error curves for
parameters p;, a, and b. For example, the asymptotic
errors for parameters p;, a, and b were 0.16, 9.5 x 1079,
and 0.19 for the binding curve corresponding to (a, b)
= (107, 107%). Values are shown in bold text if the as-
ymptotic error was greater than 5% (indicating that the
parameter is PI) and in normal text if the asymptotic
error was <6% (indicating that the parameter is not PI).

The simple identifiability pattern in Fig. 10 comprises
three distinct regions: in quadrants II, III, and IV (dark
green), none of the parameters are PI; inside the trian-
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gular region of quadrant I (yellow), all three parame-
ters are PI; and in the remaining part of quadrant I
(light green), only parameters p; and b are PI. These
results are similar to those for two-site curves (Fig. 5 H)
in two respects: (1) all of the parameters are PI in the
region of shape parameter space that contains only dis-
tinct, real-valued PF components (Fig. 10, yellow shad-
ing), and (2) nonidentifiable parameters are only
obtained in the regions of shape parameter space that
contain complex-valued PF components (Fig. 10, light
green and dark green shading). However, the PI map
for three-site curves contains an additional subtlety that
has no equivalent for two-site curves. In the light green
area of quadrant I, only a subset of the parameters are
identifiable, whereas in the yellow region of quadrant I,
all of the parameters are identifiable. The identifiability
pattern in Fig. 10 reflects both levels of organization
(quadrants I-IV and regions A-C) present in the
root-locus map (Fig. 9).
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Figure 10. Superimposed maps of binding curve line shapes and binding parameter identifiability for three-site binding
curves. Binding curves computed for a given (a, b) pair are shown in the corresponding position in the (a, b) parameter space. Nu-
merical values represent, from top to bottom, the asymptotic errors for parameters py, a, and b for each binding curve. Values are
shown in bold text if the corresponding asymptotic error is >5% (indicating that the parameter is Pl) and in normal text if the asymp-
totic error is <5% (indicating that the parameter is not Pl). Regions are colored according to parameter Pl: yellow if all parameters are
Pl, light green if a subset of the parameters is Pl, and dark green if none of the parameters are Pl. Uppercase roman numerals |-V
identify the four quadrants demarcated by the critical values (a. and b,) of the shape parameters. Circled binding curves marked A

and B indicate example curves A and B referred to in main text.

The effectiveness of parameter compensations explains
regions in which all, some, or none of the binding
parameters are identifiable
Binding curves in the yellow-shaded region in quadrant
I (Fig. 10) have three real, distinct PF roots, and thus
three distinct one-site components in their PF expan-
sions (such as in Fig. 8 A, subpanels —i, o, and i). The
spacing between these components, quantified by the
factors A, and Ay, completely specifies the line shape of
three-site binding curves. Eqgs. 34a and 34b indicate that
it is not possible to change one of the shape parameters
to an incorrect value (as is done during the calculation
of a fiterror curve) without altering either A, or A,,
which in turn would change the line shape and yield a
poor-quality fit to the data curve. As a result, the bind-
ing parameters are PI in this region.

Upon moving from the yellow region to one of the
green regions in Fig. 10, two of the real PF constants are
replaced by a complex conjugate pair, which collapses

JGP Vol. 149, No. 1

two of the one-site PF components into a single two-site
and iv). The binding curve line shape in these regions is
determined by the slope of the two-site component (de-
termined by parameter I'; see Eq. 20), and by the spac-
ing between the two-site component and the remaining
one-site component (specified by parameter Ay).

We noted earlier that changing parameter I' has
small effects (a factor of 2 at most) on the midpoint
slope of the two-site PF component. Furthermore,
during a curve fit, location parameter p; can be var-
ied to shift the calculated curve along the abscissa
without changing its shape. Thus, to achieve the best
fit to binding curves derived from the green areas of
Fig. 10, it is only necessary to vary parameters a and b
so that A, for the fit and data curves are equal. The
key to understanding whether the parameter com-
pensations occurring during data fitting are effective
(leading to non-PI parameters) or ineffective (lead-
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ing to PI parameters) is to understand how A, de-
pends on a and b.

Consider example binding curves from two regions of
the (a, b) parameter space with different identifiability
properties. The first curve (“curve A”), for which (a, b)
= (10, 0.1), maps to quadrant IT (circled in Fig. 10). For
this curve, parameters p;, a, and b are all not PI. The
second curve (“curve B”), for which (a, b) = (107*,107"),
maps to the light green region of quadrant I. For this
curve, parameters p; and b are PI, but parameter a is
not PI. The spacing factor Ay = 10° for curves A and B
(note that they are on the same contour of constant
Ay), but the relative positions of their one- and two-site
components are reversed. Given this symmetry, it is per-
haps surprising that the parameter identifiability for
these curves is different. In the following, we show that
the distinct identifiability behaviors are explained by
differences in how Ay depends on aand b in quadrant I
compared with quadrant II.

The contours of constant A, in Fig. 9 graphically de-
pict the relationship between A, and the shape parame-
ters a and b throughout the (a, b) parameter space. In
region B, the shape parameters are given by Eqgs. 37a
and 37b. Numerical comparison of factors Ay and I in-
dicates that Ag >> (1 + I'®)"/? in quadrant II (which lies
entirely within region B). Applying this approximation
to Egs. 37a and 37b yields

9\ 1/2
a-= (“Ff) (38a)
and
9\ 1/2 1/3
b= “*”2 /82 7 (38b)
Combining Eqgs. 38a and 38b yields
Ay = (a/b)° (39)

Eq. 39 indicates that A, remains constant if the ratio of
shape parameters a and b remains constant. Indeed, for
a wide range of values of parameter a (Fig. 11 A, top,
points C-G), the nonlinear regression selects values for
parameter b that preserve this ratio (Fig. 11 A, bottom),
leading to low-error fits to curve A (Fig. 11 A, middle).
Similar arguments apply to the fit-error curve for pa-
rameter b (Fig. 11 B, top), exceptin this case parameter
ais varied in response to the linear ramp of b values to
maintain a constant ratio a/b (Fig. 11 B, bottom), yield-
ing low-error fits to curve A (Fig. 11 B, middle). These
efficient parameter compensations explain why shape
parameters a and b are not PI for curve A (or for any
other curve from quadrant II).

In region C (Fig. 9), the shape parameters are given
by Eqgs. 35a and 35b. Numerical examination of factors
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Ay and T indicates that (1 +T%)"2 Ay >> 1 in the green-
shaded part of quadrant I (Fig. 10), which lies entirely
within region C (Fig. 9). Applying this approximation
to Eq. 35b yields

Ay = b2, (40)

consistent with the finding that the contours of con-
stant A, are horizontal lines in this region. An asymme-
try has been created because Ay depends on only one of
the shape parameters. The lack of dependence of A, on
shape parameter a in Eq. 40 means by definition that
parameter a is not identifiable for curve B (Fig. 11 C).
However, parameter b is identifiable because varying it
changes A,, and this effect cannot be compensated for
by changing parameter a, as Ay does not depend
on a (Fig. 11 D).

Extension of the theory to proteins with more than
three binding sites

Our approach to assessing binding parameter identifi-
ability is easily extended to systems with more than
three binding sites. The analysis starts with the total
binding relation (Eq. 1), whose form is conserved for
all values of n. This equation can be reparameterized
using substitutions of the following form (see Egs.
24a and 24b):

b= dkkpl g (41)

Here, we have adopted a more flexible nomenclature for
the shape parameters, in which the subscript denotes the
power of ligand concentration that each shape factor ap-
pears with in the binding relation. Thus, shape parame-
ter a becomes ay, b becomes as, etc. Substituting Eq. 41
into the general n-ite total binding relation (Eq. 1) yields
prx+2a’p?at+ . 4na," pr " x"

v = 5 . (42)

T+ pia+a?p®x?+ . .+a,"pr"x"

Eq. 42 has the remarkable property that multiplying p;
by a constant k is equivalent to scaling the abscissa by
that same constant:

(kp)x+2as®(kpr)?x*+...4na,"(kpr)nx"
T+ (kpr)x+ as® (k)2 x%+ oota, "(kpr)nx"
pkx) +2a0? pr 2 (k)% + .ot ma, " pr " (kx) "

1+ pr(hx) + a2 pr 2 (kx) 2+ oota, " pr " (k)™

(43)

Eq. 43 indicates that parameter p; is a location parame-
ter that determines the position of the binding curve on
the concentration axis, and the (n — 1)-dimensional set
{as, as, ..., a,} are shape parameters that determine the
binding curve line shape.

The reparameterized n-site binding curve can be de-
composed into n one-site components using a PF ex-
pansion. The association constants for the one-site
components are the roots of the n-site PF polynomial
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Figure 11. Parameter compensations affecting binding parameter identifiability for three-site binding curves. (A and B, top)
Fit-error curves for shape parameter a (A) and shape parameter b (B) for three-site binding curve (curve A in Fig. 10) for which (a,
b) = (10, 0.1). Dashed horizontal lines indicate 5% rms error level. (A, middle) Examples of fits to synthetic data curve from selected
points labeled A-G on curve in A (top). Fits were obtained using nonlinear regression while holding shape parameter a fixed to the
value indicated by the corresponding letter in A (top) and varying parameters p; and b to achieve best fit. (B, middle) Same as A
(middle), except fits are from selected points on curve in B (top), and fits were performed holding shape parameter b fixed while p,
and a were varied to achieve best fit. (A and B, bottom) Trajectories of parameters a, b, and p; for all fits used to construct fit-error
curves in A and B (top). (C and D, top) Fit-error curves for shape parameter a (C) and shape parameter b (D) for three-site binding
curve (curve B in Fig. 10) for which (a, b) = (1074, 1074). (C, middle and bottom) Same as for A (middle and bottom), except fits and
parameter trajectories were from points in C (top). (D, middle and bottom) Same as for B (middle and bottom) B3, except fits and
parameter trajectories were from points in D (top). Spacing parameter A, is illustrated for binding curve in A (middle). Synthetic data
curves in A-D (middle) are indicated by red dots.

equation (see Eqgs. 13 and 30 for examples for two and
three sites), which has the general form

nomials (Uspensky, 1948), and explicit formulas for
them in terms of the PF constants {q, r, s, ...} can be
written down by inspection for any value of n. The ex-
amples in the second column of Table 1 illustrate the
predictable pattern followed by the a; for vari-

S Dratptgt =0, (44)

where a; = 1. The association constants of the PF com-
ponents, obtained by solving Eq. 44, are either all real,
or else pairs of them are complex conjugates, with the
remainder real.

The shape parameters a; for an n-site system are re-
lated in a simple way to the elementary symmetric poly-
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ous values of n.

The critical values of the shape parameters for any
value of n are easily computed using the appropriate set
of Maclaurin inequalities (Cvetkovski, 2012). These in-
equalities yield a general formula for the critical value
of parameter a; for n sites:
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Figure 12. Mapping PF component diagrams onto space of shape parameters for four-site binding curves. (A) Examples of PF
spectra for four-site binding curves. Spectra show cases in which PF constants g, r, s, and t are real-valued. Spacing parameters A4,
A,, and Az are shown in subpanel o. (B) Root-locus map for PF components of four-site binding curves. Lowercase roman numerals
identify points in the (a, b, ¢) parameter space corresponding to the PF spectra in A. Blue sheet represents all (a, b, ) triples for
which r = s (corresponding to subpanel i in A); red and black sheets represent all (a, b, c) triples for which s = tand g = r, respectively
(corresponding to subpanels iii and v in A, respectively). The “seam” where blue and red sheets intersect corresponds to all (a, b,
¢) triples for which r = s = t (corresponding to subpanel ii in A). The seam where blue and black sheets intersect corresponds to all
(a, b, ¢ triples for which g = r = s (corresponding to subpanel iv in A). The seam where red and black sheets intersect corresponds
to all (a, b, ¢) triples for which g = rand s = t (corresponding to subpanel vi in A). Volume inside of the blue, red, and black sheets
corresponds to all (a, b, ¢) triples for which the PF constants q, r, s, and t are real and distinct. In the volume outside of the blue,
red, and black sheets, the PF constants will contain one or two pairs of complex conjugate values. The cube in B is bounded by the
planes defined by the critical values of shape parameters a, b, and c (see Table 1).

Cn 1/k
Ak(eritical) = ( 1';) s (45)

facein Fig. 12 B. The black “sheet” in Fig. 12 B represents

where C, is the binomial coefficient n choose k. Criti-
cal values of the shape parameters for two-, three-, and
fourssite binding curves computed using Eq. 45 are
compiled in Table 1.

Mathematical analysis of the PF components can be
used to create a root-locus map of the shape parameter
space. For example, the PF spectra for n =4 (Fig. 12 A)
represent cases where the PF roots are all real and all are
distinct (subpanel o), two are equal (i, iii, and v), three
are equal (ii and iv), and two pairs are equal (vi). These
diagrams were used to guide the computation of the sur-
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the locus of (a, b, ¢) triples corresponding to equal values
of the PF constants g and r (Fig. 12 A, v), and was calcu-
lated from the shape parameter equations for four sites
in the fourth column of Table 1 with A, = 1. Similarly, the
red sheet corresponds to PF spectra for which s = ¢
(Fig. 12 A, iii), calculated for Ay = A3, and the blue sheet
to those for which r=s (Fig. 12 A, i), calculated for A, =
A,. Together, these sheets enclose the region of all (a, b,
c) triples whose PF components have distinct, real-valued
association constants. This region corresponds to all
fourssite binding curves with four resolved features. This
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volume is the foursite equivalent to the triangular area
enclosed by bold red and blue curves in Fig. 8 B. Our re-
sults for two- and three-site binding curves suggest that
all n binding parameters are identifiable for four-site
binding curves that map to the volume enclosed by the
blue, red, and black sheets in Fig. 12 B.

Root-locus maps for systems with more than four
binding sites would be generated in an analogous fash-
ion. An important advantage of using the PF expansion
approach is that the complexity of the calculations does
not increase rapidly when the number of binding sites
is increased, as it would with other methods. For exam-
ple, the root-locus maps could be computed using the
discriminant, but the number of terms in this function
increases exponentially with degree; the discriminants
for n =4, 5, and 6 contain 16, 59, and 246 terms (Gel-
fand et al., 1994). In contrast, the geometric picture
provided by PF spectra remain simple as the number of
sites increases (Fig. 13), and the equations used to com-
pute the boundaries of the region in the shape parame-
ter space corresponding to all real-valued PF constants
remain manageable (see Table 1 for examples for two,
three, and four sites).
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DISCUSSION

Summary

Many proteins, such as ligand-activated receptors, contain
multiple ligand binding sites. Function is understood at a
detailed, mechanistic level for only a small number of
these molecules. One barrier to progress is the difficulty in
reliably quantifying site affinities and cooperative interac-
tions because the uncertainties in parameters estimated by
fitting binding data may be very large. For example, an
infinite range of parameter values for the Adair—Klotz
modelyield close fits to the binding curve for CaM (Fig. 1),
and hence these data yield almost no insight into the
mechanism of calcium binding. We showed that this prop-
erty is not unique to CaM, but rather is a general phenom-
enon encountered when parameters are estimated by
fitting binding curves (Figs. 3, 4, 6, 7, 10, and 11). Thus, to
understand the factors that determine binding parameter
identifiability, our approach is to pose the general ques-
tion, “Under what conditions are the ranges of binding
parameter estimates not infinite?” rather than to simply
compute the range of parameter values consistent with
given data fitted by a specified model.
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The infinity of potential models and the infinity of
binding curve line shapes argues against using purely
numerical approaches to exhaustively compute multi-
dimensional error surfaces. Rather, we exploit features
of binding problems that enable the use of analytical
methods, which yield general insights into parameter
identifiability. First, the binding relations for the uni-
verse of all models composed entirely of binding equi-
libria collapse into a single, conserved functional form
for proteins with an arbitrary number of binding sites.
In the previous paper (Middendorf and Aldrich, 2017),
analysis of the canonical binding relation using matrix
algebra revealed simple rules governing binding param-
eter structural identifiability: at most, n parameters can
be quantified reliably by fitting total binding data for a
protein with n binding sites. (The number of SI param-
eters increases to n + 1 for models that also include con-
formational change of the receptor.) This absolute limit
rules out the use of models that include distinct associa-
tion constants for the n binding sites and explicit coop-
erative interactions between those sites. Unfortunately,
these are the quantities of greatest mechanistic interest!
If some of the site affinities can be assumed to be identi-
cal (as a result of, for example, symmetry, as in the case
of homo-multimeric proteins), then it may be possible
to quantify both the affinities and cooperative interac-
tions. In other cases, simplifying assumptions are forced
on the investigator. An example of such a compromise
is the Adair—Klotz model (Fig. 1 A), which uses n mac-
roscopic association constants that do not distinguish
between site affinities and cooperative interactions.

The practical identifiability of binding parameters,
the subject of the present paper, is an inherently nu-
merical problem. We assessed binding parameter PI by
computing fit-error curves. Analytical tools such as the
PF expansion technique and mathematical inequalities
were used to guide and interpret these numerical calcu-
lations. The results of our hybrid numerical/analytical
approach is summarized in identifiability maps (see
Figs. 5 H, 10, and 12 B), which indicate that the n SI
parameters described above can only be reliably quanti-
fied for binding curves containing n resolved compo-
nents. This result reveals a significant limit to the power
of equilibrium binding measurements because the li-
gand-binding curves for many proteins (including CaM,
Fig. 1) do not satisfy this criterion.

Our approach to understanding binding parameter
identifiability and the structure of total binding curves
Our analysis of binding parameter identifiability is
based on five key ideas. (1) The mathematical form of
the total binding relation at equilibrium is conserved
for most physically reasonable binding models. (2) The
parameters for such models can be converted into mod-
el-independent location and shape parameters, which
determine the position and line shape, respectively, of
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the binding curve. (3) Every total binding curve can be
decomposed into simpler component curves using a PF
expansion. (4) Practical identifiability of binding pa-
rameters can be assessed by computing parameter fit-er-
ror curves. (5) The practical identifiability of a binding
curve’s parameters is ultimately determined by the
mathematical nature (real vs. complex) of the constants
in its PF expansion, which can be visualized on a root-lo-
cus map (as in Figs. 5 H, 9, and 12 B). These ideas are
discussed in the following sections.

Conserved form of total binding relation

When biophysical parameters are estimated by fitting
models to data, each candidate model under consider-
ation may generate a different equation relating the pa-
rameters to the experimental observable. Parameter
estimation must then be repeated for each of the (possi-
bly numerous) candidate models. However, two remark-
able properties of binding systems can be exploited to
simplify this process. First, as we showed in the previous
paper (Middendorf and Aldrich, 2017), the parameters
of mechanistic models whose unitary transitions com-
prise any combination of bimolecular ligand—protein
association reactions and unimolecular conformational
equilibria can be converted into a model-independent,
SI parameter set {p;, po, ..., pa}. Second, because ligand
binding occurs to a finite, saturable lattice of sites, the
total binding relation takes on a canonical form (Eq. 1)
for nearly any physically reasonable model.

These observations suggested to us an alternative ap-
proach to analyzing binding curves in which the data are
only fit once, using the canonical binding equation to
estimate the universal, SI parameters described above.
If the parameters are PI, then the reliable fit parameter
estimates obtained from this one-time fit are easily con-
verted algebraically to parameters of specific mechanis-
tic models. In cases in which parameters are not PI, this
fact will be readily established, because any of the fits to
the data will yield shape parameters that map to a
“non-PI” region of the appropriate identifiability map.

It is worth noting that total binding measurements
are not useful for selecting a preferred binding model
from a group of candidate models, as all such models
for a given number of sites reduce to an equivalent
mathematical form (Eq. 1).

Location and shape parameters

The universal, SI parameter set {p;, po, ..., p,} developed
in the previous paper (Middendorf and Aldrich, 2017)
can be transformed by simple substitutions (Eq. 41)
into an alternate, but still SI, parameter set that con-
tains two distinct classes of parameters: location param-
eter p; determines a binding curve’s horizontal position
(Fig. 3, A-C, left; and Fig. 7, A-E, left), whereas the n
— 1 shape parameters determine the curve’s line shape
(Figs. 4 A and 10). We also discovered that the dimen-
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sionality of the identifiability problem can be reduced
from n to n — 1 parameters because the location param-
eter has no effect on identifiability (Fig. 3, A-C, middle).

PF expansion of n-site total binding curves

The PF expansion decomposes binding curves into their
simplest components. Every n-site binding curve can be
expressed uniquely and exactly as a sum of n one-site
binding curves (see Egs. 10 and 27). The PF spectrum
of a binding curve (Fig. 5, A-F, right; and Fig. 8 A) re-
veals its essential structural components, much as the
Fourier transform reveals the frequency components of
a time-dependent signal. The simplicity of PF spectra
can be contrasted with the often complicated line shapes
of total binding curves (Figs. 3, 4, 7, and 10).

The PF expansion constants (q, I, s, ...) are the roots
of an n-th order PF polynomial equation (Eq. 44) and
are readily computed using common numerical tech-
niques. These roots may all be real, or some may occur
as complex conjugate pairs. The latter are only physi-
cally meaningful if both members of a pair are merged
into a single component with a two-site line shape.
Thus, one resolved feature in a binding curve (out of
the maximum possible of n) may be lost for each pair of
complex conjugate components in its PF expansion.
This observation provides a very simple rule for qualita-
tively assessing binding parameter identifiability: one or
more parameters will not be identifiable for binding
curves with less than n resolved components. Consistent
with this rule, the binding parameters for CaM are not
PI because there is no underlying structure resolved in
the sigmoidal binding curve for this molecule (Fig. 1).

The PF expansion technique is also useful conceptu-
ally: the PF constants (q, r, s, ...) act as a “bridge” be-
tween the mathematical parameters (py, a, b, ...) of the
binding equation and the spacing (A;, Ay, As, ...) and
slope (I') factors that characterize the binding curve
line shape (Fig. 8 C).

Parameter fit-error curves
Visualizing error surfaces becomes unmanageable for
systems described by more than a few parameters be-
cause of the large number of slices through the multi-
dimensional surface that must be examined.
Parameter fit-error plots collapse this error surface to
two dimensions by plotting the least-squared fit error
against a range of values for a single parameter; the
remaining n — 1 parameters assume their best-fit val-
ues at each point. Moreover, because multiple fit-error
curves can be displayed together, the ranges of all pa-
rameters consistent with experimental data can be
represented compactly in a single, two-dimensional
plot (Fig. 1 A, bottom).

Many binding parameter fit-error curves (including
those in Figs. 1, 3, 4, 7, and 11) have the remarkable
property that there is an infinite range of parameter
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values over which the fit error is small and essentially
constant. If the magnitude of the fit error in this range
(the “asymptotic error”) is smaller than the noise in an
experimental binding curve, then an infinite range of
parameter values will yield equally good fits to the data,
indicating that the binding parameter is not identifiable.

Relation of real and complex PF components to binding
parameter identifiability

The regions of constant error in parameter fit-error
curves are caused by efficient compensations between
the parameters, which can be understood by the follow-
ing arguments. First, consider the case in which such
compensations are not possible. The PF decomposition
of an n-site binding curve yields a component with a
one-site line shape for each real root of its PF polyno-
mial. If all of the roots are real and distinct, then there
are n — 1 spacings between the one-site components
(Fig. 13). There is only one combination of the n — 1
shape parameters that reproduces the n — 1 spacings
between the components in the binding curve correctly,
yielding a low-error fit. (See the column labeled “Shape
parameters as function of spacing factors” in Table 1 for
equations for two-, three-, and four-site curves.) As a re-
sult, the parameters are PI when the roots of the PF
polynomial are real and distinct.

The behavior is very different when a binding curve’s
PF polynomial has complex roots or real roots that are
equal. For each pair of complex conjugate roots, two of
the one-site PF components are merged into a two-site
component, with a loss of one spacing between the fea-
tures in the binding curve. For each pair of real roots that
are equal, two of the one-ssite PF components overlap
perfectly, again with a loss of one spacing between the
features in the binding curve. For either of these cases,
there are an infinite number of combinations of the n —
1 shape parameters that can reproduce the set of correct
spacings because there are fewer than n — 1 spacings.
(See the last column in Table 1 for equations for two-,
three-, and foursite curves.) By adjusting the location
parameter appropriately, a calculated curve with the cor-
rect spacings can be brought into proper register with a
given data curve, producing a close fit. The result is that
one or more of the parameters are not PI when the PF
polynomial has one or more pairs of complex roots, or
one or more real, equal roots. In the limit that two or
more real roots are unequal, butvery close in magnitude,
the behavior is essentially the same as for equal roots.

Using root-locus maps to understand parameter
identifiability

The identifiability of binding parameters can be assessed
by calculating parameter fit-error curves. Unfortunately,
each set of fit-error curves is specific to a particular bind-
ing curve line shape and must be recalculated when a
new binding curve is analyzed. It would be preferable to
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consult an “identifiability map” that classifies points
throughout the space of the shape parameters (which
correspond to different binding curve line shapes) with
respect to identifiability. Such maps were constructed
for two-site curves (Fig. 5 H) and three-site curves
(Fig. 8 B) using the “brute force” approach of calculat-
ing fiterror curves for many different binding curve line
shapes. The disadvantage of this approach is that it re-
quires extensive numerical computations.

Our understanding of the causes underlying parame-
ter identifiability (outlined in the previous section) sug-
gests a simpler and more efficient approach. Because
parameter identifiability is determined by the nature
(real vs. complex) of the roots of the PF polynomial, the
identifiability map coincides with a second map that
classifies the points in the shape parameter space based
on whether their PF roots are all real or contain com-
plex conjugate pairs. This latter map, the rootlocus
map, is easily calculated. Remarkably, for two-site
(Fig. 5 H), three-site (Fig. 8 B), and foursite (Fig. 12 B)
systems, a single, connected region contains all sets of
shape parameters whose PF roots are real and distinct.
Therefore, the region of this space in which all binding
parameters are PI can be demarcated by computing just
its border. We showed above that the n — 1 sides of this
border are calculated by evaluating n — 1 algebraic ex-
pressions, such as Eqgs. 34a and 34b for three-site sys-
tems. Thus, the difficult and time-consuming problem
of computing a large number of parameter fit-error
curves can be replaced by a small number of simple al-
gebraic calculations.

Our approach is similar to root-locus analysis (Evans,
1948), which is used in control theory to determine the
stability of feedback systems. The common idea is that
the nature of the roots of an equation modeling a phys-
ical system can be used to predict the behavior of the
system for all parameter values.

Significance of complex-valued PF association constants
Complex-valued binding affinities were considered pre-
viously by Klotz (Klotz, 1993, 1997), who encountered
them when factoring binding polynomials (the denom-
inator of Eq. 1). The appellation “ghost affinities” given
by Klotz to these purely mathematical constructs re-
flects their uncertain physical significance.

We have shown that complex values arise often during
a similar process, the PF expansion of total binding re-
lations. However, the PF components have a clear phys-
ical interpretation as structural elements of binding
curves. We suggest that pairs of one-site components
with complex conjugate association constants have no
physical significance individually, and are only mean-
ingful when combined into a two-site component. The
merging of two one-site components into a two-site
component is the reverse of the process shown in Eq.
10. Because the complex conjugate PF constants q and
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r are related to the two-site parameters p; and a as the
sum q + r (Eq. 12a) and the product q r (Eq. 12b), the
process of merging the complex-valued one-site compo-
nents produces a real-valued, physically meaningful
two-site component.

Complex affinities, which might at first glance seem to
be nonphysical artifacts, arise naturally in binding prob-
lems and do not conflict with the physical constraints of
such problems. Complex numbers appear in many other
physical problems, most notably in the analysis of electri-
cal circuits. The frequent occurrence of complex-valued
affinities for proteins (Klotz, 1993, 1997), coupled with
our finding that they are indicators of nonidentifiability,
suggests that the binding parameters of many, if not most,
real proteins will be nonidentifiable when constrained by
total binding data. This idea is consistent with the quali-
tative observation that binding curves for real proteins
containing n binding sites often have fewer than n re-
solved components (such as CaM; Fig. 1 A, middle left).

Identifiability of binding parameters constrained by
other types of experimental data

Our findings highlight the magnitude of the challenge
in understanding the molecular mechanisms of proteins
with multiple ligand binding sites. We expect that for
many proteins, techniques that are more powerful than
equilibrium total binding measurements will be required
to quantify site affinities and cooperative interactions. We
are now applying the mathematical tools and approach
developed here and in the previous paper (Middendorf
and Aldrich, 2017) to site-specific binding (Di Cera,
1995) and kinetic measurements to determine how
much reliable, additional information can be obtained
from those methods. We note that reliable estimates of
some of the Adair—Klotz parameters for calcium binding
to CaM (Fig. 1 A, middle left) could in principle be
achieved by measuring the limiting slope of the total
binding curve (the site occupancy at very low values).
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