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Structural identifiability of equilibrium ligand-binding parameters

Thomas R. Middendorf'? and Richard W. Aldrich'?
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Understanding the interactions of proteins with their ligands requires knowledge of molecular properties, such
as binding site affinities and the effects that binding at one site exerts on binding at other sites (cooperativity).
These properties cannot be measured directly and are usually estimated by fitting binding data with models
that contain these quantities as parameters. In this study, we present a general method for answering the critical
question of whether these parameters are identifiable (i.e., whether their estimates are accurate and unique). In
cases in which parameter estimates are not unique, our analysis provides insight into the fundamental causes of
nonidentifiability. This approach can thus serve as a guide for the proper design and analysis of protein-ligand
binding experiments. We show that the equilibrium total binding relation can be reduced to a conserved
mathematical form for all models composed solely of bimolecular association reactions and to a related,
conserved form for all models composed of arbitrary combinations of binding and conformational equilibria.
This canonical mathematical structure implies a universal parameterization of the binding relation that is
consistent with virtually any physically reasonable binding model, for proteins with any number of binding sites.
Matrix algebraic methods are used to prove that these universal parameter sets are structurally identifiable (SI;
i.e., identifiable under conditions of noiseless data). A general approach for assessing and understanding the
factors governing practical identifiability (i.e., the identifiability under conditions of real, noisy data) of these SI
parameter sets is presented in the companion paper by Middendorf and Aldrich (2017. J. Gen. Physiol.

https://doi.org/10.1085/jgp.201611703).

INTRODUCTION

One of the major functions of proteins is to bind other
molecules. These binding reactions serve a variety of
cellular functions, including buffering, transport, and
signal transduction. Protein-binding ligands include a
wide variety of chemical species, such as metal ions,
peptides, other proteins, nucleotides, neurotransmit-
ters, hormones, and nonbiological targets such as
pharmaceuticals.

In some situations, such as high-throughput screen-
ing studies of protein—drug interactions, it may be suf-
ficient to characterize protein-ligand binding using
an empirical factor obtained directly from the binding
curve, such as Kj o, the half-saturating ligand concen-
tration. However, for the large and important class of
proteins containing multiple ligand-binding sites, the
binding mechanism may be complex, and its elucida-
tion may require quantitation of factors such as dif-
ferences in the intrinsic ligand affinities of the sites,
dependence of the site affinities on the conformation
of the macromolecule, and cooperative interactions
between the sites. These mechanistic parameters
cannot be measured directly, but rather must be esti-
mated by fitting a quantitative model to binding and/
or conformation data.

For systems composed of multiple coupled equilib-
ria, parameter estimation may be compromised by
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correlations between the parameters. For some combi-
nations of model and data, parameter compensations
during fitting may be sufficiently effective that mul-
tiple parameter sets provide equally good fits to the
experimental data. If the range of parameter values
spanned in these sets is large enough, then little or
no knowledge is gained about the system under study.
In such situations, progress requires either improve-
ments in the data quality or else the adoption of alter-
native experimental approaches that provide stronger
constraints on the parameter values.

An example of failed parameter estimation is shown
in Fig. 1. The simple cooperative binding model
(Fig. 1 A) represents a receptor that occupies a single
conformational state and contains two (possibly non-
identical) binding sites. The three model parameters
are the microscopic association equilibrium constants
K; and K for binding to sites I and II and an interaction
(cooperativity) factor f that quantifies the fold change
in a site-binding constant when the adjacent site is occu-
pied by ligand. Detailed balance requires that K; £ Ky =
K f K, so there is only one cooperativity factor for this
model. (Cooperative interactions caused by unequal li-
gand affinities of a site in different conformations of a
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Figure 1. Parameters of two-site allosteric model are not S| when constrained by total binding data. (A) Diagram of two-site
allosteric model. Large circles represent ligation states of the system. Small circles represent binding sites | (left) and Il (right). States
are designated by symbols R;, where i (j) is equal to 1 or 0 depending on whether site | (site I) is bound or not bound by ligand,
respectively. States with zero, one, or two bound ligands are color coded black, red, and blue, respectively. Closed and open circles
represent bound and unbound sites, respectively. Model parameters are the microscopic association equilibrium constants Kj and
Kj for sites | and Il, respectively, and cooperativity factor f. (B, top) Equation relating mean number of bound ligands, v, to concen-
trations of the ligated states. (bottom) Equation relating v to free ligand concentration, x, and model parameters. In the top and
bottom, terms arising from states with zero, one, and two bound ligands are color coded black, red, and blue, respectively. (C, top)
Simulated binding curve computed from the top equation in B using parameter values {f, K, K} = {10.017, 1.0034 x 10° M~", 1.99
x 108 M~"}. Parameters were chosen to produce a relatively “unstructured” binding curve. (bottom) Locus of all parameter triples {f,
Ki, Ki} that yield total binding curve identical to the curve shown above. The curve was computed using Egs. 12a and 12b. Param-
eter triples are determined by taking vertical lines, which determine the value of f, and their intersections with the bold and light
green curves, which determine parameters K and K. Because of the symmetric appearance of K and K in the binding equation (B,
bottom), the bold and light curves may correspond to either K| and Kj or K and K|, respectively. Dashed lines marked “A,” “B,” and
“C" correspond to parameter triples {0.2, 10 M~", 108 M}, {1.0086, 1.0462 x 10’ M~", 1.8954 x 10® M~"}, and {100.86, 99,193 M~",
2.0 x 108 M7}, respectively. Arrows on abscissa delineate regions of negative (f < 1), zero (f= 1), and positive (f> 1) cooperativity.
(D, top) Simulated total binding curve computed from the top equation in B using parameter values {f, K, K} = {0.10086, 1.999 x
10" M1, 9.9193 x 10° M~"}. Parameters were chosen to produce a more “structured” binding curve than the one in the top of C.
(bottom) Locus of all parameter triples that yield total binding curves identical to curve shown above. The curve was computed using
Egs. 12a and 12b. Dashed lines marked “D,” “E,” and “F" correspond to parameter triples {0.0002, 10" M-, 10 M-}, {1.0017, 2.0
x 10" M, 9.9837 x 10° M}, and {100.17, 2 x 10" M, 9,983.2 M}, respectively.

macromolecule are also possible but are not considered
in the model in Fig. 1 A.)

Many commonly used techniques, such as those based
on uptake of radioactive ligands and calorimetric meth-
ods, do not provide distinguishable signals when ligands
bind to distinct sites in a protein, but rather yield the
total binding relation: the mean number of ligands

bound to the protein as a function of ligand concentra-
tion. The total binding relation is the ratio of the con-
centration of bound ligands to the concentration of
protein (Fig. 1 B, top). For the model in Fig. 1 A, this
relation can be reexpressed in terms of the model pa-
rameters (Fig. 1 B, bottom). The binding curve in
Fig. 1 C (top) was calculated from this relation using

106 Structural identifiability of binding parameters | Middendorf and Aldrich

520z Jequeoa( g0 uo 3senb Aq 4pd'z0. 119102 dbl/0vL26.1/50L/L/6Y L /spd-8jonie/dbl/Bio sseidny//:dny wouy papeojumoq



specific values of the model parameters. However, an
infinite set of parameter triples {f, K;, Ky} (Fig. 1 C, bot-
tom) yield total binding curves identical to this curve.
(Note that the x axis of Fig. 1 C [bottom] is truncated;
the locus of parameter triples continues to infinitely
large values of £) The dashed lines A, B, and C identify
three parameter triples from this set that correspond to
very different binding mechanisms. For parameter set
A, sites I and II have identical affinities and interact with
moderate negative cooperativity (f< 1); for parameter
set B, the affinities differ by ~20-fold, with no interac-
tion between the sites (£ ~1); for parameter set C, the
site affinities differ by a factor of 2,000 and interact with
strong positive cooperativity (f= 100). Because K; and
K;; appear symmetrically in the equation for total bind-
ing (Fig. 1 B, bottom), there is a further ambiguity in
the relative magnitudes of the site affinities: the simu-
lated curves are unaffected if the values of K; and Kj
are interchanged.

It might be argued that the curve in Fig. 1 C (top) isa
“pathological” case that places anomalously poor con-
straints on the parameters. However, there is also an in-
finite locus of parameter values (Fig. 1 D, bottom)
corresponding to the more highly structured synthetic
binding curve in Fig. 1 D (top). The curves in Fig. 1 (C
and D, bottom) indicate that, at best, fits to binding
data can place a lower limit on fand an upper limit on
the larger of K; and Ky. The infinite range of parameter
values yielding identical binding curves means that little
or no mechanistic insight can be gained from total
binding data analyzed using the two-site allosteric
model (Fig. 1 A).

The simulations in Fig. 1 show that obtaining a
good fit of a model to binding data provides no as-
surance that the estimated parameters are accurate
or unique, even for simple models with a small num-
ber of parameters. In these situations, the parameters
are deemed “not identifiable” (Ljung, 1987; Walter
and Pronzato, 1997). It is useful to distinguish two as-
pects of parameter identifiability (Raue et al., 2009).
Structural identifiability is an intrinsic mathematical
property of a given model and the data to be fitted
(Bellman and Astrom, 1970; Audoly et al., 2001;
Hengl et al., 2007; Chis et al., 2011). Parameters are
structurally identifiable (SI) if they can be estimated
accurately and uniquely from noiseless, bias-free data
of a specified type. For example, the parameters of
the model in Fig. 1 are not SI when constrained by
total binding data because the synthetic data curves
are fit exactly by an infinite number of parameter tri-
ples, for which the model parameters span infinite
ranges. The unavoidable presence of noise in real ex-
perimental data adds to the uncertainty in fit-derived
parameter values; parameters are practically identifi-
able (PI) if this added uncertainty is of an acceptable
magnitude (Raue et al., 2009).

JGP Vol. 149, No. 1

Several methods can be used to rigorously quan-
tify the uncertainty in parameters estimated by fit-
ting models to data. These include simulations, as
in Fig. 1 (see also Colquhoun [1969]) and calcula-
tions of likelihood intervals (Colquhoun and Sig-
worth, 1983; Colquhoun and Ogden, 1988; Edwards,
1992) or Bayesian posterior distributions (Hines et
al., 2014; Epstein et al., 2016). However, these ap-
proaches have important limitations. First, the “black
box” nature of numerical methods tends to obscure
the underlying features of the model and data that
determine whether parameters are identifiable, par-
ticularly when there are multiple, correlated param-
eters. Second, the brute-force approach of mapping
the entire error surface becomes computationally un-
reasonable for models with more than a few param-
eters. Finally, the estimation of parameters and their
uncertainties must be repeated for each of the (possi-
bly large number of) models under consideration. To
overcome these limitations, we develop in this study
and in a companion paper (see Middendorf and Al-
drich in this issue) a simple, systematic, and essen-
tially model-independent approach to assessing and
understanding parameter identifiability for macro-
molecule-ligand binding systems at equilibrium.

Our goal in this paper is to understand the factors
that determine the structural identifiability of binding
parameters. The method presented in this study gen-
erates as output a set of fit parameters that are SI by
construction, given two simple inputs: the number (n)
of ligand-binding sites on the protein and the num-
ber of protein conformational states. The approach is
general, as the SI parameter set is not derived from a
specific model but directly from the conserved math-
ematical structure of the binding relation itself. The
method can be applied to macromolecules with any
number of binding sites.

Our analytical approach focuses on the question of
the solvability of the system of equations that yields the
parameter values, without actually requiring the solu-
tions to be computed (as is done when numerical meth-
ods are used). By approaching the question in this way,
we derive simple, general rules that govern binding pa-
rameter SI: (a) the parameters of any model consisting
of any combination of bimolecular ligand—protein asso-
ciation reactions can be converted to a set of n SI fit
parameters, {pi, ps, ..., P}, because the form of the
binding relation is conserved for all such models; and
(b) models that also include protein conformational
change are treated similarly, except that the SI parame-
ter set comprises n + 1 fit parameters {py, p1, po, --., Pul-

The conserved form of the total binding relation for
all models satisfying these criteria is

Xt +2pxt+ L np,x"

v =
L+ poa’+ prat+ pox?+ .o+ pua”

(1)
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(Klotz, 1997), where vis the mean number of occupied
sites at free ligand concentration x, n is the number of
ligand-binding sites in the protein, and the parameters
{po, p1, ..., pa} are model-independent parameters. (Pa-
rameter p, in Eq. 1 is zero if the protein is assumed to
occupy a single conformation.) Using matrix algebra
methods, we show that each fit parameter p;, in Eq. 1 is
obtained from the model parameters corresponding to
all states with b bound ligands.

It is important to first establish, as we do here, that a
set of parameters is SI before assessing whether they are
PI because structural identifiability of parameters is a
necessary (but not sufficient) condition that they are
PI. Only when the parameters of a model are both SI
and PI does one have confidence that analysis of bind-
ing data will yield meaningful estimates of molecular
properties. A general approach to understanding the
factors underlying the practical identifiability of the SI
parameter sets described in this study is developed in
the companion paper (Middendorf and Aldrich, 2017).

MATERIALS AND METHODS

Numerical calculations of binding isotherms (Fig. 1, C
and D, top; and Fig. 2 C), perfect fit loci (Fig. 1, C and
D, bottom; and Fig. 3), and design matrix determinants
were performed using Igor Pro version 6.37 (WaveMet-
rics). Analytical derivations were performed by hand
and checked using the symbolic mathematics software
Maple 18 (Maplesoft).

RESULTS

In the next section, the mathematical structure of the
total binding relation for the two-site, one-conforma-
tion model (Fig. 1 A) is derived, and the structural iden-
tifiability of its parameters is assessed and analyzed. In
the following sections, it is shown that the results ob-
tained for this simple system are readily generalized to
all binding models comprising any combination of bi-
molecular association reactions and conformational
equilibria, for proteins with any number of binding sites.

Structural nonidentifiability of model parameters for
two-site allosteric model

By definition, the mean number of occupied bind-
ing sites, v, is the ratio of the concentration of
ligand-bound sites to the total concentration of pro-
tein. For the model in Fig. 1 A, this ratio is given by
the equation in Fig. 1 B (top). The symbols R;; refer
to ligation states with i ligands bound to site I and
Jj ligands bound to site II (i, j = 0 or 1; Fig. 1 A) or
to the concentration of those states (Fig. 1 B, top).
(Which definition applies will be clear from the con-
text.) The states and the terms derived from them are
color coded black, red, and blue for zero, one, or two
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bound ligands, respectively. The reason for the color
coding will be made clear shortly.

All of the elementary transitions in this model are li-
gand—protein association or dissociation processes,
which are modeled as bimolecular reactions, such as

Roo + Ligand S Ry, @)

which quantifies ligand binding to site I when site II is
unoccupied. The equilibrium microscopic association
constant K; is given by the standard relation (Wyman
and Gill, 1990; Winzor and Sawyer, 1995):

R
K = o (3)

The quantities Ry, Ry, and xin Eq. 3 denote concentra-
tions (which are used to approximate the activities of
the corresponding species). The concentration of state
Ry relative to the reference state (here the unliganded
state Ry) is obtained by rearranging Eq. 3: Rjy = Ry K;
x. The concentrations of states Ry, and R;; are obtained
similarly. Substituting these expressions into the equa-
tion in Fig. 1 B (top) yields the total binding relation
(Fig. 2 A), which is not linear with respect to the model
parameters. For real data, these parameters are prop-
erly estimated using nonlinear regression fitting (Seber
and Wild, 2003; Jagaman and Danuser, 2006). However,
structural identifiability of parameters is assessed assum-
ing noiseless data, allowing an important simplification:
in the absence of a noise term, the binding relation
(Fig. 2 A) can be cross-multiplied, yielding the equation
in Fig. 2 B. This equation is linear with respect to the
parameter set {K;, Ky, £ K; Kyi}. Here the quantity £ K; Ky
can be considered a “compound” parameter. The three
equations required to determine the three unknown
parameter values are obtained by evaluating the mean
number of bound ligands (v, v, and v3) at three ligand
concentrations (xj, xo, and xs; Fig. 2 C), yielding a sys-
tem of linear equations (Fig. 2 D). The matrix represen-
tation of this system (Fig. 2 E) has the form

Mp = v, (4)

where M is the design matrix, p is the parameter vector,
and vis the vector of predicted values.

The power of the matrix algebra approach becomes
apparent at this point, as the difficult question of
whether the parameters of the two-site allosteric model
are SI is replaced by the equivalent, but much simpler,
question of whether there is a unique solution to Eq. 4.
Left-multiplying each side of this equation by the in-
verse of the design matrix, M™', yields p = M™" v. This
system has a unique solution only if M is invertible or,
equivalently, if the determinant of M is nonzero, which
requires that the columns of M be linearly independent
(Strang, 2003). This determination can be made by in-
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Figure 2. Structural identifiability analysis of parameters for
two-site binding models. (A) Relation between mean number
of bound ligands (v) and free ligand concentration (x) for two-
site allosteric model from Fig. 1. Terms are color coded as in
Fig. 1 B (bottom). (B) Linearized form of binding equation from
A. (C) Synthetic total binding curve. The symbols vy, v,, and v3
represent the mean number of bound ligands at free ligand
concentrations x;, xp, and x. (D) System of equations obtained
by evaluating equation in B at three ligand concentrations, as
illustrated in C. (E) Matrix form of system of equations in D.
Dashed red boxes indicate two identical columns in design
matrix and corresponding parameters in parameter vector. (F)
Reduced matrix equation obtained by combining parameters
Ki and K into a single parameter: K; + K. This procedure col-
lapses the two identical red columns in the design matrix into
a single column. (G) General form of reduced matrix equation
in F, in which model-specific parameters {K| + K, f K| K} are
replaced by model-independent fit parameters {p;, p,}. (H) Ex-
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spection, without performing any computations: M is
not invertible because the two red columns enclosed in
the dashed box in Fig. 2 E are identical (and thus lin-
early dependent). This analysis indicates that the system
does not have a unique solution, and hence the param-
eters of the two-site allosteric model are not SI, consis-
tent with the simulation results in Fig. 1.

Structural identifiability of fit parameters for the two-
site allosteric model
An advantage of the analytical approach used in this
study is that the mathematical structure of matrix M re-
veals the exact cause of the identifiability failure and
suggests a way to “repair” the parameter set (in the
sense of restoring it to a condition of structural identifi-
ability). Because the columns of the design matrix mul-
tiply the rows of the parameter vector in Fig. 2 E,
combining K; and Kj into a single parameter, K; + Ky,
merges the two identical red columns of M into a single
column (Fig. 2 F). This reparameterization condenses
the three-row by three-column (3 x 3), noninvertible
design matrix (Fig. 2 E) into a “reduced” 2 x 2 design
matrix (Fig. 2 F). The invertibility of the reduced design
matrix is proved in the next section (Invertibility of re-
duced design matrix for the two-site allosteric model).
It is significant that the parameters in the first and
second rows of the modified parameter vector (K; + Ky
and f K; K, respectively) are the parameters derived
from the states with one and two bound ligands in
Fig. 1 A. A final relabeling of the elements of this SI
parameter set with subscripts denoting the number of
bound ligands yields the set of SI fit parameters {p,

po} (Fig. 2 G):

p = Ki+ Ky (5a)

and
po = [K K. (5b)

With the introduction of fit parameters, the binding re-
lation in Fig. 2 A assumes the form of the general bind-
ing relation (Eq. 1) for the case of two binding sites:
_ pix+2pex?

v= 1+ pra+ por® (6)
Thus, there are as many SI parameters as there are
unique powers of ligand concentration in the total
binding relation, which, in turn, is just the number of
binding sites (n) in the protein. Fit parameters become
particularly useful when analyzing proteins with a larger

pressions for state populations for model in Fig. 1 A and rela-
tion between model parameters and fit parameters: p; = K| +
K and P2 = f K Ki.
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number of binding sites because of the rapid increase
in the number of model parameters.

An important consequence of Eq. 2 is that the expres-
sions for state populations in binding models have a
simple, conserved mathematical form. For each li-
gand-binding step, an additional power of ligand con-
centration (x) is accumulated in the expression. Thus,
the concentration of any state with b bound ligands is
proportional to the product of the reference state con-
centration (here the unliganded state Ryy) and the free
ligand concentration raised to the power b (Fig. 2 H).
When considering the sum of the concentrations of all
states with b bound ligands, the proportionality con-
stant is just the fit parameter p,. Thus, another advan-
tage of introducing fit parameters is that identifiability
can be treated without reference to a particular model.
The form of Eq. 3 guarantees that SI analysis of any
other two-site binding model consisting solely of bimo-
lecular association reactions will yield the equation in
Fig. 2 G after the appropriate combinations of model
parameters have been converted into fit parameters.

Invertibility of reduced design matrix for the two-site
allosteric model

We now show that the 2 x 2 “reduced” design matrix
(Fig. 2 G), given by

_|d=owx (2-v)x?
(1-v9)xg (2 - vg) %0 '

is invertible. The matrix elements in Eq. 7 can be simpli-
fied using Eq. 6, yielding

M (7)

(1-poxi®) (2+pia)x”
_ 1+p]X1+f)2X12 1+[)1x1+[729€12
M = (1 —[)2629612)6%1 (2 +[)19X1)92X12 ’ (8)

l+p1x2+p2x22 1+p1X2+p2X22

In Eq. 8, we have assumed, without loss of generality,
that x = 0x;, where 0 > 1 (Fig. 2 C). The determinant of
this matrix can be expanded in the usual way, which,
after simplification, yields

x139(9— 1) [2+ 0+ 1)ﬁ1 X1 +29p29€12]
(1 +l]1X1 +i)2X12)(1 +[)1x2+[12x22) ’

Det(M) = (9)
The right-hand side of Eq. 9 is greater than zero for all
physically allowed (i.e., positive) values of p;, ps, and x.
Thus, matrix M is invertible, the system in Fig. 2 G has a
unique solution, and the fit parameters p; and ps are SI.

It is important to note that there is a cost to the
process of “repairing” the original parameter vec-
tor (Fig. 2 E): by transforming the parameter set to
achieve a condition of structural identifiability, the
number of estimable parameters is reduced from three
to two. None of the fundamental mechanistic parame-
ters of the model in Fig. 1 A—the site affinities or the
magnitude of the cooperative interaction between the
sites—can be extracted from the values of the two fit
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parameters. The SI analysis indicates that less knowl-
edge can be gained from the binding measurement
than was anticipated by the model.

Infinite locus of model parameters yielding identical
two-site binding curves

Having established that the fit parameters p; and p,
completely specify any two-site binding curve (Eq. 6),
we can now derive a general expression for calculating
zero-error parameter contours (as in Fig. 1, C and D,
bottom) for such curves.

Let {f; K;, Ky} and {p;, po} represent arbitrary sets of
model and fit parameters related by Eqs. ba and 5b.
Similarly, let the sets {f*, Ki*, Ky*} and {p\*, po*} desig-
nate the correct values of the model and fit parameters
for a given protein. Eq. 6 indicates that all parame-
ter sets for which

Ki+Ky = p = ™ (10a)

and
JKiKy = po = po¥ (10b)

will yield binding curves identical to the true binding
curve for this molecule. Solving Eq. 10a for Ky and sub-
stituting this expression into Eq. 10b yields a quadratic
equation in parameter K

SKE = (fpr*) Ko+ po*=0. (11)

The two solutions of Eq. 11, given by the qua-
dratic formula, are

% 1/2
K= B | ] (122)

Combining Eqs. 10a and 12a yields a similar ex-
pression for Kj:

9 1/2
Ki=8s [(”1*)2—&*] . (12b)

Egs. 12a and 12b can be used to compute the locus of
all triples {f; K;, Ky} yielding two-site binding curves that
are identical to the “true” curve with fit parameters {p;*,
po*} (Fig. 3). Because K; and K appear symmetrically in
Egs. 10a and 10b, there is an ambiguity in the values of
K; and Kj in Fig. 3, which is indicated by the signs in
front of the square root terms in Eqs. 12a and 12b. If a
triple {f; K;, Ky} is on the curve in Fig. 3, then the triple
{f, Ky, K}, in which the values of the two association con-
stants are switched, is also on the curve.

The salient features of the “perfect-fit” loci can be
characterized by analyzing the mathematical properties
of Egs. 12a and 12b. Because K;and Kj; must be real-val-
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Figure 3. Locus of points {f, K, K} yield-
ing perfect fit to a two-site binding curve
calculated using correct values of model

T

Z <
sl vl vl vl

p’i2  parameters {f*, K* K;*. Correct values

of fit parameters are then p* = K* + K*

and py* = * K* Kj*. Curve was computed

using Egs. 12a and 12b. Upper (bold) and

lower (normal) arms of curve correspond to

" values of either Kj and K or K, and K. Mini-
mum value of cooperativity parameter, f.,,
and maximum value of the larger of K| and
K are also indicated.

4p; Cooperativity (f)
(p))?

ued, the quantity under the square root in Egs. 12a and
12b must be greater than or equal to zero, which leads
to the inequality

4 po*

2 oh (1)
Thus, there is a minimum possible value of the cooper-
ativity factor ffor specified values of p;* and po*. Substi-
tuting Eq. 13 into Egs. 12a and 12b indicates that, at this
minimum value of £, association constants K; and Ky are
equal. Finally, from Eq. ba, the maximum possible value
for the larger of K; and Kj; is p;*. These features are in-
dicated on the generic curve in Fig. 3.

Curves like the one in Fig. 3 provide insight into how it
is possible for many different sets of model parameters to
yield the identical binding curve line shape. The curve in
Fig. 1 D (bottom) illustrates the “push/pull” effect of co-
operativity that underlies parameter nonidentifiability.
For two sites with the same affinity (dashed line “D”), two
distinct binding phases are apparent in the binding curve
(Fig. 1 D, top) if there is strong negative cooperativity
(i.e., binding to one site “pushes” the affinity of the adja-
cent site toward a lower value). For two sites with very
different affinities (dashed line “F”), two binding phases
with this same separation are obtained if there is strong
positive cooperativity (i.e., binding to the high-affinity
site “pulls” the very low-affinity site to higher affinity).
The structure in the binding curve is the net result of two
factors: (1) the ratio of the intrinsic affinities of the sites
and (2) the magnitude of the cooperative interaction be-
tween the sites. An infinite number of combinations of
values for these two factors yield the identical binding
curve line shape (Fig. 1 D, top).

Structural nonidentifiability of parameters for three-
site binding curves

The SI assessment strategy described in this study is
readily applied to models of proteins with more than

JGP Vol. 149, No. 1

two binding sites. For example, the one-conformation
model in Fig. 4 A comprises all possible ligated states for
a receptor containing three binding sites. The model
includes distinct microscopic association constants for
all sites and distinct cooperative interactions between
all pairs of sites. The nomenclature for the cooperativity
factors highlights the conditional probabilistic nature
of such models (Ben-Naim, 2001). For example, the
equilibrium constant for the reaction in which state Ry,
binds ligand to form state Ry is iy Kn. The symbol
fiam represents the fold effect on binding to site II
caused by occupancy of site III. Similarly, the symbol
fim represents the fold effect on binding to site I,
given that sites II and III are occupied. After removing
parameters that are redundant based on detailed bal-
ance considerations, the seven independent model pa-
rameters indicated in Fig. 4 A remain.

The procedure for estimating these unknown param-
eters is analogous to that for the two-site case (Fig. 2).
The binding relation (Fig. 5 A) is obtained from the ex-
pressions for the concentrations of all ligated states of
the system (Fig. 4 B). Seven constraint equations are
obtained by evaluating the linearized form of the total
binding relation (Fig. 5 B) at each of seven ligand con-
centrations, x; through x;. The matrix representation
of this system of equations (Fig. 5 C) has the same form
as for the two-site case (Fig. 2 E): design matrix * param-
eter vector = vector of predicted values. The design ma-
trix in Fig. 5 C is not invertible because it contains two
sets of identical columns. Therefore, the set of seven
model parameters is not SI when constrained by
total binding data.

The identical red columns and the identical blue col-
umns in Fig. 5 C arise from the three states with one
bound ligand and the three states with two bound li-
gands, respectively. A clear pattern emerges when the
matrix equations for three sites (Fig. 5 C) and two sites
(Fig. 2 E) are compared: parameter nonidentifiability
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Figure 4. Three-site allosteric binding model. (A) State di-
agram in which symbols Rj designate states with i, j, and k li-
gands bound to sites |, I, and lll (i, j, k = 0 or 1). K, Kj, and
Ky represent microscopic equilibrium association constants for
sites I-lll. Conditional cooperativity factors fk ) represent fold
change in binding to site J given that sites K and L are occu-
pied. (B) Expressions for state populations for model in A and
relation between model parameters and fit parameters: p; = K|
+ Ky + K, p2 = figy K Ky + finy K K + figny Ki Kin, and p3 = fiyqn
fiomy K Ky K. States and expressions are color coded black,
red, blue, and purple for zero, one, two, and three bound li-
gands, respectively.

caused by identical columns in the design matrix is en-
countered whenever there is more than one state with a
given number of bound ligands. The number of identi-
cal columns in the design matrix for a given value of b
is equal to the number of ligated states with b bound li-
gands. This latter quantity is the number of ways of ar-
ranging b ligands on n nonidentical sites and is given by
the binomial coefficient

(3) = moar (14)

The non-SI parameter set in Fig. 5 C can be trans-
formed into one that is SI using the same strategy as in
the two-site case (Fig. 2). The three model parameters
for b = 1 (see Eq. 14) are condensed into a single fit
parameter, p; = Kj + Ky + Kyy;, and the three (compound)
parameters for b =2 (see Eq. 14) are condensed into a
single fit parameter, ps = fiy K Ky + figmy K Ky + fiam
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Ky K (Fig. 5, C-E). This process merges the three
identical red columns into a single column and the
three identical blue columns into a single column, re-
ducing the original 7 x 7 design matrix to a 3 x 3 matrix.
Again, the cost of achieving structural identifiability is a
loss of knowledge regarding the molecular system be-
cause, at best, only three parameters, rather than the
full seven of the model, can be estimated from fitting
three-site binding curves. Also, it is not possible to eval-
uate any of the seven model parameters from knowl-
edge of the three fit parameters.

Invertibility of reduced design matrix for three-site
allosteric model

The “reduced” design matrix of Fig. 5 E is invertible, but
obtaining a general proof of this issue is cumbersome for
n>2. We have adopted the alternative strategy of numer-
ically evaluating the determinants of design matrices for
a wide variety of three- and foursite binding curve line
shapes. Although the determinants are always greater
than zero, and therefore invertible, their magnitudes are
often very small. Such matrices are “ill-conditioned”
(Watkins, 1991), and inference for the linear system M p
=v (Fig. 5 E) is problematic: small changes in one of the
elements in M or v may cause large changes in the solu-
tion for p. This property of design matrices for total bind-
ing indicates that, for real experimental conditions,
small uncertainties in the measured binding site occu-
pancy or in the ligand concentration (the v;and x; terms
in Fig. 5 E) may cause large errors in the estimated values
of one or more of the fit parameters (the p; terms in
Fig. 5 E). Thus, although the fit parameters {p;, ps, ps} are
SI, we anticipate that there may be many cases for which
they are not PI. This latter issue is the subject of the com-
panion paper (Middendorf and Aldrich, 2017).

Structural identifiability of parameters for models of
macromolecules with any number of binding sites
We have described a simple procedure for generating
SI parameter sets for models of proteins containing
two or three ligand-binding sites. The process consists
of setting up a system of equations based on the linear-
ized total binding relation, transforming the system
into matrix form, and eliminating any identical col-
umns in the design matrix by combining parameters
derived from states with the same number of bound
ligands. This process yields a matrix equation contain-
ing a “reduced” design matrix and a vector of fit pa-
rameters; some of the fit parameters are functions of
multiple model parameters. Because of the conserved
form of the total binding relation (Eq. 1), this ap-
proach can be extended to proteins with any number
of ligand-binding sites.

Examples of the reduced design matrices for sin-
gle-conformation models of proteins with two, three,
four, and n binding sites are shown in Fig. 6. For n bind-
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Figure 5. Structural identifiability analysis of parameters for three-site allosteric binding model. (A) Relation between mean
number of bound ligands (v) and free ligand concentration (x) for the model in Fig. 4 A. Terms are color coded as in Fig. 4. (B) Linear-
ized form of binding equation from A. (C) Matrix representation of system of equations obtained by evaluating the equation in B at
seven ligand concentrations x; through x;. Dashed red and blue boxes indicate identical columns in design matrix and correspond-
ing parameters in parameter vector derived from states with one and two bound ligands, respectively. (D) Reduced matrix equation
obtained by summing parameters K, Kj, and Kj, from C into a single parameter and by summing parameters f, K Ky, iy K Ky, and
fiany Ki K into a single parameter. This operation causes the identical red and blue columns to collapse into a single red and single
blue column in the reduced design matrix. (E) General form of the reduced matrix equation in D, in which model-specific parameters

are replaced by model-independent fit parameters {p1, p,, p3}.

ing sites, the reduced design matrix contains n rows and
n columns, and the element in row j, column k of this
matrix, Mj, is given by

My = (k=) x", (15)

where the indices j and k are in the range 1 <j, k < n.
Because the reduced matrix equations have a canonical
form for all values of n, all of the algebraic steps can be
bypassed, and the reduced matrix equation can be writ-
ten down once the value of n is specified. Analysis of the
reduced matrix equation for macromolecules with n
binding sites indicates that noiseless total binding data
will constrain a set of n SI fit parameters {pi, ps, ..., pn}
if it is assumed that the protein occupies a single con-
formational state.

JGP Vol. 149, No. 1

Structural identifiability of parameters for models
including conformational change

The central function of many ligand-binding proteins
is to convert the free energy of ligand binding into con-
formational change to perform important cellular func-
tions such as signal transduction. Our treatment of
parameter SI is readily expanded to include models
comprising any combination of binding and conforma-
tional equilibria. For example, for a two-site receptor,
conformational change is modeled using equi-
libria of the form

[Si0]
Mgs = 1R, (16)

which quantifies the distribution of unoccupied recep-
tors between two conformations denoted R and S. Be-
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Figure 6. Canonical form of reduced design matrices for binding models that include a single protein conformation. (A-D)
Reduced design matrices for proteins containing two (A), three (B), four (C), or n (D) binding sites. Proteins are assumed to occupy
a single conformation. Matrix elements derived from states with one, two, three, four, or n bound ligands are color coded red, blue,
purple, green, and orange, respectively. The general form of the matrix elements in all cases is given by Eq. 15.

cause the elementary conformational rearrangements
are assumed to occur with no change in the ligation
state of the receptor, this phenomenon is easily incorpo-
rated into our approach.

For example, the two-site model in Fig. 1 A can be ex-
panded so that the macromolecule may occupy two
(Fig. 7 B, left) or three (Fig. 7 C, left) global conforma-
tional states, denoted R, S, and T. In these models, pro-
tein conformation may influence ligand binding
indirectly through binding at the other site (because of
the conformation-specific cooperativity factors fz, fs,
and f7) and directly by explicit state dependence of the
ligand affinities. The direct effect is quantified by the
distinct association constants Kk, Kis, and K;r for bind-
ing to site I and Kyg, Kys, and Kyr for binding to site II
in the R, S, and T conformations.

Expressions for the state populations for the multi-
conformation models (Fig. 7, B and C, right) have the
same conserved form as for the single-conformation
model (Fig. 7 A, right). One new feature that emerges
for models that include conformational change is the
appearance of multiple unliganded states, but these ad-
here to the familiar pattern that their populations are
given by the product of a reference state population
(Rygp), a factor that is a function of the model parame-
ters, and ligand concentration raised to the power b
(where b = 0; Fig. 7, B and C, right).

To solve for the 11 unknown, independent parame-
ters of the model in Fig. 7 C (left), a system of equations
is generated by evaluating the linearized binding rela-
tion at 11 (x;, v;) pairs. The parameters of this model are
not SI because the design matrix is not invertible, re-
sulting from the presence of multiple sets of identical
columns (Fig. 8 A). The two identical black, six identi-
cal red, and three identical blue columns derive from
states with zero, one, and two bound ligands, respec-
tively. The now-familiar remedy of combining model
parameters derived from states with the same number
of bound ligands removes the linear dependencies in
the design matrix by merging each set of identical col-
umns (Fig. 8 B) and yields the set of SI fit parameters
{po, p1, po} (Fig. 8 C). The unliganded states Soy and Ty
are accounted for by the fit parameter pj.

From the arguments made earlier, it is clear that these
results generalize in a predictable way for models that
include conformational change for proteins with any
number of binding sites. Examples of the conserved
form of the design matrices obtained for multiple-con-
formation models of proteins are shown in Fig. 9. As in
Fig. 6, the matrix element Mj is given by Eq. 15, except
now the row and column numbers are in the range 0 <
J, k < n. For a protein with n binding sites and multiple
conformational states, noiseless total binding data will
constrain a set of n + 1 SIfit parameters {po, pi1, P2, ..., Pal-
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Figure 7. State diagrams and state populations for two-site allosteric binding models that include multiple protein conforma-

tions. (A-C, left) Models for proteins occupying one (A), two (B), or three (C) conformations. States R,

i Si and Tj; designate molecules

in conformations R, S, and Twith iand jligands bound to sites | and Il, respectively (i, j= 0 or 1). Kz, Kis, and K7 represent microscopic
equilibrium association constants for site | when the macromolecule is in the R, S, and T conformations, respectively. Kiz, Kis, and K
are the corresponding constants for site Il. Cooperativity factors fz, fs, and fr represent the fold change in binding to a site when the
adjacent site is occupied and the protein is in the indicated conformation. Mgs and Msr are the conformational equilibrium constants
for the equilibria between states Ry and Sy and between states Sop and Ty, respectively. (A-C, right) Expressions for state popula-
tions for models shown on the left and relation between model parameters and fit parameters {p,, p1, p2}. States and expressions
are color coded black, red, and blue for zero, one and two bound ligands, respectively.

DISCUSSION

Our approach to assessing structural identifiability of
total binding parameters

Much of our knowledge of the large and important
class of macromolecular receptors that bind multiple
ligands comes from estimates of binding parameters
obtained by fitting total binding data. However, the
question of the uniqueness and accuracy of these es-
timates has been largely ignored, likely because there
is no general method for assessing binding parame-
ter identifiability. We present in this study a method
for determining the maximum number of SI binding
parameters for a protein with n binding sites. The
practical identifiability of these SI parameter sets is

JGP Vol. 149, No. 1

addressed in the companion paper (Middendorf and
Aldrich, 2017).

Our approach to assessing binding parameter SI
was guided by several considerations. It is important
that the method be simple to apply so that the SI as-
sessment can be made during the design phase of a
proposed binding study. If the parameters of a can-
didate model are not SI, then the parameterization
scheme is invalid; an ideal method would provide
guidance on whether it is possible to “repair” non-SI
parameter sets and, if so, how to modify those sets to
achieve SI. Because it is very inefficient to reassess
parameter SI for every candidate model under con-
sideration, it would be preferable that the method
generate a universal (i.e., model independent) pa-
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Figure 8. Structural identifiability analysis of parameters for two-site, three-conformation binding model (Fig. 7 C, left).
(A) Matrix representation of system of equations obtained by evaluating linearized binding relation at 11 ligand concentrations x,
through x49. Dashed black, red, and blue boxes indicate identical columns in design matrix and corresponding parameters in pa-
rameter vector derived from states with zero, one, and two bound ligands, respectively. (B) Reduced matrix equation obtained by
summing parameters in dashed boxes in A. This operation causes the identical black, red, and blue columns to collapse into a single
black, single red, and single blue column in the reduced design matrix. (C) General form of reduced matrix equation in B, in which
model-specific parameters are replaced by model-independent fit parameters {po, p1, p2}-

rameter set that is SI by design. Our method fulfills
all of these criteria.

Three elements form the basis of our method. First,
the state populations derived from the equations for
binding (Eq. 3) and conformational equilibria (Eq.
16) have a conserved form for receptors with any num-
ber of binding sites: state population = reference state
population * model parameter(s) * (free ligand con-
centration)”, where b is the number of ligands bound
to the state in question. Therefore, the total binding
relation, which is the ratio of sums of these state pop-
ulations, also has a conserved form (Eq. 1) and allows
binding parameter SI to be treated in a general and
model-independent fashion. Second, because the
criteria for structural identifiability assume noiseless
data, an intrinsically nonlinear problem can be linear-
ized (Fig. 2, A and B). Third, matrix algebraic methods
can be used to assess the solvability of linear systems
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of equations without performing calculations such as
computing matrix inverses and are readily adapted to
questions of parameter SI.

In our method for assessing SI, a system of equations
is derived from the linearized form of the total binding
relation. For any model composed solely of binding and
conformational equilibria and for receptors with any
number of ligand-binding sites, the matrix representa-
tion of this system has the invariant form: design matrix
* parameter vector = vector of predicted values (Eq. 4).
The question of whether the parameters are SI is equiv-
alent to the question of whether the design matrix is
invertible. The existence of multiple ligation states with
the same total number of bound ligands (b) produces
identical columns in the design matrix (Figs. 2 E, 5 C,
and 8 A), which renders this matrix singular (i.e., non-
invertible). An important advantage of our analytical
approach over numerical methods is that the cause of
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Figure 9. Canonical form of reduced design matrices for binding models that include multiple protein conformations. (A-D)
Reduced design matrices for proteins containing two (A), three (B), four (C), or n (D) binding sites.Matrix elements derived from
states with zero, one, two, three, four, and nbound ligands are color coded black, red, blue, purple, green, and orange, respectively.
The general form of the matrix elements in all cases is given by Eq. 15, with the row and column numbering ranging from 0 to n.

the identifiability failure and its solution are revealed by
the form of the design matrix. In all cases, the parame-
ter set can be made SI by combining the model param-
eters for each group of states with the same value of b
into a compound fit parameter, p;,. This transformation
merges each group of identical columns in the design
matrix into a single column, yielding a reduced, invert-
ible design matrix and a set of SI fit parameters (Figs. 2
G, 5 E, and 8 C). Because the final matrix equation pro-
duced by this procedure has a canonical form (Figs. 6
and 9), the SI parameter set can be written down by in-
spection, with no calculations, and with no information
other than the number of binding sites and whether the
model includes conformational change.

In summary, we have derived a general strategy for
generating the largest set of SI parameters for receptors
with any number of binding sites, without reference to
a specific physical binding model. The set of SI fit pa-
rameters {p, pi, ..., pn} are the coefficients of powers of
ligand concentration in the total binding relation (Eq.
1). The parameters of all models of protein-ligand in-
teraction that consist of any combination of unitary
steps comprising binding equilibria (Eq. 2) or confor-
mational equilibria (Eq. 16) reduce to this canonical
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form. These very nonrestrictive criteria include virtually
all physically reasonable binding models. These results
also provide insight into why total binding data have rel-
atively low power for constraining model parameters:
the measurement acts as a coarse filter that sorts the
states of the system into groups according to the num-
ber of bound ligands but does not distinguish between
the states with a given value of b. Thus, many parame-
ters that relate to the population of specific ligated in-
termediates cannot be estimated individually, but rather
are folded into fit parameters that contain multiple
terms. For example, the SI fit parameters for the model
in Fig. 1 A are equal to the sum of the microscopic site
binding constants (p; = K; + Ky), and the product of the
three model parameters (ps = f K; Kjj). None of the in-
dividual model parameters can be determined from fit-
ting total binding curves, even in the absence of noise.

Assumptions of our approach to parameter
identifiability

Our treatment of binding parameter SI incorporates
several simplifying assumptions. General assumptions
include the following: (a) Data are from total binding
measurements performed at equilibrium. (b) Only
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models that consist of binding equilibria and conforma-
tional equilibria of the form specified by Eqgs. 3 and 16
are considered. (c) Binding between ligand and recep-
tors containing n distinct (and generally nonidentical)
ligand-binding sites occurs within a single, aqueous
reaction phase.

Specific assumptions about the protein include the
following: (d) All receptors are identical except for dif-
ferences in site occupancy and conformation caused by
ligand binding (i.e., there are no variations in stoichi-
ometry or posttranslational modifications between re-
ceptors). (e) There are no interactions between
functional receptors, which eliminates the possibility of
dimerization of receptors or higher aggregate forma-
tion. (The functional receptors may be oligomeric; our
assumption is that these oligomers do not interact.) (f)
Protein is present at sufficiently low concentrations that
ligand depletion effects (Goldstein and Barrett, 1987)
are not significant. (g) Protein is present at sufficiently
low concentrations that complications caused by molec-
ular crowding (Zimmerman and Minton, 1993) can be
ignored. (This assumption applies to the ligand as well.)

Specific assumptions about the ligand include the fol-
lowing: (h) There is a single ligand species present, and
all ligand molecules are identical. (i) There are no in-
teractions between ligands that are not bound to pro-
tein. (Interactions between multiple ligands bound to a
single receptor are allowed.) (j) Ligands bind only at
the specified sites on the protein: there is no nonspe-
cific binding. (k) Ligands that are asymmetric bind in
only one orientation in the protein-binding site. (1) Li-
gands bind to only one site at a time (i.e., ligand multiv-
alence is not considered).

An important future direction of this research is to
explore whether some of these assumptions may be re-
laxed. By properly modeling the effects, our general
approach to parameter identifiability may be expanded
to include an even wider range of phenomena. For ex-
ample, we are extending the theory to account for li-
gand depletion (assumption f) and the presence of
multiple, competing ligand species (assumption h). In
addition, the single-phase approximation (assumption
¢) may be relaxed by incorporating the formalism de-
veloped by Wells (Hulme, 1992) to treat cases in which
protein and ligand occupy multiple phases, such as
aqueous and membrane compartments. Dimerization
of functional receptors (assumption e) has been treated
in the hemoglobin literature (Riggs, 1998) and may
also be incorporated into our approach.

Limitations to inferring mechanism from analysis of
total binding curves

Quantifying the microscopic site affinities, the magni-
tudes of cooperative interactions between binding sites,
and possible conformational effects on these parameters
are important goals of mechanistic binding studies. To
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specify these molecular properties, a total of n * ¢ param-
eters are required if the affinities of all n sites are assumed
distinct in each of ¢ protein conformations. The number
of additional parameters required to specify the magni-
tudes of all possible site-site interactions increases rap-
idly as n increases. Thus, models that allow for distinct
site affinities and cooperative interactions between the
various sites require large numbers of parameters. In
contrast, our analysis shows that the maximum number
of SI parameters supported by equilibrium total binding
data are smaller: n if the model is composed solely of
binding equilibria (Eq. 3) and n + 1 if the model also in-
cludes conformational equilibria (Eq. 16). The discrep-
ancy between the number of parameters required by
detailed mechanistic models and the number that can be
estimated reliably from experimental data indicates that
a good fit to total binding data provides almost no infor-
mation about the physical properties of binding sites in
proteins. This observation may explain the popularity of
much simpler models such as the Klotz—Adair model
(Klotz, 1997), which, by distinguishing states based only
on the total number of bound ligands, requires a total of
n parameters. The inevitable trade-off required with this
model is that the parameters are macroscopic association
constants that do not distinguish between site affinity
and cooperativity. Identifiability analysis underscores the
need for other experimental measurements that provide
stronger parameter constraints, such as equilibrium
site-specific binding (Di Cera, 1995), binding kinetics,
and conformation measurements.

Are both Sl and Pl assessments needed?

Structural identifiability is a necessary but not sufficient
condition for ensuring that parameters obtained from
fitting a model to data are accurate and unique (Bell-
man and Astrém, 1970; Némcovd, 2010). SI is assessed
assuming ideal conditions (noiseless data) that are
never achieved in real-world situations. When fitting ex-
perimental data containing noise, it is possible that the
number of PI parameters may be even smaller than the
number of SI parameters. Thus, it is natural to question
whether it is worthwhile assessing parameter SI if pa-
rameter PI (which is the sufficiency condition) is to be
determined separately.

For the case of total binding parameters, we find that
the SI assessment is essential; the conclusions reached in
the PI assessment phase vary depending on whether the
parameter set is SI. For example, Fig. 1 (C and D, bottom)
shows that the three parameters of the two-site allosteric
model (Fig. 1 A) are not SI (and therefore not PI), regard-
less of the degree of resolved structure in the total binding
curve (Fig. 1, Cand D, top). In contrast, the practical iden-
tifiability of the two SI fit parameters for two-site binding
curves (Fig. 2, G and H) is shown in the companion paper
(Middendorf and Aldrich, 2017) to depend strongly on
the amount of resolved structure in the binding curve.
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