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The effect of molecule tethering in three-dimensional (3-D) space on bimolecular binding kinetics is rarely ad-
dressed and only occasionally incorporated into models of cell motility. The simplest system that can quantita-
tively determine this effect is the 3-D sarcomere lattice of the striated muscle, where tethered myosin in thick
filaments can only bind to a relatively small number of available sites on the actin filament, positioned within a
limited range of thermal movement of the myosin head. Here we implement spatially explicit actomyosin inter-
actions into the multiscale Monte Carlo platform MUSICO, specifically defining how geometrical constraints on
tethered myosins can modulate state transition rates in the actomyosin cycle. The simulations provide the distri-
bution of myosin bound to sites on actin, ensure conservation of the number of interacting myosins and actin
monomers, and most importantly, the departure in behavior of tethered myosin molecules from unconstrained
myosin interactions with actin. In addition, MUSICO determines the number of cross-bridges in each actomyosin
cycle state, the force and number of attached cross-bridges per myosin filament, the range of cross-bridge forces
and accounts for energy consumption. At the macroscopic scale, MUSICO simulations show large differences in
predicted force-velocity curves and in the response during early force recovery phase after a step change in
length comparing to the two simplest mass action kinetic models. The origin of these differences is rooted in the
different fluxes of myosin binding and corresponding instantaneous cross-bridge distributions and quantitatively
reflects a major flaw of the mathematical description in all mass action kinetic models. Consequently, this new
approach shows that accurate recapitulation of experimental data requires significantly different binding rates,
number of actomyosin states, and cross-bridge elasticity than typically used in mass action kinetic models to

correctly describe the biochemical reactions of tethered molecules and their interaction energetics.

INTRODUCTION

The effect of concentration ratio of tethered molecules
and their ligands, constrained by their spatial arrange-
ments and occupancy, is rarely addressed and only spo-
radically incorporated in models of cell contraction and
adhesion. Almost all models include concepts originally
introduced by Kramers (Kramers, 1940; Evans and
Ritchie, 1997) where the strain dependence of a model
state transition is taken in only one dimension. The spa-
tial occupancy of interacting species is only partially
considered in mass action kinetic models or by invoking
simplified spatial rules that do not reflect accurately the
local spatial arrangement and occupancy of the species.
The best defined system to quantitatively determine this
effect is in striated muscle because of its well-ordered
hexagonal lattice of interacting actin and myosin fila-
ments. Because the myosin molecules are tethered to
myosin-containing thick filaments and actin monomers
are arranged in filaments with the myosin-binding sites
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associated with each monomer, the flux of the myosin
binding is not directly associated with the concentra-
tions of myosin and actin species, but is instead strongly
affected by the number of myosin-binding sites on actin
filaments that can be reached by the tethered myosin
molecules and whether or not any of these sites is al-
ready occupied by bound myosin. This behavior can be
quantitatively addressed by a new generation of multi-
scale models that bridge scales from atoms to cells and
to muscle tissues and provide detailed information
about how structure relates to function.

Attempts to computationally model muscle contrac-
tion started soon after the discovery of sliding filaments
(Huxley and Niedergerke, 1954; Huxley and Hanson,
1954), but most of these attempts are so-called mass ac-
tion kinetic models of muscle contraction (e.g., Huxley
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[1957]) which do not take into account the discrete
geometrical relationship between individual myosin
heads and sites on actin in the 3-D sarcomere lattice.
Instead, most of the models used state probability den-
sity distribution functions along the reaction coordi-
nate, usually denoted as bond strain (e.g., Hill [1974]
and Smith and Geeves [1995a]). In the first and best
known mass action (two-state) model, the strain is ex-
pressed as the relative displacement, x, between the po-
sitions of a myosin-binding site on an actin filament (for
simplicity a site on actin) and of unstrained myosin
head (Huxley, 1957). This strain can be related via bond
stiffness to bond force and stored elastic energy. In this
and later mass action models, strain-dependent transi-
tions between the states are governed by rate transition
functions, i.e., prescribed functions of the stretch of the
tethered myosin molecule to reach a binding site or
being bound to it. The derivation of these strain-depen-
dent rate functions from the reaction energy landscapes
was elegantly formalized by Hill (1974) and later used
in most subsequent mass action models.

The main problem for all previous mass action mod-
els is in the calculation of the transition flux between
the unbound and bound myosin states. In the original
Huxley 1957 model (Huxley, 1957) and in most of the
later mass action models, it is assumed that the sum of
state probability density distribution functions at each
strain, x, is equal to one. Consequently, the state transi-
tion fluxes at the coordinate x are proportional to the
sum of products of state transition rates at x and the
corresponding state probability density distribution
function at the same location (Huxley, 1957; Hill, 1974).
Thus, if a subset of the bound myosins moves out of the
binding region, then the sum of the state probability
density distribution functions within the binding re-
gion, necessary for accounting of the net flux between
states, cannot add up to one unless an equivalent num-
ber of myosin heads are drawn into the binding region.
However, strictly speaking, this approach is ill posed be-
cause the pool of unbound myosin heads is finite and
also modulated by the number of already attached
heads. To get around this problem, most authors, in-
cluding A.F. Huxley, focused exclusively on the state
probability density distribution functions of myosin
bound to actin that have finite state probabilities. This
approach accounts only for the fraction of bound heads
to the total number of heads, i.e., the probability den-
sity of myosin head to be in a bound state. Another dif-
ficulty with these approaches is to ensure that the total
number of myosin heads is preserved, i.e., that the sum
of the probabilities of myosin being in any state of acto-
myosin cycle is equal to one. During shortening, length-
ening, or sudden change of length, the number of
myosin-binding sites on actin filaments coming into the
range of myosin binding typically does not match the
number of detached myosins; thus, the sum of bound
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and detached myosins is not preserved. Piazzesi and
Lombardi (1995) were the first to attempt to resolve
this problem by proposing a periodicity rule to reduce
the fraction of available sites on actin for the fraction of
bound myosin outside the myosin-binding region.
Using a similar approach, Mijailovich et al. (2000) cor-
rectly accounted for conservation of myosin species in a
fourstate model of smooth muscle. These approaches
enable the conservation of the myosin species and allow
for a more precise accounting of the fluxes between the
states. However, they may not reflect correctly the pop-
ulations of bound myosin to sites on actin, of free myo-
sin-binding sites on actin, and of the unbound myosin
species in the sarcomere lattice. Also, even with these
approaches, mass action models do not account for the
number of available sites on actin filaments that are sev-
eral times larger than the number of active myosin heads.

In the hexagonally packed, myofilament array in the
sarcomere, myosins are tethered to the thick filament
backbone and can only bind to a few, geometrically ac-
cessible, actin-binding sites, positioned within the lim-
ited range of movement of myosin heads. These
geometrical constraints strongly distort the classical
view of biochemical reactions. There have been several
models proposed to prescribe the rules determining
the interactions between pairs of myosin molecules and
multiple myosin-binding sites on actin filament, so
called target zones. Daniel et al. (1998) formulated a
spatially explicit model of interaction for only two fila-
ments, defining that binding is only possible at collin-
ear sites. This approach was extended by Chase et al.
(2004) to a 3-D lattice of three myosin filaments inter-
acting with 11 actin filaments and with binding re-
stricted to collinear sites. Taking into account only
collinear sites provides for an unrealistically low num-
ber of bound cross-bridges. To overcome this problem,
we proposed a more comprehensive approach (Smith
etal., 2008) in a spatially explicit model of muscle con-
traction that defines the rules of actin-myosin interac-
tions in the filament lattice of the half sarcomere. In
this approach, we introduced longitudinal and azi-
muthal (Steffen et al., 2001; Smith et al., 2008) selec-
tion rules in a 3-D sarcomere lattice for mapping heads
to target zones of adjacent sites on actin. This method-
ology yielded a more realistic number of bound cross-
bridges and magnitude of force per myosin filament
(Smith and Mijailovich, 2008), but the overall approach
was limited by the use of semi-probabilistic binding ki-
netics that did not account for the stochastic nature of
myosin binding to actin and, therefore, could not pre-
cisely account for the numbers of myosin and actin spe-
cies entering the reaction.

To overcome the limitations of these earlier models, a
better method to account for realistic matching of avail-
able myosin heads to actin-binding sites is needed. To
this end, we have developed the computational plat-
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Figure 1. Sliding filament models of muscle contraction interconnect the actomyosin ATPase cycle, thin filament regulation,
and the structural arrangement of myosin and actin filaments into the sarcomere lattice. These models of various levels of
complexity predict the dynamic response of muscle to Ca®* activation and external boundary loads. (A) The simulations of classical
muscle experiments follow the experimental protocols, including Ca®* activation and force or length as inputs, and predict length or
force along with muscle stiffness and ATPase. These models are typically designed to address a specific scientific problem. (B) The
modular structure of the MUSICO platform is designed to address many different scientific problems by adding new modules or
adapting existing modules for the specifics for each problem. The flexible structure of the platform permits the use of various com-
binations of actomyosin cycles, thin filament regulatory models, sarcomere structures, and protocols of biochemical and mechanical
loading. The relevant parts of the model reported here are shown in black, whereas the parts reported elsewhere or planned for

future studies are shown in gray.

form MUSICO (Muscle Simulation Code) as a tool that
can be used by the muscle community to interpret ex-
perimental data, identify gaps in our current under-
standing, and provide information that can be used in
the development of novel hypotheses and the design of
critical new experiments to test them. The structure of
MUSICO allows quantitative assessment of the effect of
variations in sarcomere geometry, incorporation of new
models with kinetic and structural details of the actomy-
osin cycle, provide more detailed descriptions of thin
filament regulation and provide new knowledge on the
role of auxiliary muscle proteins in muscle functions.
The platform explicitly incorporates the 3-D sarcomere
structure with extensible actin and myosin filaments,
along with various actomyosin cycles, thin filament reg-
ulation models, and protocols of biochemical and me-
chanical loading (Mijailovich, S.M., et al. 2007.
Biophysical Society 51st Annual Meeting. Abstr. 155a;
Mijailovich, S.M., et al. 2008. Biophysical Society 52nd
Annual Meeting. Abstr. 404a; Mijailovich, S.M., et al.
2009. Biophysical Society 53rd Annual Meeting. Abstr.
201a). Fig. 1 B shows the modular structure of the MUS
ICO platform, which permits various combinations of
modules. The MUSICO simulations can predict the spa-
tial positions and connectivity of sarcomeric proteins at
the current sarcomere configuration, local and global
mechanical forces, and energetics at any instant of time,
taking into account the exact number of unbound myo-
sin molecules interacting only with unoccupied binding
sites on actin filaments in their proximity. The modular
structure of the platform permits incorporation of the
newest findings in a particular module without need for
any change of other components and, therefore, pro-

JGP Vol. 148, No. 6

vides a quick way to implement and test the implica-
tions of new hypotheses or findings. These may include,
for example, the packing of myosin heads onto the
thick filament backbone or the role of MyBP-C.

In this first paper, we focus on one very important as-
pect of this modeling approach: we quantitatively assess
how the concentration ratio of tethered molecules and
their ligands affect predictions of classical muscle con-
traction experiments. We compare the predictions of a
spatially explicit stochastic model of muscle contraction
(MUSICO) that takes into account the interaction of
each myosin head with a few nearest binding sites on
actin in the 3-D sarcomere lattice and those of mass ac-
tion models that take into account only axial strain de-
pendence and neglect the discrete positions of myosin
heads and the sites on actin. To illustrate the differences
between these models, we compared the two simplest
models proposed for cross-bridge kinetics: (1) the two-
state A.F. Huxley 1957 model (Huxley, 1957) and (2) a
three-state model including a power stroke (Duke,
1999). The same state transition rates are used for both
the mass action models and in the new stochastic for-
mulation in the 3-D sarcomere lattice. This comparison
allows determination of the effects of the distortion of
interacting molecules on biochemical reactions, i.e.,
modulation of actomyosin cycle state transition rates by
the imposed geometrical constraints of tethered myosin
molecules and the accessibility of binding sites on
actin filament.

This is the first step toward using MUSICO to build
a comprehensive multiscale model of a contracting
multi-sarcomere structure or a myofibril. However, for
simplicity and without loss of generality, here we limit
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Figure 2. The 3-D sarcomere lattice is composed of thick and thin filaments arranged in an overlapping hexagonal lattice with
a geometry that is consistent with the mean spacing measured in vertebrate striated muscle. (A) Myosin filaments extend from
the central M-band toward Z-lines and actin filaments extending from Z-lines forming a hexagonal arrangement in cross section.
(B) The actin monomers are helically arranged in a double strand helical structure and orientationally favorable myosin-binding sites
on actin filament or target zones associated with myosin heads are shown in red. Each myosin molecule is attached to the trunk of
myosin filament via the S2 rod and has two heads (51 fragments) at the free end, but only one head per dimer is shown. The pairs of
myosin heads form a triple helix along the myosin filament. The myosin heads are arranged in layers and at each layer form a “crown”
with three pairs of heads. The crowns . = 1, 2, and 3 are axially separated by 14.3 nm and rotated by 40°, forming different angular
arrangements with actin filaments, but only those that might interact with the actin filament are shown. In the axial direction, each
pair of heads and multiple binding sites (target zones) on surrounding actin filaments form a large number of arrangements defined
by the relative axial distances, x, between the unstrained position of the myosin head or cross-bridge and the nearest actin-binding
site, and azimuthal angles a and f as defined in Fig. 4. (C) The hexagonal sarcomere lattice with 2:1 actin to myosin filament ratio
shows in the azimuthal plane that up to three myosins can attach to each actin filament. The spatial arrangement of crowns &, =
1 interacting with six surrounding actin filaments is shown. (D) The heads in crowns Z. = 2 and 3 have different azimuthal spatial

arrangement relative to binding sites on the actin filaments displayed by azimuthal angles o and .

our current simulations to contractions of a half sarco-
mere. Even with this restriction, this typically corre-
sponds to 500 myosin and 1,000 actin filaments, which
is approximately the number of filaments in a cross sec-
tion of a myofibril, and creates realistic fluctuations in
force that we expect to find in muscle fibers. We demon-
strate that this 3-D lattice model is essential to predict
the correct number of attached cross-bridges and hence
the force per cross-bridge, both necessary first steps be-
fore going on to develop the next stage of the model.

MATERIALS AND METHODS

Actin—-myosin interactions in the filament lattice

Actin—myosin interactions in a sarcomere lattice incor-
porate the discrete lattice structure of interdigitated
actin and myosin filaments, and the lattice structure var-
ies in different kinds of muscles (Luther and Squire,
1980). In most muscle types, myosin and actin filaments
are packed into a regular 3-D lattice with three myosin
filaments around each actin filament and six actin fila-
ments around a myosin filament (Luther and Squire,
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1980). Each myosin filament is decorated with crowns
of myosin dimers, spaced by ~14.3 nm along the fila-
ment (Fig. 2). In vertebrate muscle, each crown consists
of three myosin dimers with transverse orientations
spaced by 120°, and successive crowns along the fila-
ment are rotated by 40° looking toward the Z-line. Thus,
crown orientations are repeated every 42.9 nm; i.e.,
every fourth crown has the same orientation as the initial.

The actin monomers in a thin filament form a dou-
ble-stranded helical structure associated with the regu-
latory proteins tropomyosin and troponin with binding
sites apart by ~5.5 nm on each strand, with a half-period
of ~35.75 nm in the relaxed state (Bordas et al., 1999).
The difference in periodicities between actin-binding
sites (~35.75 nm) and myosin crowns (42.9 nm) creates
avernier of longitudinal spacing between myosin heads
and actin-binding sites. The 3-D sarcomere geometry
with the extensible filaments and myosin-binding sites
on actin filaments require both longitudinal position
matching (Fig. 2 B) and angular matching in the az-
imuthal plane (Fig. 2, C and D). A myosin head and
the closest binding site on actin form the most probable
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pair of these molecules that can create a cross-bridge
interconnecting actin and myosin filaments. The con-
cept of matching and realignment of myosin heads and
its binding sites on actin in a compliant filament sarco-
mere lattice was first introduced in a Monte Carlo model
by Daniel et al. (1998) and represents the basis for the
more comprehensive approach introduced below.

A spatially discrete 3-D model. The model of 3-D sarco-
mere lattice (Fig. 2 A) is composed of thick and thin
filaments arranged in an overlapping hexagonal lattice
with a geometry that is consistent with the mean spacing
measured in vertebrate striated muscle (Higuchi et al.,
1995; Millman, 1998). The minimal contractile unit can
be considered as a myofibril. For a typical myofibril of
1.2 pm in diameter, the number of myosin filaments is
~500-650, depending on interfilament distance d
(Millman, 1998). A myofibril runs the entire length of
the muscle fiber and consists of a large number of sarco-
meres in series. In a half sarcomere, each myosin fila-
ment with ~150 myosin molecules faces six actin
filaments, where each actin filament has ~360 myo-
sin-binding sites (~260 active at maximum overlap) ar-
ranged in a double helix (Fig. 2 B). Each myosin
molecule has two myosin heads. The kinetics of the two
heads of the dimer can be modeled by assuming that
they compete for sites from the same target zone (Smith
and Mijailovich, 2008; Smith et al., 2008), but this pro-
cess is complex and beyond the scope of this paper. For
simplicity, we consider here that only one myosin head
is active at any one time and is denoted as a cross-bridge.

Even with this simplification, this model fully rep-
resents the contractile behavior of the 3-D filament lat-
tice unlike previously studied one-dimensional models
(Huxley, 1957; Wood and Mann, 1981; Pate and Cooke,
1989; Piazzesi and Lombardi, 1995; Smith and Geeves,
1995a,b) where the discrete position of myosin heads
and their binding sites on actin were ignored. The 3-D
sarcomere structure is viewed as an array of thin and
thick filaments connected by cross-bridges and other
elastic elements (e.g., titin and MyBP-C) in a lattice net-
work and that all of these elements are represented as
linear springs (Daniel et al., 1998) or beams if radial
forces are taken into account.

For balancing only axial forces, the spring system is
sufficient for obtaining the displacement field in any
instant of time, assuming that the movement of the fila-
ments is restricted in both radial and azimuthal direc-
tions. However, radial constraints imposed on the lattice
of intact muscle fibers through shrinking, osmotic swell-
ing, or by changes in muscle length may induce signifi-
cant radial forces on cross-bridges (Millman, 1998;
Williams et al., 2012, 2013). In this case, the 3-D sarco-
mere structure should be represented by intercon-
nected beams in order to form a mechanically stable
system. The resulting radial forces may also affect the
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strain dependence of cross-bridge kinetics and, there-
fore, overall muscle dynamics. In either case, the instan-
taneous equilibrium between actin and myosin filaments
interconnected by cross-bridges is described as

Ku = F@), (1)

where K(t) is a stiffness matrix that includes the elasticity
of thick and thin filaments and attached cross-bridges,
u(t) is the displacement vector of all myosin-binding
sites along actin filaments and all myosin links to the
backbone of the myosin filament, and F(¢) is a vector of
all external forces (load) and internal forces generated
by the action of cross-bridges (e.g., power stroke). The
number of these linear equations and, therefore, the
unknown displacements is equal to the total number of
all actin and myosin sites. If the actin and myosin fila-
ments are assumed to be homogeneous along the fila-
ment length, the number of linear equations can be
significantly reduced by fusing all finite elements be-
tween two attached cross-bridges into a single element,
i.e., taking in account only interconnected nodes on
actin and myosin filaments by the cross-bridges. The
stiffness matrix, K (), is constantly changing as actomy-
osin bonds are created or disrupted. In addition, F(t)
also changes during conformational changes in attached
myosins. Thus, the matrices K(t) and F(t) must be up-
dated after any chemo-mechanical transition occurs in
order to accommodate structural system changes caused
by these transitions. The formulation and solution of
these equations is obtained by standard finite element
procedures for linear systems (Eq. 1) or an incremental
procedure for nonlinear systems (Bathe and Mijailovich,
1988; Mijailovich et al., 1993; Bathe, 1996; Kojic, 1996;
Koji¢ et al., 1996; Mijailovich, S.M., et al. 1998. Biophys-
ical Society 42nd Annual Meeting. Abstr. A156).

Calculation of cross-bridge strain and the strain depen-
dent kinetics of actomyosin cycle. The elasticity of myo-
sin molecules and thermal agitation define how far a
given myosin head can move to reach actin-binding
sites. The 3-D nature of myosin binding in the sarco-
mere lattice requires that myosin heads move not only
axially but also azimuthally to reach actin monomers
with the correct orientation (Squire, 1992). The dis-
crete nature of the myosin-binding sites in two helically
arranged strands in each actin filament and the regular
arrangement of myosin crowns along the myosin fila-
ments, each crown having three myosin molecules,
form a large number of possible combinations of rela-
tive spatial positions between myosin heads and binding
sites on the actin filament. These relative positions can
be calculated from the coordinates of deformed actin
and myosin filaments, where the deformation of the
elastic filaments is obtained from the solution of Eq. 1
for appropriate boundary conditions.
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In the 3-D sarcomere lattice, the relative distance be-
tween a myosin head and the adjacent binding site on
actin is defined by four factors (Figs. 3 and 4): (1) the
axial displacements along myosin and actin filaments,
(2) the transverse distance between myosin and actin
filaments, dyp = %dlo, (3) the angle a defining relative
position of myosin to actin filament, and (4) the angle
f defining how much a myosin head needs to turn to
reach an actin monomer in the correct orientation
(Figs. 3 and 4). These spatial distances and angles are
essential information for formulation of the strain de-
pendence of the state transition rates, reflecting the dis-
crete geometric relationships between myosin heads
and actin-binding sites.

In all sliding filament models hitherto, the strain de-
pendence of the actomyosin cycle has been prescribed
only in the axial direction, except in Williams et al.
(2012) where radial forces are also taken into account.
We follow this approach for convenience of comparing
sarcomeric contractions predicted by MUSICO with mass
action models, but in addition, we consider three other
geometric factors, expressed as weight functions associ-
ated with myosin binding to actin in 3-D sarcomere lattice.

Let us start with the myosin binding step because myosin
heads can interact with only one myosin-binding site on
actin out of several reachable adjacent sites (target zone).
From the solution of Eq. 1, at any instant of time, the dis-
placements u(t) and positions of each myosin molecule
Xy (t) and binding site on the actin filament X,(¢) in the
deformed sarcomere configuration are known. In order
for a myosin head to reach the adjacent binding sites on
actin filament, the elastic component of a cross-bridge
needs to be strained depending on relative position of a
myosin head (cross-bridge) X;7(¢) and adjacent binding
sites on actin X (5, where superscripts m and n + 1 de-
note a myosin molecule and the adjacent sites on actin,
where 1=0,1,2, ..., (£, — 1) is an index of accessible sites
on actin in neighborhood of n, respectively. The strain vec-
tors for £, adjacent binding sites on actin reachable by
myosin m are x,},(8) = X"'(#) - X,,(#). Here, x,.(#) has four
components: the axial strain x,}, the radial spacing between
centers of actin and myosin filament d ! and the relative
angles a,, and B,. Note that for each myosin molecule m
there would be Z, binding sites on actin in the neighbor-
hood of m. &, associated sites on actin can be located on
one or two actin filaments, depending on the angle B,.;
thus, d ! can include multiple dy.ss, one for each associated
actin filament. In mass action models, the strain-dependent
rate constants between actomyosin states, denoted as (k;),
exclusively depend on the strain component x, whereas all
other components are ignored. In the stochastic 3-D sarco-
mere used here, we adapt the same approach, but for bind-
ing we calculate Z, rate constants k( xri) These constants
are further modulated by weight factors that take into ac-
count the lattice spacing between the filaments, dy.4, and
the azimuthal angles o and f. The resulting Z, binding
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Figure 3. Interaction between myosin heads and actin fila-
ments in 3-D is defined by the triple helical arrangement of
myosin molecules along the myosin filament and the dou-
ble helix arrangement of monomers (myosin-binding sites)
along actin filaments. The 3-D geometry of myosin head bind-
ing domains and binding sites on actin in a sarcomere requires
both longitudinal position matching and angular matching in
the azimuthal plane. (A) Each myosin head m can move from
its un-deformed position X§j along actin filament as the result
of thermal agitation and reach a few neighboring binding sites
on actin. The myosin binding domain is shown as a yellow oval
at the tip of myosin head and binding sites on actin as bright
blue circles. The range of axial movement is shown as a pale red
bar. The relative axial position of a myosin head (cross-bridge)
Xt and adjacent actin sites X2*(t), where superscripts n + |/
and / denote index of an adjacent site on actin, and /=0, 1, 2,
..., (£, — 1) is the index of accessible sites on actin in the neigh-
borhood of m, respectively. The maximum number of adjacent
sites on actin reachable by a myosin head m is denoted as Z..
To bind the site +/, the cross-bridge, including S2 and a myo-
sin head, needs to stretch or compress axially for distance x.,.
(B) In the 3-D sarcomere lattice, the actin and myosin filaments
are separated by distance d,_y and sites on actin filament (strand)
are at an azimuthal angle p. In addition, a cross-bridge needs to
turn from its equilibrium position by an angle « to reach an actin
filament that is not aligned with its equilibrium position. For pre-
cise calculations of the angles, it is necessary to know the myosin
equilibrium angular positions 6,,, angular position of site on actin
filament 0,, and diameters of myosin and actin filaments 2r,, and
2r,, respectively. The angular range of movement is denoted as
a pale red arc around the actin filament.

rate constants per myosin molecule are then used for
construction of binding probabilities for the stochastic
process as explained below. To match the overall binding
flux in mass action models, the binding rate distribution
is scaled down by the factor £, which takes into account
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Figure 4. Azimuthal weight factors
C; and C, of myosin binding in 3-D
sarcomere lattice. (A) When myosin
heads in Crown 1 are directly aligned
with three actin filaments, then C, = 1
and C; weights the azimuthal departure
of a myosin-binding site on actin fila-

the mean number of sites on actin reachable by each
cross-bridge for the prescribed strain-dependent bind-
ing rate function.

Cross-bridge rate kinetics

The modular structure of the computational platform
MUSICO can accommodate many different actomyosin
cycles. To quantitatively assess the effect of the con-
strained interaction of myosin and actin in the sarco-
mere lattice, we consider, without loss of generality, the
two simplest cross-bridge models: the two-state A.F.
Huxley 1957 model (Huxley, 1957) and the minimal
three-state model that can predict fast tension tran-
sients (Huxley and Simmons, 1971; Ford et al., 1977).
The same kinetic models of myosin binding and the
state transition rate constants are used in both mass ac-
tion kinetics and stochastic simulations of the 3-D spa-
tially explicit model.

The two-state A.F. Huxley 1957 model. The two-state
AF. Huxley 1957 model has only two states: detached
when the heads can freely move and attached when a
myosin head is attached to actin and can only move
with actin. The state transition rate constant between
the detached and the attached sate is defined as kq(x)
= kpgx/hin range 0 < x < h, where k,(x) = kq1x/h for
h>x2>0, ke(x) = kg for x <0, and k,(x) = £z, kg for
x > hz,,, where x is the axial component of cross-
bridge strain, h is the range for positive probability of
attachment (Huxley, 1957), and fz,, is the Zahalak
factor (Zahalak, 1986), which accounts for higher de-
tachment rates during lengthening for cross-bridges
stretched more than hy,,.

JGP Vol. 148, No. 6

ment from the plane passing through
myosin and actin longitudinal axes. The
angle B is a function of the axial depar-
ture from perfect matching, &, resem-
bles the preference for myosin heads to
bind to favorably oriented sites on the
actin filament similar to the observed
distributions of bound level in single
molecule studies (Simmons, R.M., et
al., 2001. Biophysical Society 45th An-
nual Meeting. Abstr. 80a; Steffen et al.,
2001). (B) When myosin heads are not
directly aligned with the surrounding
actin filaments, such as with Crowns 2
and 3, the weight factor C, takes into
account the departure by the angle «
from perfect alignment between the
heads on the crown and the reachable
actin filaments.

Three-state model with power stroke. The minimal
model capable of predicting transients during isotonic
shortening (Lombardi etal., 2004) and the T; — T, tran-
sition (Huxley and Simmons, 1971; Ford et al., 1977)
must have at least three states, including a swinging
lever arm step or power stroke. For simplicity, we use
here a three-state actomyosin cycle (Fig. 5) similar to
that proposed by Duke (1999) and Daniel et al. (1998).
These two models differ only in the prescribed strain
dependence of the state transition rates that are in a
large degree arbitrary and designed to fit the experi-
mental data. In Fig. 5 A, we outline a more complete
six-state model that includes all essential steps: binding
to actin, the power stroke, d, associated with Pi release,
the ADP release stroke, 8, ATP binding and cross-bridge
detachment, and M.ATP hydrolysis, but for simplicity,
we can reduced it to the three-state model by combin-
ing the states AM.ADP, A.M, and A.MT together as
strongly attached post-power stroke states and M.ATP
and M.ADP.Pi together as detached states. The six-state
scheme is illustrative in constructing effective state tran-
sition rate after combining the low populated states. Be-
cause the forward rates are very fast, the equivalent
forward rate is set to be limited by ADP release and the
reverse rates are negligible because they are very slow.
In addition, from the solution data, it can be expected
that the binding rate could be limited by rate hydrolysis
of M.ATP, but in practice, this step is irrelevant because
the second myosin head is most probably already in the
M.ADP.Pi state and available for binding after the first
head of the cross-bridge detaches.

The physics behind models of strain-dependent
thermally activated chemical reaction rates originates
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Figure 5. Minimal model of the ATPase
cycle. (A) Actomyosin cycle and correspond-
ing structural states of myosin head consist
of at least six biochemical states. The mini-
mal three-state model consists of a detached
state 1, weakly bound state 2 (or A.M.D.Pi),
and strongly bound post-power stroke sate 3

r (or A.M.D). The state 1 groups transition be-
<@ £ tween A.M, A.M.ATP, M.ATP, and M.ADP.Pi
&° states (gray box) to a single transition where

forward rate is dominated by the rate of ADP
release and backward rate by reverse attach-
ment from M.ATP to A.M.ATP. These rates
are slowest forward and backward rates. The
compounded state transition includes ADP
release, ATP binding, dissociation of myosin
from actin, and ATP hydrolysis step. Note that
the lever arm must move for displacement &
in order to open the nucleotide pocket and

allow ADP release. (B) Free energy land-
scapes for myosin ATPase states of the three-
state model. The detached state M.ATP is
only shown for reference. The free energy of
detached states is independent of strain, x,
whereas the free energy of attached states is
quadratically proportional to x if cross-bridge
stiffness is constant.
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from the transition-state theory (Eyring, 1935; Glass-
tone et al., 1941), as updated by Kramers (1940). To
logarithmic accuracy, the rate of a reaction is limited
by the energy barrier presented by the point of highest
Gibbs energy on the reaction path. The general form
of the state transition rates in models with a power
stroke is formulated by Hill (1974) as the ratio of for-
ward to backward rates that must satisfy Gibbs’ ther-
modynamic identity

K](X) = ky(x)/k],(x) _ e*[G](x)fG,(x)]/knT (2)

in terms of the Gibbs energies of the initial and final
states, including the elastic strain energy derived
from the cross-bridge tension (Hill, 1974; Wood and
Mann, 1981). Here, Kjj(x) is the equilibrium rate con-
stant between states i and j, and each forward or back-
ward rate constant Kj(x) is composed of a
strain-independent rate kj, which, in principle, is the
rate observed in a solution-kinetic experiment under
the same conditions, and an x-dependent, i.e., axial
strain-dependent, function that is equal to 1 when the
molecules are not tethered.

The functions for the free energy of the three states
(Fig. 5 B) in the simplest form, after setting the un-
bound state energy 0, are defined as (Duke, 1999):
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G =0 (3a)
Gy = -AGpu+x x*/2ky T (3b)
Gf% = -A Gbind_AGslmke"'K(x-" d)2/2kBT’ (8C)

where —AGy,;,qis reduction in free energy caused by my-
osin binding to actin, —AGyke 15 a large (negative)
change in chemical free energy associated with Pi re-
lease, « is the elasticity of the cross-bridges in pN/nm,
kg is the Boltzmann constant, T'is absolute temperature
in °K, and d is displacement of the lever arm after carry-
ing out the power stroke, i.e., the length of the
power stroke in nm.

From Eqgs. 2 and 3, the forward and backward state
transitions rate constants are defined as follows: For the
reaction M.ADP.Pi 2 A M.ADP.Pi, the activation energy
is supplied by thermal (Brownian) fluctuations. Follow-
ing the approach of Kramers (Kramers, 1940; Papoulis,
1991; Hunt et al., 1994; Daniel et al., 1998), the binding
rate in quadratic form is derived from a Langevin type
of equation balancing thermal fluctuations, elastic re-
storing, inertial, and viscous drag forces. The elastic el-
ement of the detached myosin molecule fluctuates
thermally, and the strain-dependent binding rate varies
with the axial cross-bridge strain, x:
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2 on
kg () = kyg €777, (4a)

where kg is the overall binding rate of M.ADP.Pi to
actin, k is cross-bridge stiffness, T is absolute tempera-
ture, and kg is Boltzmann’s constant. The reverse reac-
tion occurs at a constant rate:

~AGying
kle = kunbiml = kl)in(le o,

The two attached states AM.ADP.Pi and A M.ADP
can be assumed to be in dynamic equilibrium if [Pi] >0
because the forward/backward reaction between them
is rapid. Also Pi release is accompanied by a large (neg-
ative) change in chemical free energy A Gy, Thus, to
define the population of these states in some cases, it
suffices to specify the ratio of forward and reverse rates
(i.e., ratio of the relative probabilities of these post- and
prepower stroke states) that also includes the change in
elastic energy of the power stroke:

Kos(0) = hys(0) k() = e[St/ CEO)I/BT (4

The exponential forms of the forward and backward
rate constants can reach huge values and cause numeri-
cal problems in calculating the transition probabilities.
In these cases, it is convenient to cap the maximums of
forward and backward constants and still preserve the
equilibrium constants (Smith and Mijailovich, 2008).
For example, for a prescribed ksi’ and k55, the cross-
bridge strain where the capping of large exponentially
growing rate constants is x, = —0.5d - [A Gy, + In (k55" /
ks kg T/ (kd), and the forward rate is

hyy = K2 for x < x,

kos = kst g7t/ BT for x> x,

The backward rate, kso(x), can be simply calculated as
the ratio of Kos(x) (Eq. 4b) and kos(x).

For strain-dependent ADP release (i.e., AM.ADP —
A.M), the difference between the initial and final strain
energies gives the forward rate as

k‘%l (x) — k/‘il)l’ e*[(Kﬁ(l/?k,‘T) (2x/d+1)] (4C)

where 06 is the displacement that the lever arm must
move to open the nucleotide pocket and allow ADP re-
lease, and kipp is the rate of ADP release when the elas-
tic element is relaxed. ATP binding is much faster than
the reverse rate ks, and thus any strain dependence
caused by the conformational change has almost no ef-
fect. It is therefore reasonable to take k3 to be small
and constant.

Monte Carlo simulations of rate dependent

stochastic processes

In the stochastic model, we used the standard Metropo-
lis algorithm where a kinetic transition in time step Atis
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implemented when a random number in (0, 1) lies in
the range (0, kAt), where k is the first-order transition
rate constant. This algorithm generates a Markov pro-
cess if kAt < 1, so that at most one transition occurs per
Monte Carlo time step in a single subsystem, here con-
sidered as one myosin filament and the associated actin
filaments. Thus, At must be less than the inverse of the
fastest rate constant of the system, k., and in practice
kpaxAt < 0.001 was required to achieve satisfactory statis-
tics. The transition rates between actin and myosin
states are applied to N, myosin heads per myosin fila-
ment. For all myosin heads, N,,;, at any instant, is as-
signed its state in the actin—-myosin cycle, whether it is
free or attached to actin. For attached myosin heads, it
is also assigned the index of the myosin-binding site on
actin and also which strand on the actin filament (1 or
2) it is bound to. In general, both myosin heads of a
dimer can be active, but in skeletal muscle, it is occa-
sionally found that both heads attached to different
actin filaments. For simplicity, we consider here that
only one head of dimeric myosin is active and interacts
with actin at a time. Further, we also assume that the
active myosin head, usually denoted as a cross-bridge,
can bind to any one of the reachable discrete binding
sites on actin filament (~5.5 nm apart, following the un-
loaded actin spacing). The reachable sites can be on
one or two actin filaments depending on angle o and
one or both strands on each filament depending on
angle  (see Figs. 3 and 4).

Each active myosin head (cross-bridge) can be at time
tin only one state. During a small time step, each myo-
sin head can change its state to neighboring states de-
fined by the actin-myosin cycle or stay in its current
state. The Monte Carlo drawing defines whether transi-
tions between actomyosin states will occur or not. In the
computational algorithm, for each myosin (cross-
bridge), we calculate probabilities for each possible
change of its current state to neighboring states as P =
kAt for each transition, and complement probability up
to 1 is attributed to no change of the state. Because each
myosin attaches to one of the &, sites on actin in its
proximity, the probability of myosin m to attach to Ith
site of &, available is

z,
Ply, = P Il (1-Ph),
1)
where Pjj; is probability of binding cross-bridge m to a
single site when it is the only possibility.

In the Huxley 1957 model (Huxley, 1957) there are
only two states, attached and detached. In this case, only
one probability for the change of state is assigned. For
the myosin heads in attached state, the probability of a
cross-bridge to detach during time step At is equal to
Py = k,(x) At. For myosin heads in the detached state,
the attachment probability is shared between all reach-
able states defined as
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Pall = (Zflg Pull(‘xrln))’

where Pm( xﬁm) = k;( xﬁn) . C(x((xfn) . Cﬁ( ﬁf,,)At and k; =
ky/ fi. Because P, is the sum of probabilities of attach-
ing myosin heads to each of reachable sites I =1 to Iy,
the equivalent axial strain-dependent binding rate k; is
set to provide the same flux as the mass action binding
rate k. The scaling factor, f, decreases the magnitude
of krat each x by a mean number of reachable binding
sites to myosin heads. The weight factors C, and Gy are
associated with the azimuthal position of actin filaments
in the sarcomere lattice relative to the myosin head,
angle a, and azimuthal angle of myosin-binding site on
actin P (Figs. 3 and 4).

Similarly, in the three-state model, the probabilities of
changing state are constructed in the same way, but each
state can transition to two neighboring states; therefore,
the transitions from the attached states (2 and 3) are de-
fined by probabilities to Py = ko (x) Atand to Pog = kos(x)
At for the pre-stroke state 2 (A.M.ADP.Pi) and to Ps, =
kso(x) At and to Ps; = k31 (x) At for the post-stroke state 3
(A.M.ADP). The transition states from the detached
state M.ADP.Pi include two attachment probabilities Pyo
and Pys associated with axial strain—-dependent rates with
multiple binding sites on actin, k]z( xf,l) = k,«z(xf,,) / fix and
kTg( xf,,) = k[g(xf,l) / Ja The scaling factor £ and weight fac-
tors G, and Cgare defined in the same way for all models.

For each cross-bridge, we use one Monte Carlo draw-
ing to define whether the cross-bridge remains in its
current state or it will change its state into one of the
possible states within current time step At. For each
cross-bridge, the probability in the range from 0 to 1 is
divided into probability bins, Py, in a specified order,
including the set of probability bins associated with a
cross-bridge changing state and a bin associated with
the probability of remaining in the current state. De-
pending on which bin the drawn random number falls
in, the fate of a particular cross-bridge is defined and set
for the following time step. The time step, At, is set to
be sufficiently small such that at most only one transi-
tion can occur per a subsystem so interference between
multiple transitions within a single subsystem is avoided
and between the systems is negligibly small.

Once the Monte Carlo drawing is completed over all
cross-bridges, the connectivity matrix, stiffness matrix,
internal (active cross-bridge) forces, external (bound-
ary) forces, and constraints are updated, the iterative
solution of the equilibrium equation provides the con-
figuration at time ¢t + At. The stepwise process is re-
peated until the maximum number of prescribed time
steps is reached.

For simplicity and without loss of generality, all simu-
lations presented here are performed at full calcium
activation ([Ca%] = 2.5 x 107°), where the thin filament
proteins troponin and tropomyosin are assumed to
have a negligible effect on the cross-bridge cycle (Mijai-
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lovich, S.M., et al. 2015. Biophysical Society 59th An-
nual Meeting. Abstr. 337a). For these simulations,
therefore, we used a version of MUSICO without the
calcium regulation module.

A probabilistic formulation of cross-bridge kinetics in
mass action models

The mathematical formulation of sliding filament sys-
tem at the level of a single myosin head is given in terms
of the state probability density function, p;(x,t), i.e., the
probability of the head being attached to the thin fila-
ment (actin) at a binding site displaced by distance x at
time ¢ (Eulerian formulation). The subscript i identifies
the particular actomyosin state and runs from 1 to the
total number of states n, used in the cross-bridge cycle.
The myosin may be detached or bound to actin. For
simplicity, in the mass action simulations presented
here, we simplified the spatially distributed elasticity of
the filaments into a (discrete) series elastic component
and consider myosin binding to actin as in the inexten-
sible filament model. Note that in the MUSICO simula-
tions, myofilament, and cross-bridge compliances are
treated explicitly as a function of position along the fil-
aments. The strain-dependent state transitions between
myosin states are governed by conservation laws ex-
pressed as field equations. In vector form, this system of
partial differential equations becomes

Dp(x,t)/Dt = Mx)p(x,1), (5)

where M(x) is the state transition rate matrix. The ma-
trix size, n x n, is defined by the number of states in the
actomyosin cycle, and, in general, this matrix in 3-D de-
pends on the relative spatial position of unstrained my-
osin heads and their binding sites on actin, X€(x, I, a,
B). We consider here only the axial strain dependence
(exclusively of x). In this case M(x) = M,(x), where the
components of Mi(x) are built from rate constants
kij(x) for the transition from state i to state j. The diago-
nal elements of matrix M, (x) are defined as

Mii(x) = =YL ka(08,,

where 6; = 1 if i # 1 and 0 otherwise; and off diagonal
terms as ./ ;j(x) = k;;;, where §; = 1if i # j and 0 other-
wise. The rate constants k;(x) have finite positive values
(>0) only if transition between states i and j are possible,
otherwise they are equal to 0. Each component of the
vector p(x,t) is the probability of finding the myosin
head in one of'its n states at time t and at strain x (Hux-
ley, 1957). The operator D/ Dt is the material derivative
d/0t—v(1)d/dx, where v(t) is the shortening velocity of
the actin filament relative to myosin filament. Note that
for simplicity, here we assume uniform shortening ve-
locity along the filaments, i.e., dv/dx = 0. This is
achieved, without loss of generality, by including a se-
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ries elastic component equivalent to the elasticity of the
filaments and apparently rigid filaments in the overlap
region where myosin interacts with actin. The normal-
ized shortening velocity, V(t), denotes v(t) in half-sarco-
mere lengths per second.

The state transition matrix My(x), formed exclusively
from rate constants k;(x), is singular because the sum of
the elements in each column is equal to zero, i.e., deter-
minant [Ms(x)| = 0. Thus, to find a unique solution of
Eq. 5, it is necessary to replace one row in My(x) by a
constraint equation. In the original Huxley 57 model
(Huxley, 1957), the constraint is that at any instant of
time ¢, the sum of all state probability densities at partic-
ular xis equal to 1, i.e.,

Yhplxt = 1.

This constraint was later used in almost all mass action
models (Hill, 1974; Pate and Cooke, 1989; Smith and
Geeves, 1995b,a; Mijailovich et al., 1996).

For Huxley’s two-state formulation, after setting up
p1(x,t) as the attached state and py(x,t) as the detached
state and including the above constraint equation, the
state transition matrix becomes:

(6a)

M, () = [7’%’(” kf(x)],

1 1

and for the three-state model, after setting p; (x,t) as the
detached state (M.ADP.Pi), ps(x,t) as the attached pre-
stroke state (A.M.ADP.Pi), and ps(x,t) as the post-stroke
state (A.M.ADP), it becomes

ko — ki3 ko1 k31
M. (x) = kig ko1 — ko ks |-
1 1 1

(6b)

Conservation of the number of cross-

bridges (myosin heads)

The assumption in mass action kinetic models that the
sum of all state probability densities, p;(x,t), at any x is
equal to 1 does not guarantee that the sum of proba-
bilities of all states of myosin within actin—myosin cycle
or sum of all actin states add to 1. Thus, if the sum of
all state probabilities is not equal to 1, one cannot pre-
serve the numbers of species entering or leaving the
reaction. Piazzesi and Lombardi (1995) were the first
to attempt to partially address this problem, and their
approach is successfully implemented in the Hai and
Murphy four-state model of smooth muscle contrac-
tion (Mijailovich et al., 2000) as an essential condition
to preserve the number of myosin species (i.e.,
cross-bridges).

In mass action kinetic models, we do not track each
cross-bridge, but rather the binding of the population
of cross-bridges that can reach actin-biding sites within
a region &. If there is no relative movement between
actin and myosin filaments, i.e., in truly isometric con-
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ditions, all bound myosins are within the region %,
forming probability density distributions, p;..(x,t), and
the detached probabilities complement these probabil-
ity density distributions to 1 at any x according to the
original Huxley assumption (Huxley, 1957). Because
the sum of p;(x,t) at any x is equal to 1, then the sum of
all probabilities of the myosin states,

Pi = (fapix0dx)/ Ca,

is also equal to 1. Here 4 is equal to the length of the
binding region &. In the original Huxley 1957 formula-
tion, the region & is defined as 0 < x < h, and the prob-
ability of myosin to be attached in fully activated muscle
at steady-state is equal to P, = k;/ (k¢ + kg). The probabil-
ity of a cross-bridge to be in the detached state is equal
to 1 — P, Piazzesi and Lombardi (1995) in their multi-
state model defined the biding region & to be within
binding range dictated by binding and detachment
strain—dependent rate functions. Their approach is
equally applicable under isometric conditions to other
multistate models, but the proportion of bound and un-
bound myosins strongly depend on the width of the my-
osin-binding region ¢5. Thus, defining the region £y
needs to be done carefully.

The above formulations are correct for the isometric
case, but when shortening or lengthening is allowed,
they are not because some myosin heads are drawn away
from the attachment region &% while still attached, and
at the same time, some unoccupied binding sites on
actin are moved within & (Mijailovich et al., 2000). Con-
sequently, the number of available myosins for binding
within region & is less than a sum of all attached states,

1- En‘pz,alt(x, t)s

for the number of the attached myosin heads that were
drawn outside of region %. Here n, is number of states
in the actomyosin cycle. Following the approach of Pi-
azzesi—-Lombardi (Piazzesi and Lombardi, 1995; Mijai-
lovich et al., 2000), we define & as a local coordinate of
the binding site on actin available in & (thus 0 <& < 7y).
We also assume that after detachment a cross-bridge
rapidly (of the order of a microsecond) regains its orig-
inal configuration; thus, the myosin head can reattach
to one site on actin in &, and therefore all detached
states, p;qer(X,t), are also only within . Thus, all of the
heads detaching at a given x beyond region &, regain
the position, within @, by shifting the change of
Ap; an(X,8) t0 AP ger(§ + g, t), where subscripts att and
det denote the attached and detached states, where £
is the length of binding region & and also taken as a
spatial period and ng is the maximal number of times
the attached cross-bridge has exceeded one boundary
of & in the same direction, taking values negative for
shortening and positive for lengthening. Thus, the re-
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quirement that the sum of the probability densities over
all possible states includes translation of detached
states, for all &, according to the condition

; pi,m‘t(é’ t) + ; ; ,’bz,(m(ﬁ + nfg, t) = 1.

This condition ensures that the number of cross-
bridges (myosins) is conserved, but the number of
detached states does not precisely reflect the number
of the unoccupied myosin-binding sites on actin. The
correct number of unoccupied sites on actin can
only be achieved by spatially explicit models such as
MUSICO.

Model parameters
Sarcomere geometry and myofilament elasticity. In the
frog (sartorius) muscle 3-D sarcomere lattice, actin fila-
ments are ~1 pm long, having 182 monomers in a
strand or 364 in total (Burgoyne et al., 2008). The actin
monomer spacing is 2.735 nm and a half-period of one
strand is 35.55 nm (Huxley et al., 1994; Wakabayashi et
al., 1994; Prodanovic et al., 2016). The length of a myo-
sin filament is ~1.58 pm, having 50 crowns, i.e., 150 my-
osin molecules per half-thick filament, with crown
spacing of 14.3 nm (Luther etal., 2008). The sarcomere
slack length is set at ~2.175 pm, with ~0.7 pm actin—my-
osin overlap. The lattice interfilament spacing is dj =
37 nm, recalculated to the above sarcomere length
from Matsubara and Elliott (1972) and Millman (1998),
the actin radius is r, = 3.5 nm and myosin radius is r,, =
7.8 nm (see Table S1 for complete set of model param-
eters). For simplicity, we limited all stochastic simula-
tions to a half sarcomere with 500 myosin and 1,000
actin filaments. This number of filaments is comparable
with the number of filaments in a cross-section of a typ-
ical myofibril and provides sufficient statistical averag-
ing without running the simulation multiple times.
Actin and myosin filaments are extensible with fila-
ment moduli (elastic modulus times cross-section
area) derived from x-ray diffraction or direct measure-
ment: for actin, K, = 0.65 x 10° pN; and for myosin K,
=1.32 x 10° pN (Huxley et al., 1994; Kojima et al.,
1994). The elasticity of the filaments in mass action
models is, for simplicity, lumped into a series elastic
component normalized to a subsystem containing one
myosin and two actin filaments. The stiffness of the se-
ries elastic component in the Huxley and Huxley PL
models, equivalent to the actin and myosin filament
elasticity in MUSICO, is K{*™ = 144 pN/nm; and for
Duke and Duke PL models is Ki* = 198 pN/nm
(Table S1).

Cross-bridge model parameters. To contrast the inclu-
sion of the geometric and steric constraints of the acto-
myosin cycle in the explicit 3-D sarcomere lattice versus
mass action kinetic models, we compared the simula-
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tions of classical mechanical experiments in muscle
using the two simplest cross-bridge models: (1) the two-
state A.F. Huxley 1957 model (Huxley, 1957) and (2) a
three-state, including a power stroke, model similar to
that proposed by Duke (1999) (see also Table S2).

Cross-bridge model parameters: A.F. Huxley 1957 model
parameters. For simplicity, we used here the original pa-
rameters of A.F. Huxley’s model: the attachment and
detachment kinetic rate constants are fj, g, and g
equal to 43.3, 10, and 209 s, respectively. The myosin
distortion displacement scale, h, was taken to be 15.6
nm, as reported in Huxley’s original paper (Huxley,
1957). For reaching experimentally observed lengthen-
ing maximum velocity, we included a Zahalak factor f,,
= 1.8 for x > hy,y;, = 15.6 nm (Zahalak, 1986). The
Piazzesi-Lombardi spatial period is £ = h. In all simu-
lations, cross-bridge stiffness is taken to be k = 0.58 pN/
nm, in order to match maximum isometric tension per
myosin filament of ~530 pN corresponding to the ten-
sion observed in frog skeletal muscle of 270 kPa.

Cross-bridge model parameters: Three-state model pa-
rameters. According to the approach of Duke (1999),
the state transition rate constants are as follows: for
binding, the equilibrium constant is Kyg = kpina/
Rynping = €268 ~ 90 where AGy;,q = —3ksT and for-
ward rate constant at zero cross-bridge strain is Kpj,q =
170 s7'; for power stroke, equilibrium constant (Eq. 6b)
is defined by AGy,oe = —15kgT and power stroke d =
10.6 nm; and for ADP release/detachment, kpp= 56 s!
and second power stroke & = 0.9 nm. Because of the
exponential forms in Egs. 4b and 4c, the state transition
rates can become very large and can generate numeri-
cal problems—they are capped to k¥ = 1,000 s™', ks =
100 s7!, and k5% = 10* s7!. These values are chosen as
optimal values to satisfy Monte Carlo statistics for time
steps of the order of 1 ps. When the cap value is reached,
the reverse rates are changed to decay exponentially to
satisfy the equilibrium constant, Kj(x). In all simula-
tions, cross-bridge stiffness is taken to be k = 1.3 pN/nm
(as used by Duke [1999]) and the value for kgT = 4.14
pN-nm at T'=300°K. The Piazzesi-Lombardi spatial pe-
riod is £ ~ 9.4 nm.

Normalization of isometric force. The spatially explicit
model in MUSICO calculates the force in each actin
and myosin filament, and the force is directly related to
stochastic kinetics of the actomyosin cycle and the elas-
ticity of cross-bridges and myofilaments. The simula-
tions are done by setting up the initial conditions and
letting the system evolve over time (for example, 1 s
with 10-ps steps). Because of the stochastic process of
myosin interactions with actin, the forces in the myofil-
aments fluctuate in time, and each filament experiences
somewhat different force. Overall, each simulation with

Interfilament binding of tethered molecules | Mijailovich et al.

920z Arenugad 20 uo1senb Aq pd'g091 1910z dbl/8Gz96.1/651/9/8Y L /pd-ajonie/dbl/Bio sseidny//:dpy wouy pepeojumoq



500 myosin filaments per a half sarcomere provides not
only sufficient averaging of the muscle fiber tension but
also fluctuations in force in each myosin and actin fila-
ment. It is important to note that these forces at any in-
stant of time are different and continuously change in
time although the fully developed muscle fiber force
under isometric conditions fluctuates very little.

The mean force per myosin filament, F, is shown in
all graphs where one axis is force. In contrast, the force
from mass action kinetic models cannot be directly ob-
tained from Kkinetic model parameters including the
elasticity of cross-bridges and myofilaments. It is typi-
cally normalized by a factor that relates the integral of
the equilibrium isometric cross-bridge force distribu-
tion and maximum isometric tension, T, (Huxley,
1957). In our plots, we show both the myofilament force
and the isometric tension. The scales are related by a
factor that takes into account how many myosin fila-
ments there are per unit of the fiber cross-sectional area
(Linari et al., 1998). In intact fibers from frog skeletal
muscle, the d lattice spacing is in the range of 36.0 to
38.5 nm at a sarcomere length of 2.3 pm (Matsubara
and Elliott, 1972; Millman, 1998), and the fraction of
cross-section occupied by myofibrils as 0.83 (Mobley
and Eisenberg, 1975). For spacing at sarcomere optimal
length of 2.175 pm used in our calculations, the num-
ber of myosin filaments is ~505 per pm? of the muscle
fiber cross section, and the mean force per myosin fila-
ment, F,, is between 530 and 600 pN for corresponding
muscle isometric tensions, T,, between 270 and 300
kPa, respectively. For simplicity, all force data are plot-
ted in terms of force per myofilament, F, and the scal-
ing relationship between the maximum isometric force,
F,, and maximum isometric tension, T, is displayed in
the figure legends.

Normalization of the cross-bridge distributions. Under-
standing of the complex muscle fiber response to activa-
tion and mechanical load challenges is rooted in the
distribution of cross-bridges versus the strain of each
cross-bridge and its actomyosin state. The differences in
responses between different models for the same activa-
tion and mechanical protocols can also be explained by
comparing the cross-bridge distributions. The distribu-
tion in a spatially explicit model such as MUSICO can
be represented as the frequency of cross-bridges in each
actomyosin state within a bin of the prescribed width,
Axp, at the mean bin strain x;,. Thus, these frequencies
can be, after summing, related to the mean number of
myosin heads in a particular state per myosin filament.
The state probability density functions, p;(x,t), in mass
action kinetic models are frequently denoted as distri-
butions of cross-bridge fractions in each state over a
range of strains x at time t. An integral of an attached
state probability density function represents the proba-
bility of a cross-bridge to be in that state. Thus, the
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problem is in defining the number of cross-bridges in
detached states because the probability density func-
tions of these states cannot be integrated over the spec-
ified domain of x and therefore cannot be related to the
fraction of the bridges in any particular state.

To compare the distributions between mass action ki-
netic models and MUSICO, we need to limit the range
of detached states. Integrating the distributions within
these limits can provide the fraction of attached versus
detached cross-bridges comparable with the ratio of
number of attached versus number of detached cross-
bridges calculated from MUSICO. Setting up these lim-
its is not simple and should be defined for each type of
actomyosin cycle. Fully developed isometric tension is
probably the best state for establishing the normal-
ization factors.

Because in different MUSICO simulations we can use
different numbers of myosin filaments, we adjusted the
bin width so that the height of the bin represents the
number of the cross-bridges in each attached state per
myosin filament. The comparative plots of the attached
cross-bridge distributions from MUSICO and state
probability distribution functions from the mass action
kinetic models require the scaling factors for each acto-
myosin model used.

Normalization of the cross-bridge distributions: Huxley
1957 model. The distribution of attached cross-bridges
at fully developed force calculated by the Huxley mass
action kinetic model is defined as pin.. = fi/ (fi+g1)
over the binding range 0 < x< hand as pff,‘,’,bound =1- pé@ind.
Thus, limiting the detached states to the range 0 < x< h
provides the fraction of attached cross-bridges that is
proportional to the number of attached cross-bridges
calculated from MUSICO. This proportionality factor is
used for calculating normalizing factor relating the fre-
quency of cross-bridges per bin to the probability den-
sity function in the same attached state.

Normalization of the cross-bridge distributions: Three-
state model. The probability density distribution of two
attached cross-bridge states at fully developed force is
more complex than from the Huxley 1957 mass action
kinetic model, and defining the equivalent detached
state distribution is also much more complex. The
problem with this actomyosin cycle model is that at fully
developed isometric force, the distributions of bound
states significantly differ in shape between the mass ac-
tion kinetic model and MUSICO predictions. This
problem is rooted in loose definitions of the detached
state probability density function from mass action
models. However, it can be resolved in part by defining
Piazzesi-Lombardi binding region length, Zg, using,
for example, the data from MUSICO simulations.

In addition, normalization of the distributions of the
attached states requires special procedures, including
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determination of the proportion factor relating bin
heights from MUSICO simulations to the probability
density distributions from mass action models. The scal-
ing of frequencies from MUSICO simulations and prob-
ability density functions of each attached state is
obtained from simulations of isometric force develop-
ment at 5 and 20 ms where the shape of pre- and post-
power stroke attached states distributions almost
coincide. The distribution of the sum of bin heights of
the two states is excellently fit by a modified Gaussian
function (see Fig. SI). This same function also excel-
lently fits the sum of fractions of attached cross-bridge
states. After normalization of the peaks, these two fitted
curves almost coincide but only at early times during
force development. The ratio of these peaks is used to
scale the axis for the frequency distributions from MUS
ICO simulations and the fraction of attached cross-
bridges from simulations from Duke and Duke
PL models.

MUSICO software environment and simulation details

The MUSICO software has been developed as C++ ob-
ject-oriented application that includes LAPACK linear
algebra package and deal Il finite element library. Typi-
cal run times for these simulations depend on the num-
ber of actin and myosin filaments. For the simulation of
500 myosin filaments over 1 s with a time step of 10 ps is
~20 h on the AEGIS04-KG grid site, consisting of 6
nodes, each equipped with 2 AMD Opteron 6276 16-
core processors and 96 GB RAM, totaling 192 processors.

Online supplemental material

The supplemental text shows normalization of the
probability distributions of the attached states. Fig. S1
matches the scales of the number of attached cross-
bridges per bin from MUSICO simulations to the frac-
tion of attached cross-bridges from the Duke mass
action model prediction at 5 ms after the onset of iso-
metric force development. Fig. S2 shows transient veloc-
ities and cross-bridge distributions after quick release to
isotonic force at F/F,=T/T,= 0.6 and 0.4. Fig. S3 shows
three-state model predictions of transient velocities and
cross-bridge distributions after a quick release to iso-
tonic force at F/F,=T/T, = 0.6 and 0.4. Fig. S4 shows
two-state model predictions of velocities and distribu-
tions for shortening velocities of 63.5 and 215.5 nm/s
(i.e., 0.04 and 0.133 of v;,,,) that correspond to MUSICO
velocities for F/F,=T/T,= 0.6 and 0.4, respectively. Fig.
SH shows three-state model predictions of velocities and
distributions for shortening velocity of 259 and 445
nm/s (i.e., 0.17 and 0.29 of v,,,) that correspond to
MUSICO velocities for F/F,=T/T, = 0.6 and 0.4, re-
spectively. Fig. S6 shows the cross-bridge distributions
torer = 04, 5, 10, 20, 80, and 200 ms after a quick release
to zero isotonic load for model, where black bars repre-
sent weakly bound cross-bridges and red bars the post-
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power stroke bound myosins (MUSICO). Fig. S7 shows
three-state model (Duke) predictions of the evolution
of the cross-bridge distributions during T, — T transi-
tions after a quick decrease in length of 7.35 nm. Table
S1 lists values of key sarcomere lattice parameters. Table
S2 lists values of key cross-bridge kinetic parameters
and constraints.

RESULTS

The spatially explicit model implemented in the MUS
ICO platform directly addresses the binding of myosin
molecules to and detachment from actin in the sarco-
mere lattice. The simulations at any instant of time re-
cord all connections between myosin and actin and
explicitly take into account how many myosin heads
(cross-bridges) are available to interact with accessible
sites on actin filaments. Using the MUSICO platform
simulations, we have assessed the differences between
our spatially explicit model and two versions of mass ac-
tion kinetic models, the original Huxley 1957 model
(Huxley, 1957) and a more realistic three-state model
similar to that of Duke (1999). Both of these mass ac-
tion models have an original version and with the con-
straint introduced by Piazzesi and Lombardi (Piazzesi
and Lombardi, 1995; Mijailovich et al., 2000) that pre-
serves the number of myosin heads, denoted as Huxley
PL and Duke PL.

Two-state (Huxley) model

Isometric force development. The Huxley 1957 model is
the simplest and is used here to illustrate key differ-
ences among spatially explicit and mass action kinetic
models. Fig. 6 A shows force development and isotonic
shortening after a quick release to zero force (F = 0).
For comparison, the tension in mass action models is
scaled to force per myosin filament (Fig. 6 A); thus, the
rescaled maximum isometric tension, T, from mass ac-
tion models is the same as the maximum isometric force
in the myosin filament, F,, predicted by MUSICO.
During force development, the predicted tensions by
Huxley and Huxley PL almost coincide, and only small
differences are caused by a small amount of shortening
because of the extensibility of actin and myosin fila-
ments (Fig. 6 A). The MUSICO predicted force per my-
osin filament also matches for the first ~50 ms, when
the population of bound myosins is still low, but when
the number of bound cross-bridges increases (¢ > 60
ms), the MUSICO predicted force is slightly lower and
followed by a long slow rising phase. At t > 500 ms, the
MUSICO prediction also plateaus and coincides with
the other two models.

The insets in Fig. 6 A display comparisons among
cross-bridge distributions from MUSICO and the mass
action kinetic models. At 5 and 20 ms, all three models
show about the same distributions reflecting negligible
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Figure 6. Isometric force develop-
ment and unloaded isotonic shorten-
ing by the Huxley kinetic models. (A)
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differences in force in the early period of force develop-
ment. The fluctuations in the distributions calculated
by MUSICO are caused by favorable or unfavorable spa-
tial matching of discrete positions of myosin heads and
binding sites on the actin filament in the 3-D sarcomere
lattice. Because of the extensibility of the filaments
during force development, a small relative movement
between actin and myosin filaments (shortening) is ob-
served even under isometric conditions (Mijailovich et
al., 1996). This shortening shifts the distributions left-
ward and allows additional flux of myosin binding that
differs between MUSICO and mass action kinetic mod-
els. At 80 ms, a significant number of myosin heads is
bound, and some sites on actin are already occupied;
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0.78

thus, the rate of increase in force is a little slower than
mass action models. Consequently, the MUSICO pre-
dicted force in this region is ~5% smaller. Giving suffi-
cient time, the slow rising phase of force becomes small
and all the net fluxes become smaller. At 700 ms, the
distributions of cross-bridges at almost all cross-bridge
strains, x, become the same.

Isotonic shortening. After a quick release from maximal
isometric force, F,, to isotonic force, F = 0, the shorten-
ing response of the half sarcomere is the same in all
three models because the series elastic components in
the Huxley and Huxley PL mass action kinetic model
match the overall elasticity of the extensible filaments
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used in MUSICO simulations. After a quick release, the
distributions shift for about the same amount (Fig. 6 A,
inset), exposing parts of the distribution to high bind-
ing rates (see inset in Fig. 6 B at a time immediately
after quick release, tore = 0,). Although the displace-
ments are the same at tgge = 0., the velocity traces are
different (Fig. 6 B). The largest velocity is predicted by
Huxley, whereas the MUSICO and Huxley PL have sim-
ilar values. The reason for these much larger velocities
predicted by the Huxley model is the large binding flux
in the region of high binding rates where there are no
bound myosins. In contrast, the binding flux predicted
by MUSICO and Huxley PL is significantly smaller be-
cause of the significantly reduced number of myosin
heads available for binding (Fig. 6 B, vertical arrows in
inset at 10 ms). The resulting difference is best shown at
torer = 10 ms after the quick release (Fig. 6 B, inset),
showing that the cross-bridge distributions for the frac-
tion of newly bound cross-bridges in the Huxley model,
displayed at the right hand side of the distributions, is
much higher than in MUSICO or Huxley PL distribu-
tions and significantly more shifted leftward reflecting
higher shortening velocities after the quick release
(Fig. 6 B, inset, open horizontal arrows). At later times,
when the number of attached cross-bridges is signifi-
cantly reduced, the velocities predicted by all three
models become closer together, having only a minimal
difference in steady-state at tore;= 200 ms after the release.

The predicted force-velocity curves by MUSICO and
mass action kinetic models for the same sets of parame-
ters (Huxley, 1957) showed quite different values of iso-
tonic force at low velocity of shortening (Fig. 7 A). For
example, for isotonic force F/F,=T/T,= 0.6 MUSICO
velocity is significantly smaller than predicted by Hux-
ley and Huxley PL mass action kinetic models (63.5
nm/s, 181nm/s, and 147.5 nm/s, respectively). At F/F,
= 0.4, Huxley PL velocity is midway between Huxley and
MUSICO. At higher values of isotonic force, Huxley PL
velocities are close to Huxley’s, but as the isotonic force
drops to low values, F/F, = T/T, < 0.3, the Huxley PL
velocities approach the MUSICO predictions, reaching
about the same value at F/F,= T/ T, < 0.2. Interestingly,
although the predictions of the original Huxley model
(Huxley, 1957) agree very well with A.V. Hill’s force-ve-
locity relationship (Hill, 1938), MUSICO predications
and, to a lesser degree, those of Huxley PL underesti-
mate the shortening velocities at the same isotonic
force (Fig. 6 A).

The differences in calculated force-velocity curves
originate from neglecting conservation of the numbers
of myosin heads and taking into account the occupancy
of binding sites on actin in mass action kinetic models.
Huxley PL takes into account conservation of the num-
ber of myosin heads but still neglects the occupancies of
sites on actin. This effect can be seen in the bound cross-
bridge distributions at different times during transients
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Figure 7. Comparison of force-velocity relationships from
MUSICO (black line), Huxley 1957 (green line), and Huxley
PL (red line). For reference, A.V. Hill's force-velocity data are
shown as cyan closed circles (Hill, 1938). Force per myosin fila-
ment (MUSICO) is normalized by the maximum isometric force,
F,, and tension in mass action kinetic models is normalized to
maximum isometric tension, T,. (A) Large differences between
the predictions of isotonic shortening velocities are observed at
the same force (e.g., 0.6 and 0.4 of maximum isometric force,
F,, or tension, T,) or with forces at constant velocities (e.g., 0.04
and 0.133 of maximum shortening, V... (B) Isotonic lengthen-
ing velocities for the original Huxley 1957 model rate constants
(solid lines and closed symbols) and with additional Zahalak fac-
tor fz,, = 1.8 for x > hz,, = 15.6 nm (Zahalak, 1986; dashed lines
and open symbols) in order to increase cross-bridge detach-
ment at higher cross-bridge strains at x > hz,, during lengthen-
ing. To generate a curve in the observed range (dotted green
line), the Huxley 1957 mass action kinetic model requires fz,, >
4. The velocities in range from —60 to 20 nm/s are shown in the
inset. Also, for reference, the force-velocity data for lengthen-
ing (Katz, 1939) are shown as cyan closed circles in addition to
A.V. Hill's data for shortening (Hill, 1938).

after quick release at, for example, F/F, = T/T, = 0.4
(Fig. 8 A). In both cases, immediately after a quick re-
lease (at toge = 0, ms), the bound cross-bridge distribu-
tions shift for the same amount in all models, following
the same instantaneous (elastic) shortening after release
at F/F,=T/T,= 0.4 (Fig. 8 A, inset). However, the ve-
locities after release are not the same because the effec-
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Figure 8. Transient velocities and cross-bridge distributions after quick release to isotonic force at //F, = T/T,. (A) Evolution of
velocities after quick release to isotonic force of F/F, = T/T, = 0.4 predicted by MUSICO (black line), Huxley 1957 (green line), and
Huxley PL (red line). The displacements after release are the same because the SE components of Huxley 1957 and Huxley PL models
match the effect of the myosin and actin filament compliances from MUSICO (inset). (B) Velocity evolution after release to F/F, =
T/T, values at which all models have the same steady-state shortening velocity of 215.5 nm/s (i.e., 0.133 of v,,.,). (C) Cross-bridge
distributions and state probability density distribution functions at time tqze = 20 ms after release to predicted (left column) and to
F/F, values that have the same steady-state velocity of 215.5 nm/s (right column). The arrows on the right signify net binding fluxes
and on the left signify net unbinding fluxes, and the horizontal open arrows represent current shortening velocity.

tive flux of myosin binding differs significantly among
the models. The cumulative effect is shown in distribu-
tions at tore = 20 ms after quick release (Fig. 8 C, left).
The fastest growth of the number of newly bound myosin
heads, on the right hand side of the distributions, is pre-
dicted by the Huxley model, much slower growth is pre-
dicted by Huxley PL, and the slowest is predicted by MUS
ICO. The Huxley binding flux is highest (Fig. 8 C, green
arrows) because it does not take into account the reduc-
tion in the number of myosin heads already bound and
drawn out from the region of binding (0 < x < h) and,
therefore, shows the highest shortening velocity (Fig. 8 C,
horizontal open green arrows). The Huxley PL model
takes into account the fraction of bound heads outside
the region 0 < x < h and reduces the effective flux of
myosin binding and therefore predicts lower shortening
velocity (Fig. 8 C, open red arrows) than Huxley at the
same isotonic force. But Huxley PL does not take in ac-
count the reduced number of the occupied sites on actin
and predicts higher velocity than MUSICO. At toge;= 200
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ms after the release, the distributions reached steady-
state, showing about the same pattern for all three mod-
els, but the differences in velocities remain because the
fine balance of modulated binding flux by attached
cross-bridges (Fig. 8 C, arrows up) and the detachment
flux (Fig. 8 C, arrows down). The distinct differences in
distributions are visible at the right hand side as a reflec-
tion of the difference in shortening velocities (for details
see Fig. S2). At low isotonic force, the difference in ve-
locities becomes smaller and smaller, reflecting a low
number of bound myosin heads and therefore its influ-
ence on binding flux and predicted velocities. Conse-
quently, when F/F, < 0.1, the steady-state distributions
almost coincide (at tgre > 80 ms, Fig. 6 B, inset).

If we now look at the same velocities of shortening
as in MUSICO at 211.56 nm/s (F/F,=T/T, = 0.4),
Huxley and Huxley PL mass action kinetic models
achieved the same velocities at different isotonic
forces (Fig. 7 A, dashed pink lines). Consequently,
the decrease in a half-sarcomere length is different
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and reflects the drop in force, whereas the slopes of
the displacements are about the same (at t > 0.715 s,
Fig. 8 B, insets). Interestingly, Huxley and Huxley PL
achieved about the same steady-state velocities, and
overall velocities differ slightly in early transient
phase (Fig. 8 B), although cross-bridge distributions
after release to different isotonic forces displayed dif-
ferent initial shifts (Fig. S4 C at tgge = 0, ms). These
different shifts compensate for the higher effective
binding rates of Huxley 1957 and Huxley PL models,
resulting in about the same binding and detachment
fluxes and therefore similar velocities. The cumula-
tive effect of this behavior is best shown at toge = 20
ms (Fig. 8 C, right panel). At steady-state (tgre; = 200
ms), the cross-bridge distributions in detachment re-
gions (x < 0) are almost the same in all three cases as
a reflection of all having about the same shortening
velocity. For details, see Fig. S4.

Isotonic lengthening. With the same model parame-
ters, MUSICO predicted more realistic lengthening
velocities than Huxley 57 (Fig. 7 B). The Huxley 1957
model predicted a maximum lengthening velocity
about three times larger than observed of 1.8 T/ T,
(Katz, 1939; McMahon, 1984), whereas MUSICO
overshoots experimental observations by only 50%,
and Huxley PL slightly more (Fig. 7 B, solid lines and
closed symbols). Inclusion of a Zahalak factor of 1.8
brings the predicted lengthening velocities by MUSICO
and Huxley PL close to the experimental value of 1.8
F/F, and 1.8, respectively (Fig. 7 B, dashed lines and
open symbols). To achieve the same values, Huxley’s
model requires a Zahalak factor of >4 (Fig. 7 B,
dashed green line). These data demonstrate that for
lengthening it is important to take into account both
the conservation of myosin heads and availability of
actin-binding sites. However, on closer look, the Hux-
ley 1957 predictions are close to the Katz data (Katz,
1939) at low lengthening velocities (Fig. 7 B), but at
lengthening velocities >60 nm/s, the Huxley predic-
tions continue to grow at the same pace, whereas the
experimental data level off at ~1.8 T/T,. The MUS
ICO predictions are even better at the low lengthen-
ing velocities (Fig. 7 B, inset) but also show depar-
tures to higher T/T, than observed. MUSICO
predictions with f7,, = 1.8 reaches the correct maxi-
mum force, but the initial slope of force-velocity
curve during lengthening and at low velocities is sig-
nificantly lower than observed (Fig. 7 B, inset). Over-
all, these data show that inclusion of the conservation
of interacting species and the geometrical constraints
significantly improve predictions of lengthening
force-velocity relationship, but it may require inclu-
sion of more precise strain dependence of the acto-
myosin cycle and more than two states to achieve
more realistic predictions.

476

Three-state (Duke) model

Isometric force development. A three-state model in-
cluding a power stroke is the simplest realistic model
that can explain T} — T, transitions (Huxley and Sim-
mons, 1971). Fig. 9 A shows force development and iso-
tonic shortening after a quick release to F = 0. During
force development, the predicted isometric forces by
MUSICO and mass action three-state models show sig-
nificant differences (Fig. 9 A). The MUSICO prediction
shows a much faster rise of force than the mass action
models and has an overshoot peak at ~80 ms. The force
in the Duke PL model also rises faster than Duke’s
model and shows consistently higher values. At longer
times (t> 0.5 s), the predicted force by all three models
merges at the same constant value. The MUSICO pre-
dicted force decreases after the peak, and Duke PL ap-
proaches to a constant value the fastest, whereas the
force predicted by the Duke model has a long slow ris-
ing phase after initial fast growth.

The differences in the dynamics of force development
can be explained by comparing cross-bridge distribu-
tions at different instants of time (Fig. 9 A, insets). The
largest differences are at ~80 ms when the MUSICO
force reaches a peak. The reason for the fastest growth
of force and the peak is caused by faster binding of
cross-bridges during early times of development that in-
creases the number of bound cross-bridges and intrin-
sic shortening of isometric muscle caused by extensibility
of actin and myosin filaments. This intrinsic shortening
brings a significant number of attached pre-stroke
bridges in the region of power stoke firing and there-
fore contributes to a further increase of force. Because
the rise of force is rapid, there is no sufficient time
during that period for detachment of the cross-bridges;
thus, the force overshoots its steady-state value. How-
ever, when a sufficient number of cross-bridges is
reached, the effective binding flux decreases, intrinsic
shortening stops, and the detachment of cross-bridges
becomes faster, whereas the attachment of new cross-
bridges becomes slower; thus, force decreases and in-
trinsic shortening reverses to intrinsic lengthening.

At t > 0.5 s, the MUSICO predicted force also pla-
teaus and coincides with the other two models. How-
ever, the cross-bridge distributions are quite different.
The MUSICO distributions are much narrower than
Duke’s. The reason is that Duke’s model does not have
the restriction of available myosin heads and binding
sites on actin; thus, it continues to bind at higher posi-
tive and negative strains and shows much wider distribu-
tion of bound cross-bridges. Consequently, Duke
predicted force after initial fast growth continues with a
long slow growth. Duke PL does not show this behavior
because the binding was permitted only in the region
+€ /2 = +4.7 nm, reducing the artificial effect of unre-
stricted binding of Duke’s model that results in a wide
equilibrium cross-bridge steady-state distribution. Con-
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Figure 9. Three-state model predictions of isometric force development and unloaded shortening with bound cross-bridge
distributions. (A) Force development predicted by MUSICO (black lines), Duke (green line), and Duke PL (red line) models. Maxi-
mum isometric tension T, = 300 kPa from mass action kinetic models is scaled to maximum force per myosin filament (MUSICO) F,
= 600 pN. Comparison of bound cross-bridge distributions at 5, 20, 80, and 700 ms are shown as insets where black bars represent
weakly bound cross-bridges and red bars the post-power stroke bound myosins (MUSICO). Duke cross-bridge distributions are
shown as solid lines (weakly bound as a green line and post-power stroke as a dark green line) and Duke PL as dashed lines (pink
and cyan, respectively). Cyan diamonds denote force and time at which the distributions are taken. The evolution of displacement
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sequently, Duke PL reaches the plateau fastest and does
not have an overshoot, but if not normalized, the Duke
PL model has smaller fully developed tension than the
Duke model because cross-bridges that can bind are re-
stricted within the region Zg.

Isotonic shortening. After a quick release to unloaded
shortening at ¢t > 0.7 s (Fig. 9 A, inset), the shortening
response of the half sarcomere for all three models is
also the same because the series elastic components of
Duke and Duke PL models match the overall effect of
myosin and actin elasticity used in MUSICO simula-
tions. All three models predicted transient phases after
a filament force or tension drop from maximum iso-
metric F, or T, to the isotonic F or T: phase 1 reflects
the undamped elastic shortening during an instanta-
neous drop of force, phase 2 shows rapid shortening,
which is followed by phase 3 displaying a period of
shortening at reduced speed, and finally phase 4, where
shortening velocity evolves into steady velocity v,,.. (Pi-
azzesi et al., 2002). During the transient phase 3, the
duration of the reduced velocity region is shortest in
the Duke model, significantly longer in Duke PL, and
the longest in MUSICO, causing a delay in the steady-
state decrease rate in displacementtraces (Fig. 9A, inset).

Although the initial shortenings are the same, the ve-
locity traces at toge = 0, ms after the quick release are
different (Fig. 9 B). The fast transient phase of veloci-
ties of each model reaches high values of ~5 pm/s
(Fig. 9 B, inset) and then decrease quickly to low values
>1 pm/s for Duke and to significantly lower values (to
~0.2 pm/s) for Duke PL and MUSICO. The reason for
very high velocities just after release at tgge = 0, is the
rapid transition of a large number of cross-bridges from
the pre- to post-power stoke state increasing the force
driving the shortening and also decreasing the resis-
tance to shortening (Fig. 9, A and B). At togre > 5 ms
after the release, a large number of the cross-bridges in
the post-power stroke state detaches quickly, signifi-
cantly decreasing shortening velocity. MUSICO and
Duke PL have a longer period at low velocities (phase
3) than does the Duke model. Duke’s cross-bridge dis-
tributions at tgge ~ 10 ms show a large shift to the left
and a different profile compared with the MUSICO and
Duke PL distributions (Fig. 9 C and Fig. S6). Thus, at
this time, the shortening velocity predicted by the Duke
model rapidly increases, whereas the shortening veloci-
ties of MUSICO and Duke PL still have low velocities for
an additional 8-10 ms when they also begin to increase
(Fig. 9 B). After a few damped oscillations between fast

and slow shortening, all three models reach steady-state
velocities (Fig. 9 B).

Similarly to the predictions from models with the
Huxley actomyosin cycle, the force-velocity curves for
three-state actomyosin cycle showed large differences
between MUSICO and the mass action kinetic models
(Fig. 10). At higher values of isotonic forces after re-
lease, the predicted velocities by the Duke model di-
verge, whereas MUSICO and Duke PL have the similar
values, consistent with observation of Edman (1988).
The reason for a good agreement between MUSICO
and Duke PL is the carefully chosen width of the myo-
sin-binding region ¢z = 9.4 nm. However, if the width of
the region /g increases, the predicted velocities by
Duke PL at higher isotonic forces become larger, ap-
proaching the divergent Duke model predictions. The
reason for this divergent behavior could be in using
state transition rate constants, which are quite different
than originally used by Duke (1999).

The predicted velocities using Duke’s original con-
stants show no divergence of the Duke model, the veloc-
ities were close to those predicted by Duke PL, and
overall, all three models show force-velocity relations
similar to the observations of Edman (1988), but only
after renormalization (Fig. 10, inset). Also, the differ-
ences in model predictions have the same trend as in
Fig. 10 but to a lesser degree. MUSICO again predicted
lower velocities than Duke or Duke PL for the same iso-
tonic forces. Although the original constants used by
Duke provided more reasonable force-velocity curves,
they provided only about the half of the expected force
per myosin filament (Fig. 10, inset) and a large over-
shoot during T, — T transitions (Fig. 12 A). Thus, we
will focus here only on the set of constants that provides
very good predictions by MUSICO for all experiments.
It is also important to emphasize that at higher isotonic
tensions (T/T, > 0.7) the shortening velocities show in-
stabilities, and only an approximate value of the short-
ening can be deduced from the stepwise displace-
ments traces.

In the middle range of isotonic forces for the new set
of parameters (Fig. 10), for example at F/F,=T/T, =
0.4, the MUSICO predicted velocity is slightly smaller
than that predicted by Duke PL but significantly smaller
than predicted by Duke (445 nm/s, 543 nm/s, and 763
nm/s, respectively). Similar behavior is observed at
lower or slightly larger isotonic force than T/T, = 0.4,
but for T/T, > 0.7, Duke velocities diverge more and
more from the MUSICO predicted velocities (Fig. 10).
Velocity transients after a quick release show similar be-

after quick release to unloaded shortening is shown in the inset. (B) The evolution of velocities during isotonic shortening after quick
release to zero tension. The velocity transients for the first 10 ms after release are shown in the inset. (C) The cross-bridge distribu-
tions and state probability density distribution functions at times tores = 5 and 10 ms after the quick release. A complete set of the
distributions and distribution functions (at toge = 04, 5, 10, 20, 80, and 200 ms) is shown in Fig. Sé.
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Figure 10. Three-state model comparison of
force-velocity relationships predicted by MUSICO
(black line) versus Duke (green line) and Duke PL (red
line). For reference, Edman’s force-velocity data are
shown as cyan closed circles (Edman, 1988). Force per
myosin filament (MUSICO) is normalized by maximum
isometric force, F,, and tension in mass action kinetic
models is normalized to maximum isometric tension, T..
The Edman’s observations (cyan closed circles) agreed
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relatively well with MUSCO prediction (black line) ex-
cept for F/F, = T/T,> 0.8. The predicted isotonic short-
ening velocities at the same force (e.g., 0.6 and 0.4 of
maximum isometric force, F,, or tension, T,) show large
differences between MUSICO and Duke mass action
model. Similarly, there are large differences in forces (or
tension) at constant velocities (e.g., 0.17 and 0.29 of
maximum shortening velocity, V,..,). At tensions close to
T.. the velocities for Duke and Duke PL become unsta-
ble and show relatively large values diverging from the
Edman'’s data (cyan closed circles). To test whether this
deviation is caused by modified Duke's rate constants,

we show in the inset the predictions using Duke’s original constants (Duke, 1999). The velocities predicted with these rate constants
do not show divergence, Duke’s predictions are close to Duke PL, but MUSICO predictions still show smaller velocities especially at
higher isotonic forces. All three models show the double-hyperbolic force-velocity relations and agree well with Edman’s data with
scaling the observed velocities to the predicted. However, the major problem with prediction of all three models using the original
constants is low isometric tension and much smaller maximum shortening velocities than observed.

havior as for isotonic unloaded shortening, displaying a
very fast increase in velocities because of rapid power
stroke transitions followed by a large drop and period
of low velocities, damped oscillations, and finally reach-
ing steady-state (Fig. 11, A and B). At low levels of iso-
tonic force, MUSICO predicts ~9% smaller velocities
than Duke and 8% smaller than Duke PL (Fig. 10).
These differences are much larger than observed in the
comparative simulations with the Huxley’s actomyosin
cycle (Figs. 6 B and 7 A). The reason for these larger
differences is that the number of attached bridges at
low isotonic forces (at F/F,= T/ T, ~ 0) is much larger
in simulations with the three-state model compared
with Huxley’s two-state model. This result demonstrates
the importance of conserving the number of myosin
heads (Mijjailovich et al., 2000) and the reduction of the
number of available sites on actin for myosin binding.
As shown for the Huxley 1957 actomyosin binding
model, neglecting conservation of myosin heads and
occupancy of binding sites on actin in mass action ki-
netic models could explain the differences in the
force-velocity curves in Fig. 11. The effect of the simpli-
fications inherent in these mass action kinetic models
can be seen in the bound cross-bridge distributions at
different times during transients after quick release at
F/F,=T/T,=0.4 (and at 0.6, shown in Figs. S3 and S5).
In both cases, at toge = 0, ms after a quick release, the
bond distributions shift for the same amount in all
models, following the same shortening after release at
F/F,=T/T,=0.4. However, the velocities after release
are not the same (Fig. 11 A, inset) because the effective
flux of the transitions between power stroke states, de-
tachment of bound myosin, and the flux of binding my-
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osins significantly differs among the models. The
cumulative effect of the history of velocities on the
cross-bridge distributions at togre; = 20 ms (after the re-
lease) shows approximately the same distributions pre-
dicted either by MUSICO and Duke PL, and at that
time the velocities are in phase 3, whereas the Duke dis-
tributions are significantly different, reflecting largely
increased shortening velocities that are already in phase
4. Consequently, the distribution is shifted to the left,
and the magnitude of post-power stroke state distribu-
tions is decreased because of a large flux of detaching
post-stroke cross-bridges. At tore = 200 ms after the re-
lease, the distributions reached steady-state, showing
about the same pattern for all three models, but the key
difference between the Duke and the other two models
is a larger flux of attaching cross-bridges and a larger
fraction of both pre- and post-power stroke states (see
Fig. S3). Note that both pre- and most post-power stroke
cross-bridges contribute to contraction force and there-
fore higher steady-state velocities. At higher and middle
range of isotonic forces, the cross-bridge distributions
of MUSICO and Duke PL are similar, and their veloci-
ties are also similar. At low isotonic force, the difference
in velocities becomes smaller, but the Duke PL distribu-
tions become closer to Duke’s distributions and slowly
move away from the MUSICO distribution. The veloci-
ties follow the same trend.

Similar differences can be observed at the same ve-
locities of shortening as in MUSICO at, for example,
445 nm/s (i.e., 0.29 of V,,. at F/F, = 0.4). To achieve
the same velocities, each model requires release to dif-
ferent isotonic force levels (Fig. 10). For example,
Duke PL achieved the same steady-state velocity at
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Figure 11. Three-state model predictions for transient velocities and cross-bridge distributions after quick release to isotonic
force at F/Fo = T/To = 0.4 or at steady-state shortening velocity of 445 nm/s (i.e., 0.29 of vmax). (A) Evolution of velocities
after quick release to isotonic force of F/F, = 0.4 predicted by MUSICO (black line), Duke (green line), and Duke PL (red line). The
displacements after release are the same because the SE components of Duke and Duke PL models match the effect of the myosin
and actin filaments from MUSICO (right inset). The velocity transients during the first 20 ms after release are shown in the left inset.
(B) Velocity evolution after release to the F/F, values at which all models have the same steady-state shortening velocity of 445 nm/s.
In the left inset are shown velocity transients during the first 20 ms after release and in the right inset the displacements after release.
(C) Cross-bridge distributions and state probability density distribution functions at times toge = 20 ms after release to F/F, = T/T, =
0.4 (left column) and to F/F, = T/T,, which have the same steady-state velocity of ~445 nm/s (right column).
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slightly higher, but Duke at much higher, isotonic
force (Fig. 10). Consequently, cross-bridge distribu-
tions after the release to different isotonic forces dis-
play different initial shifts in the cross-bridge
distributions. These different shifts create large differ-
ences in the flux of myosins binding to actin, causing
large differences in shortening velocities at early times
after release (tgge up to 40 ms; Fig. 11 B, insets). The
cumulative effect of the history of these different
shortening velocities is best represented at the cross-
bridge distributions at tgge = 20 ms (Fig. 11 G, right),
showing approximately the same distributions pre-
dicted by MUSICO and Duke PL (phase 3) but signifi-
cantly different Duke distributions, reflecting much
higher binding flux and higher shortening velocities
typical for phase 4. When all three models reach phase
4, both the distribution and shortening velocities be-
come similar (see Fig. S5). It is interesting to note that
at steady-state the same velocities are achieved at dif-
ferent isotonic forces, i.e., by quantitatively different
underlying binding processes.

Fast force transients (T; — T»). The three-state model
predictions of the tension recovery after rapid small
length shortening per half sarcomere, y,, to zero force
or tension (717 ~ 0) also showed significant differences
between the models (Fig. 12 A). MUSICO and Duke PL
showed rapid force or tension recovery, after initial
drop in force and early plateau (T3), followed by a slow
force redevelopment phase to isometric force or ten-
sion. The response of all three models almost coincides
during ~1.2 ms after the release but shows large differ-
ences during the plateau phase (from 2 to 80 ms after
release). During the plateau phase, the balance be-
tween fast detachment and reattachment fluxes of
cross-bridges defines differences in the time courses of
force recovery. The key difference in the response orig-
inates in the reattachment flux, which is much larger in
Duke’s model. The cumulative effect of this process is
best shown in Fig. 12 B at 7,7, = 5 ms after rapid shorten-
ing, where the distribution of the fraction of reattached
cross-bridges by Duke model (green lines) far exceeds
that predicted by Duke PL (pink lines) and MUSICO
(cross-bridge frequencies, black bars), generating much
larger force, T,, overshooting the maximum isometric
force or tension, T, (Vilfan and Duke, 2003). In con-
trast, the steep initial fast rise of tension up to 1.2 ms
after the release showed almost no difference among
the models (Fig. 12 A, inset). This rapid tension recov-
ery immediately after release is predominately caused
by dominant transition of the attached cross-bridges
from pre- to post-power stokes states and a minor re-
verse transition flux. These power stroke transitions in-
crease the force with only negligible attachment or
detachment of cross-bridges, minimizing the effect of
the number of available cross-bridges or occupied sites

JGP Vol. 148, No. 6

on actin and therefore in attachment and detachment
fluxes. The main difference between the models is in
the late phase of rapid force redevelopment and the
plateau phase. The difference in the time course of the
responses originates from the differences in binding
fluxes (Fig. 12 B, arrows). Unrestricted rebinding in the
Duke mass action model generates a much larger bind-
ing flux (Fig. 12 B, green arrows) than Duke PL that
accounts for reduced number of available myosin heads
for binding (Fig. 12 B, red arrows) and an even smaller
net flux in the MUSICO prediction, which in addition
accounts for the occupied sites on the actin filament
(Fig. 12 B, black arrows). Consequently, the three mod-
els show quite different T, values. The much larger
binding flux shown at 5 ms (Fig. 12 B, green arrows)
causes a much higher rate for the late phase of rapid
force redevelopment and an erroneous overshoot of
force above the isometric value and an unrealistically
high T,. In the final phase, reattachment and detach-
ment of cross-bridges continues creating distributions
of cross-bridges toward the steady-state distribution at
isometric force or tension, T,, observed during isomet-
ric force development. See Fig. S7 for detailed cross-
bridge distributions during the transitions.

DISCUSSION

The large amount of available structural, biochemical,
and biophysical data on muscle contraction provides an
extraordinary environment to allow the development of
a more comprehensive model that can translate the
findings of simple and well controlled experiments into
physiological insights to the working muscle in health
and disease. The development of the MUSICO plat-
form and other 3-D explicit sarcomeric models (Daniel
etal., 1998; Chase et al., 2004; Tanner et al., 2007, 2008,
2012; Williams et al., 2012) provides a significant step
toward integration of the broad sweep of current exper-
imental observations. Incorporation of new findings
into the model provides an opportunity to unveil im-
portant features overlooked in simplified models. Here,
we define the effect of the concentration ratio of teth-
ered molecules and their ligands, their geometric con-
straints, and the occupancy of species on binding
kinetics in contracting sarcomeres.

Mass action kinetic models provided important in-
sights for understanding complex muscle behavior.
However, the success of these models was limited to ex-
plaining typically one or a very few experiments and
provided only the apparent relationship between mo-
lecular and fiber data. Although such models have
been useful in defining important parameters of con-
traction, the key missing characteristics are (a) number
of bound cross-bridges, (b) the relationship between
cross-bridge forces and muscle tension, (c) conserva-
tion of the number of cross-bridges and actin-binding
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Figure 12. Three-state model (Duke) predictions of T; — T, transitions and corresponding bound cross-bridge distributions.
(A) Force transients after rapid length shortening per half sarcomere, y, = 7.35 nm, predicted by MUSICO (black lines), Duke (green
line), and Duke PL (red line) models. The force transients during the first 20 ms after quick decrease in length of per half sarcomere
are shown (inset). (B) The bound cross-bridge distributions and state probability density distribution functions at times tr7,at 1 and 5
ms after T; change of length. The arrows signify net binding fluxes that cause different rates of force redevelopment. The evolution
of cross-bridge distributions at early times (tr,7, < 1 ms) and at later times (tr,7, > 5 ms) are shown in Fig. S7.

sites, (d) nonlinear cross-bridge stiffness, (e) local in-
teractions between myosin, actin, and regulatory pro-
teins, and (f) role of sarcomeric accessory proteins, for
example titin, nebulin, and MyBP-C. These must be
included to achieve a more comprehensive model of
contraction and its regulation, which is the long-term
goal of this work. This paper represents a first step
toward this goal.

In the sarcomere lattice, binding of tethered myosin
heads to the available sites on actin is constrained by
local geometry and, as such, largely differs from myosin
binding in solution or in mass action kinetic models. To
quantify these differences, we compared the predic-
tions of the 3-D spatially explicit MUSICO model with
the simplest two mass action models for three classical
experiments in muscle: force development, isotonic
shortening, and fast transients after a sudden change in
muscle length. Without loss of generality, these two
models provide the most transparent display of quanti-
fiable differences between mass action models and
MUSICO simulations.
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The key features of our explicit 3-D model of sarco-
mere contraction include myosin binding to several
available sites on actin and explicit accounting of myosin
heads in each state of the ATPase cycle. The largest dif-
ferences between the 3-D explicit model predictions
(MUSICO) and mass action kinetic models are in cases
when sarcomere length or force suddenly change from
the state where a large fraction of cross-bridges are at-
tached or during shortening at medium to high isotonic
tension after release. In all cases, the number of myosins
available for binding is significantly reduced and large
number of sites on actin is already occupied, thus the
effective rate of binding, i.e., the binding flux, is also
significantly reduced in comparison with the mass action
models. The differences are a direct reflection of an in-
correct formulation of all mass action models derived
from the original A.F. Huxley 1957 model (Huxley,
1957), namely that although the sum of probability den-
sities functions at a given x is 1, the global sum of prob-
abilities is not 1; thus, the governing equations are not
properly constrained. This results in unrealistic fluxes of
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myosin rebinding to actin during transient muscle re-
sponses or even in steady-state responses when a large
number of myosin heads are drawn outside the binding
region. The reformulation of the original Huxley ap-
proach by Piazzesi and Lombardi (1995) reduces, in
part, the effect of the incorrect formulation of the mod-
els, but it is still incomplete, and as a consequence, dif-
ferences still remain. In addition, the availability of
multiple binding sites to each myosin head reduces the
myosin binding rate in MUSICO by a factor £ = 2.5-3
times from the binding rates in mass action models in
order to achieve equivalent binding fluxes to that of the
mass action models. This scaling factor, £ can be calcu-
lated and takes into account the span of actin-binding
sites that myosin can reach for a prescribed binding rate
function. Notably, this step is essential in translating rates
obtainedin solution into binding kineticsin muscle fibers.

Isotonic shortening

During isotonic shortening, large differences between
models are observed immediately after a quick release
at all isotonic forces because during a quick release a
significant number of cross-bridges shift out of the
binding region, and the effective binding flux strongly
depends on the number of available myosin heads and
the unoccupied actin-binding sites. MUSICO takes into
account these steric restrictions that are not present in
original mass action kinetic models. Quantitative differ-
ences in the unloaded shortening velocities are dis-
played in Fig. 6 B and 9 B where the differences are
largest immediately after release, i.e., when the number
of the bound cross-bridges is the highest and is signifi-
cantly reduced at unloaded steady-state velocities where
the number of attached cross-bridges is significantly re-
duced. Similar behavior is apparent in force-velocity re-
lationships (Figs. 7 and 10) where the differences in
steady-state velocities are higher at higher isotonic ten-
sions and much smaller at low isotonic tensions. Thus,
both the transient response and the steady-state force-ve-
locity relation expose the larger differences between
the MUSICO and the mass action models in cases when
the number of attached cross-bridges is large. Conse-
quently, at larger isotonic forces, both mass action ki-
netic models achieve the same shortening velocities at
much higher isotonic tensions than MUSICO (Figs. 7
and 10). For example, at isotonic forces F > 0.3F,, the
difference is between 20 and 30% of F,,. Inclusion of the
Piazzesi-Lombardi condition somewhat reduces these
differences, but at higher levels of isotonic forces, the
differences are still large. These results demonstrate
that in order to fit the experimental data, the state tran-
sition rates and the rates of ATPase cycle should be re-
evaluated, and new quantitative relationships for the
energetics need to be derived. Notably, this may not be
possible with simple models like Huxley 1957 because
in order to match Hill’s experimental data (Fig. 7),
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MUSICO may require more than two actomyosin states
and more realistic strain dependence of state transition
rates than Huxley originally proposed (Huxley, 1957).
This is in part achieved with MUSICO predictions with
Duke’s three-state cycle (Fig. 10), but for better match-
ing the experimental data, it may be necessary to use a
more realistic multistate actomyosin cycle and updated
elastic and geometric parameters.

The oscillations of velocities are observed in both sto-
chastic (MUSICO) and mass action three-state models
(Figs. 9 B and 11, A and B) and are caused by instabili-
ties during the transient change of tension from isomet-
ric toisotonic force. These fluctuations are also observed
in traces of isotonic shortening (Piazzesi et al., 2002).
The additional oscillations in MUSICO predictions are
caused by combination of the stochastic process of
binding, causing the fluctuation in force over the time,
and variations in the degree of favorable matching of
myosin binding in the 3-D sarcomere lattice, i.e., the
effect of periodic structures in myofilament lattice.
These effects are amplified in the simplified half-sarco-
mere system and would become less prominent if more
sarcomeric structures in series are included.

Muscle power output, vI(v), per myofilament
(Fig. 13) reflects the differences in velocities between
MUSICO and mass action kinetic model predictions.
For both actomyosin models, the MUSICO prediction
of power output shows lower peaks than the mass action
models, and the peaks occur at different velocities. The
Huxley PL and Duke PL models are closer to MUSICO
prediction, signifying the importance of taking into ac-
count the correct kinetic relationship between tethered
myosins and binding sites on actin in a 3-D sarcomere
lattice. Because the rate constants of the original Hux-
ley model (Huxley, 1957) are derived from fits of A.V.
Hill force velocity curves (Hill, 1938), the peak power of
the Huxley mass action model coincides with the ob-
served peak at v~ v,,,/3 (Fig. 13 A, blue dashed line),
whereas the MUSICO predicted peak is shifted to the
right (Fig. 13 A, black arrow) because of much smaller
isotonic velocities and higher values of isotonic
forces (Fig. 7 A).

For the three-state model with commonly used rate
constants, MUSICO predicted the peak power at the
correct velocity (~Vv,,,/3) but with peak power slightly
lower than the 140 aW value reported in Edman’s data
(Edman, 1988; Smith and Mijailovich, 2008). The Duke
PL prediction is also in the same range, whereas the
Duke predicted peak was shifted to the right and the
peak power was greatly overestimated.

Opverall, the large number of myosin and actin fila-
ments and the extensibility of the filaments are not suf-
ficient to erase the fluctuations in distributions, caused
by spatial mismatching of discrete positions of myosin
heads and the binding sites, in a half-sarcomere system.
However, in a multiple-sarcomere system, the fluctua-
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Figure 13. Comparison of mechanical power output vT(v) of MUSICO and mass action kinetic models. (A and B) Displayed
are comparisons for Huxley (A) and Duke (B) actomyosin cycle. Duke comparisons of the power output with commonly used rate
constants are shown as solid lines and closed symbols, whereas the power output with original constants (Duke, 1999) are shown
as dashed lines and open symbols. Power output, vT{v), is in atto Watts (aW) per myosin filament. The observed velocities at peak
power at ~Vv,,.,/3 are shown as vertical blue dashed lines. Duke velocities at the peak power are shown at its v,,,/3 as a green dashed
line. Similarly, the velocities at the peak power predicted by all three models with Duke original constants (Duke, 1999) are shown

as a black dotted line.

tions in distributions would be expected to be signifi-
cantly reduced by inter-sarcomere fluctuations in length
caused by variations in force induced by the stochastic
binding process.

T, — T, transients
Similarly, the T, response also shows large differences
among the models (Fig. 12). The fast recovery phase
and the “shoulder” differ not only in magnitude but also
in shape. For example, Duke’s original model predicts an
overshoot (Vilfan and Duke, 2003), whereas MUSICO
and Duke PL showed more realistic behavior. In this
case, the different responses are more complex and con-
sist of two processes. The first process, during fast recov-
ery, represents an interplay between cross-bridge and
filament elasticity and generates significantly different
force responses in MUSICO than in mass action kinetic
models because each cross-bridge experiences a differ-
ent change in strain, Ax, after a rapid shortening of y,
per half sarcomere, dependent on the position of the
cross-bridge along the filaments. This contrasts with
mass action models where the change in strain is uni-
form for all cross-bridges after correction for the effect
of series elasticity, Ax = y, = y,—y:". Therefore, in
MUSICO simulations, different Ax values after rapid
shortening impose variable power stroke transition rates
along the myofilaments, and each cross-bridge contrib-
utes in a different manner to fast force recovery. During
the later stages of force recovery, where the flux of the
reattachment of cross-bridges is modulated by the num-
ber of attached cross-bridges and available binding sites
on actin, MUSICO simulations do not show an over-
shoot and look more realistic.

In the analysis of the differences in responses between
the models, we compare predictions assuming the same
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(or equivalent) input parameters. We made no attempt
to fit any particular set of data; however, the mass action
model predictions show the features of the original
published modeling results that were fit to experimen-
tal data. Each of the presented predictions, however, il-
lustrates significant differences among the models. The
Duke mass action model predictions that include an
overshoot are reported in Vilfan and Duke (2003).
Though, the model that includes the Piazzesi-Lom-
bardi condition (Piazzesi and Lombardi, 1995) pre-
dicted only modest overshoot and a more realistic time
course than Duke model. The MUSICO predictions
show similar trends, but differences between the mod-
els are significant. Regarding the spatially explicit mod-
els, Daniel et al. (1998) showed similar predictions as
MUSICO but reported only one noisy time course,
which was difficult to compare.

Isometric force development

Differences between MUSICO and mass action kinetic
models are also observable during isometric force de-
velopment but to a much smaller degree. Duke’s model
shows large differences during the early phase of the
force development (Fig. 10) that are primarily caused
by poorly defined detached states within the binding re-
gion; thus, the distribution of available binding sites on
actin does not match the fraction of the detached state.
Fixing the binding region to ¢, i.e., an equivalent
range to Huxley’s h provides slightly better match of
Huxley PL to MUSICO predictions because it, in cer-
tain ways, preserves the number of myosin heads, but
the number of available sites on actin remains unde-
fined and still causes large differences. Even at steady-
state (t > 0.7 s), the differences in distribution of both
bound states are quite different: the MUSICO frequency
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distributions of bound cross-bridges show much sharper
peaks than Duke or Duke PL. These differences in dis-
tributions are caused by different sampling of unoccu-
pied sites on actin by the available cross-bridges: in MUS
ICO, each cross-bridge samples all available sites on
actin within its reach, whereas mass action models are
limited to the available sites on actin at a particular x.
The excess number of binding sites on actin to the
number of the unattached cross-bridges plays a pivotal
role in binding showing sharper and narrower peaks in
cross-bridge (frequency) distributions than in the state
probability density functions in the mass action models.

It is interesting to compare the time courses of the
force development. With the three-state model (Duke),
MUSICO predicted force reaches a peak during the
early phase of the force development (Fig. 9 A). This is
caused by the combination of a fast increase in force
and instabilities associated with local shortening be-
tween the actin and myosin filaments caused by the ex-
tensibility of the filaments. In contrast, during force
development with the Huxley model, there is almost no
difference between mass action and MUSICO simula-
tions (Fig. 6 A). The only small differences in forces are
seen in the early phase of development caused primar-
ily by lumped versus distributed filament compliance in
a 3-D sarcomere lattice. Looking over the very small dif-
ferences during the development of bound cross-bridge
distributions shows that the original Huxley model con-
serves the number of myosin heads and available ac-
tin-binding sites within the binding range, 0 — h.
However, the small differences during a fast change in
force are caused by differences in binding fluxes result-
ing from the small amount of shortening during iso-
metric contractions caused by filament extensibility
(Mijailovich et al., 1996).

Number of attached cross-bridges and mean
cross-bridge force

One of the shortcomings of mass action kinetic models
is their inability to predict the number of attached cross-
bridges and estimate mean cross-bridge force. In con-
trast, the MUSICO simulations continuously trace the
number of cross-bridges on each myosin filament. For
example, at fully developed muscle tension, MUSICO
with Huxley’s two-state model predicts a mean number
of attached bridges of 110 per half-myosin filament and
a mean cross-bridge force of 4.8 pN. Under the same
conditions, Huxley 1957 predicts a fraction of attached
cross-bridges of 0.812 that translates to ~122 attached
cross-bridges per half myosin filament and a mean
cross-bridge force of 4.35 pN. Both models likely overes-
timate the number of attached cross-bridges. This over-
estimation is caused by the specified magnitude and
relatively broad strain dependence of Huxley’s original
rate constants (Huxley, 1957). MUSICO with the three-
state model predicted a lower number of attached cross-
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bridges, 97 (or ~65%), and a larger mean cross-bridge
force of 6.2 pN. However, the Duke mass action kinetic
model is not normalizable; thus, the number of at-
tached cross-bridges is not accessible for comparison.
With Duke PL, the number of attached cross-bridges
can be estimated by a similar approach to that used for
the Huxley 1957 model, but the estimated number of
cross-bridges strongly depends on the binding re-
gion length, 7.

Comparison with other models

There are only a few models that estimated the number
of attached cross-bridges and force per myosin filament.
For example, Smith and Mijailovich (2008) predicted
~110 bound cross-bridges per half myosin filament and
a mean cross-bridge force of 5.9 pN. The other esti-
mates vary from 60 to 100 bound cross-bridges and
mean cross-bridge forces in range from 4.5 to 7 pN de-
pending on type of muscle, experimental conditions,
and temperature (Linari et al., 1998, 2007; Decostre et
al., 2005). The general view is that 33% of myosin heads
(or 66% of cross-bridges or ~100 cross-bridges per a
half of myosin filament) are attached in fully developed
tension. Thus, our predictions using the three-state
model are within the expected range.

The elasticity of filaments plays an important role in
coupled strain dependence among the attached cross-
bridges affecting transition rates of actomyosin cycle
and overall contribution of cross-bridge stiffness to the
muscle stiffness (Mijailovich et al., 1996; Daniel et al.,
1998). During a fast change of force or muscle length,
the change of cross-bridge strain Ax is nonuniform be-
cause of the coupling between nonuniform strains in
actin and myosin filaments and the elasticity of cross-
bridges. Thus, the nonuniform cross-bridge strains
along the overlap region affect the strain rates along
the overlap. In mass action models, for simplicity, the
filament extensibility is replaced with a series elastic
component, and the change of the cross-bridge strains
Ax along the filaments is not taken into account. The
effect of nonuniform change of strain Ax along the
overlap, however, is small compared with the effect of
modulated myosin binding to actin. We performed sim-
ulations with rigid filaments in MUSICO versus mass
action models without a series elastic component and
showed similar differences between MUSICO and mass
action model predictions as reported here. Thus, we
confirmed that the responses of mass action models
were not significantly affected by use of series elastic el-
ement in the mass action models instead of explicit fila-
ment elasticity.

The stochastic approach of Daniel et al. (1998) could
potentially account for the effect of constrained bind-
ing, but limiting the system to only two filaments and
binding to collinear sites involves a low number of at-
tached cross-bridges and will not show differences as
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large as reported here. We have not included a large
variation in elastic properties of myosin filament as ex-
plored by Daniel et al. (1998), but rather we used the
elasticity of the filaments taken from the experiment of
Kojima et al. (1994) for actin and assessed from x-ray
diffraction (Huxley et al., 1994; Wakabayashi et al.,
1994) for both actin and myosin filaments. The validity
of these input data for the compliances of filaments
used in MUSICO were tested by showing that MUSICO
predicted x-ray patterns consistent with x-ray data, and
these findings are reported in our publications
(Prodanovic, M., et al. 2014. Biophysical Society 58th
Annual Meeting. Abstr. 768a; Prodanovic, M., et al.
2014. 40th Annual Northeast Bioengineering Confer-
ence [NEBEC]. Abstr. 6972910; Prodanovic, M., et al.
2015. Biophysical Society 59th Annual Meeting. Abstr.
442a; Prodanovic et al., 2016).

The current development of MUSICO is not designed
for fitting experimental data per se, but rather to incor-
porate sufficiently accurate representations of muscle
structural and kinetic data to predict muscle function
without empirical parameters. Here, we presented only
a small part of projected powerful possibilities that are
currently under development. Because of its modular
structure, the model can be made more and more real-
istic as better and better information is incorporated. As
the model becomes more realistic, it can generate
emergent properties that can motivate new and more
insightful experiments. In particular, the basic modular
form of MUSICO provides an opportunity to develop
comprehensive multiscale models of various myopa-
thies. The advantage of this approach is that any new
application only requires development of the specific
parts associated with specificities of the myofilament sys-
tem of interest. Extending MUSICO to simulate patho-
logical states can be done relatively simply by
incorporating known effects of, for example, pathologi-
cal mutations in myosin heavy chain, titin, or MyBP-C
into the appropriate module.

Conclusions

In summary, 3-D sarcomere model predictions using
MUSICO show large differences compared with the pre-
dictions of the two simplest actomyosin cycles in force-ve-
locity curves, isotonic and isometric transients, including
the velocity transients after quick release and the tension
recovery after rapid small length shortening. Including
in mass action kinetic models the conservation of myosin
heads proposed by Piazzesi-Lombardi (Huxley PL and
Duke PL models) partially reduced the differences in
overall predicted responses, but at the molecular scale,
the predictions are still disconnected from realistic acto-
myosin interactions in the sarcomere lattice. The origin
of the differences in predicted muscle response is rooted
in the flawed mathematical description, which does not
ensure conservation of species, originally introduced by
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Huxley (1957) and used later in almost all mass action
models. The consequences of this flaw in the model de-
scription is best visible in the differences between the
myosin binding fluxes predicted by MUSICO versus the
mass action models and corresponding differences in
instantaneous cross-bridge distributions. Consequently,
the kinetic rate parameters from the experiments using
the MUSICO versus mass action model predictions show
significantly different values. Furthermore, the explicit
3-D sarcomere model simulations provides not only
quantitative differences in muscle response but a pleth-
ora of additional essential information including (a) the
number of attached cross-bridges per myosin filament;
(b) the force per myosin filament that matches the value
approximately estimated from the fiber tension; (c) the
range of cross-bridge forces within reasonable values; (d)
the number of cross-bridges in each actomyosin cycle
state; and (e) a precise accounting of energy consump-
tion. Thus, inclusion of tethered molecule kinetics, geo-
metrical constraints, and explicit accounting for the
occupancies of interacting species is essential for inter-
pretations in terms of interaction energetics.

ACKNOWLEDGMENTS

This project was supported by National Institutes of Health grant
RO1 AR048776 (S.M. Mijailovich) and grant P41 GM103622 (to
T.C. Irving) and British Heart Foundation grant 30200 (M.A.
Geeves). We also would like to thank the graceful support of the
Mijailovich family, especially Dragica Mijailovic, Esq. (LLM).

The authors declare no competing financial interests.

Richard L. Moss served as editor.

Submitted: 14 April 2016
Revised: 1 September 2016
Accepted: 4 November 2016

REFERENCES

Bathe, K.-J. 1996. Finite Element Procedures. Prentice-Hall, Upper
Saddle River, NJ. 1029 pp.

Bathe, KJ., and S.M. Mijailovich. 1988. Finite element analysis
of frictional contact problems. Journal de Mecanique Theorique et
Appliquée 7:31-45.

Bordas, J., A. Svensson, M. Rothery, J. Lowy, G.P. Diakun, and P.
Boesecke. 1999. Extensibility and symmetry of actin filaments in
contracting muscles. Biophys. J. 77:3197-3207. http://dx.doi.org
/10.1016/S0006-3495(99) 77150-X

Burgoyne, T., F. Muhamad, and P.K. Luther. 2008. Visualization of
cardiac muscle thin filaments and measurement of their lengths
by electron tomography. Cardiovasc. Res. 77:707-712. http://dx
.doi.org/10.1093/cvr/cvm117

Chase, P.B., .M. Macpherson, and T.L.. Daniel. 2004. A spatially
explicit nanomechanical model of the half-ssarcomere:
myofilament compliance affects Ca®*-activation. Ann. Biomed. Eng.
32:1559-1568. http://dx.doi.org/10.1114/B:ABME.0000049039
.89173.08

Daniel, TL., A.C. Trimble, and P.B. Chase. 1998. Compliant
realignment of binding sites in muscle: transient behavior and
mechanical tuning. Biophys. J. 74:1611-1621. http://dx.doi.org
/10.1016/S0006-3495(98)77875-0

Interfilament binding of tethered molecules | Mijailovich et al.

920z Arenugad 20 uo1senb Aq pd'g091 1910z dbl/8Gz96.1/651/9/8Y L /pd-ajonie/dbl/Bio sseidny//:dpy wouy pepeojumoq


https://doi.org/10.13039/100000002
https://doi.org/10.13039/501100000274
http://dx.doi.org/10.1016/S0006-3495(99)77150-X
http://dx.doi.org/10.1016/S0006-3495(99)77150-X
http://dx.doi.org/10.1093/cvr/cvm117
http://dx.doi.org/10.1093/cvr/cvm117
http://dx.doi.org/10.1114/B:ABME.0000049039.89173.08
http://dx.doi.org/10.1114/B:ABME.0000049039.89173.08
http://dx.doi.org/10.1016/S0006-3495(98)77875-0
http://dx.doi.org/10.1016/S0006-3495(98)77875-0

Decostre, V., P. Bianco, V. Lombardi, and G. Piazzesi. 2005. Effect of
temperature on the working stroke of muscle myosin. Proc. Natl.
Acad. Sci. USA. 102:13927-13932. http://dx.doi.org/10.1073/
pnas.0506795102

Duke, T.A. 1999. Molecular model of muscle contraction. Proc. Natl.
Acad. Sci. USA. 96:2770-2775. http://dx.doi.org/10.1073/pnas
.96.6.2770

Edman, K.A. 1988. Double-hyperbolic force-velocity relation in frog
muscle fibres. J. Physiol. 404:301-321. http://dx.doi.org/10.1113
/jphysiol.1988.sp017291

Evans, E., and K. Ritchie. 1997. Dynamic strength of molecular
adhesion bonds. Biophys. J. 72:1541-1555. http://dx.doi.org/10
.1016,/S0006-3495(97) 78802-7

Eyring, H. 1935. The activated complex in chemical reactions. J.
Chem. Phys. 3:107-115. http://dx.doi.org/10.1063/1.1749604

Ford, L.E., A.F. Huxley, and R.M. Simmons. 1977. Tension responses
to sudden length change in stimulated frog muscle fibres near
slack length. J. Physiol. 269:441-515. http://dx.doi.org/10.1113/
jphysiol.1977.sp011911

Glasstone, S., KJ. Laidler, and H. Eyring. 1941. The Theory of Rate
Processes. McGraw Hill, New York. 611 pp.

Higuchi, H., T. Yanagida, and Y.E. Goldman. 1995. Compliance
of thin filaments in skinned fibers of rabbit skeletal muscle.
Biophys. J.  69:1000-1010. http://dx.doi.org/10.1016/S0006
-3495(95)79975-1

Hill, A.V. 1938. The heat of shortening and the dynamic constants
of muscle. Proc. R. Soc. Lond. B Biol. Sci. 126:136-195. http://dx
.doi.org/10.1098 /rspb.1938.0050

Hill, T.L. 1974. Theoretical formalism for the sliding filament model
of contraction of striated muscle. Part 1. Prog. Biophys. Mol. Biol.
28:267-340. http://dx.doi.org/10.1016,/0079-6107(74)90020-0

Hunt, AJ., F. Gittes, and J. Howard. 1994. The force exerted by a
single kinesin molecule against a viscous load. Biophys. J. 67:766—
781. http://dx.doi.org/10.1016,/S0006-3495 (94)80537-5

Huxley, A.F. 1957. Muscle structure and theories of contraction.
Prog. Biophys. Biophys. Chem. 7:255-318.

Huxley, A.F.,, and R. Niedergerke. 1954. Structural changes in
muscle during contraction; interference microscopy of living
muscle fibres. Nature. 173:971-973. http://dx.doi.org/10.1038
/173971a0

Huxley, A.F., and RM. Simmons. 1971. Proposed mechanism of
force generation in striated muscle. Nature. 233:533-538. http://
dx.doi.org/10.1038,/233533a0

Huxley, H., and J. Hanson. 1954. Changes in the cross-striations
of muscle during contraction and stretch and their structural
interpretation. Nature. 173:973-976. http://dx.doi.org/10.1038
/173973a0

Huxley, HE., A. Stewart, H. Sosa, and T. Irving. 1994. X-ray
diffraction measurements of the extensibility of actin and myosin
filaments in contracting muscle. Biophys. J. 67:2411-2421. http://
dx.doi.org/10.1016,/S0006-3495 (94)80728-3

Katz, B. 1939. The relation between force and speed in muscular
contraction. J. Physiol. 96:45-64. http://dx.doi.org/10.1113/
jphysiol.1939.sp003756

Kojic, M. 1996. The governing parameter method for implicit
integration of viscoplastic constitutive relations for isotropic and
orthotropic metals. Computational Mechanics. 19:49-57. http://dx
.doi.org/10.1007/BF02757783

Koji¢, M., N. Grujovi¢, R. Slavkovi¢, and M. Zivkovié. 1996. A general
orthotropic von Mises plasticity material model with mixed
hardening - model definition and implicit stress integration
procedure. J. Appl. Mech. 63:376-382. http://dx.doi.org/10.1115
/1.2788875

Kojima, H., A. Ishijima, and T. Yanagida. 1994. Direct measurement
of stiffness of single actin filaments with and without tropomyosin

JGP Vol. 148, No. 6

by in vitro nanomanipulation. Proc. Natl. Acad. Sci. USA. 91:12962—
12966. http://dx.doi.org/10.1073/pnas.91.26.12962

Kramers, H.A. 1940. Brownian motion in a field of force and the
diffusion model of chemical reactions. Physica. 7:284-304. http
://dx.doi.org/10.1016/S0031-8914(40)90098-2

Linari, M., I. Dobbie, M. Reconditi, N. Koubassova, M. Irving, G.
Piazzesi, and V. Lombardi. 1998. The stiffness of skeletal muscle
in isometric contraction and rigor: the fraction of myosin heads
bound to actin. Biophys. J. 74:2459-2473. http://dx.doi.org/10
.1016,/S0006-3495(98) 77954-8

Linari, M., M. Caremani, C. Piperio, P. Brandt, and V. Lombardi.
2007. Stiffness and fraction of myosin motors responsible for
active force in permeabilized muscle fibers from rabbit psoas.
Biophys. J. 92:2476-2490. http://dx.doi.org/10.1529/biophysj
.106.099549

Lombardi, V., G. Piazzesi, M. Reconditi, M. Linari, L. Lucii, A.
Stewart, Y.B. Sun, P. Boesecke, T. Narayanan, T. Irving, and
M. Irving. 2004. X-ray diffraction studies of the contractile
mechanism in single muscle fibres. Philos. Trans. R. Soc. Lond. B
Biol. Sci. 359:1883-1893. http://dx.doi.org/10.1098/rsth.2004
1557

Luther, PK., and J.M. Squire. 1980. Three-dimensional structure
of the vertebrate muscle A-band. II. The myosin filament
superlattice. J. Mol. Biol. 141:409-439. http://dx.doi.org/10.1016
/0022-2836(80)90254-5

Luther, P.K., PM. Bennett, C. Knupp, R. Craig, R. Padrén, S.P. Harris,
J. Patel, and R.L. Moss. 2008. Understanding the organisation
and role of myosin binding protein C in normal striated muscle
by comparison with MyBP-C knockout cardiac muscle. J. Mol. Biol.
384:60-72. http://dx.doi.org/10.1016/j,jmb.2008.09.013

Matsubara, 1., and G.F. Elliott. 1972. X-ray diffraction studies on
skinned single fibres of frog skeletal muscle. J. Mol. Biol. 72:657-
669. http://dx.doi.org/10.1016,/0022-2836(72)90183-0

McMahon, T.A. 1984. Muscles, Reflexes, and Locomotion.
Princeton University Press, Princeton, NJ. 354 pp.

Mijailovich, S.M., D. Stamenovi¢, and ].J. Fredberg. 1993. Toward
a kinetic theory of connective tissue micromechanics. J. Appl.
Physiol. 74:665—681.

Mijailovich, S.M., J.J. Fredberg, and J.P. Butler. 1996. On the theory
of muscle contraction: filament extensibility and the development
of isometric force and stiffness. Biophys. J. 71:1475-1484. http://
dx.doi.org/10.1016,/S0006-3495 (96) 79348-7

Mijailovich, S.M., J.P. Butler, and J.J. Fredberg. 2000. Perturbed
equilibria of myosin binding in airway smooth muscle: bond-
length distributions, mechanics, and ATP metabolism. Biophys. J.
79:2667-2681. http://dx.doi.org/10.1016,/S0006-3495(00) 76505
-2

Millman, B.M. 1998. The filament lattice of striated muscle. Physiol.
Rev. 78:359-391.

Mobley, B.A., and B.R. Eisenberg. 1975. Sizes of components in
frog skeletal muscle measured by methods of stereology. J. Gen.
Physiol. 66:31-45. http://dx.doi.org/10.1085/jgp.66.1.31

Papoulis, A. 1991. Probability, Random Variables, and Stochastic
Processes. Third edition. McGraw-Hill, New York, NY. 666 pp.

Pate, E., and R. Cooke. 1989. A model of crossbridge action: the
effects of ATP, ADP and Pi. J. Muscle Res. Cell Motil. 10:181-196.
http://dx.doi.org/10.1007/BF01739809

Piazzesi, G., and V. Lombardi. 1995. A cross-bridge model that is able
to explain mechanical and energetic properties of shortening
muscle. Biophys. J. 68:1966-1979. http://dx.doi.org/10.1016/
S0006-3495(95)80374-7

Piazzesi, G., L. Lucii, and V. Lombardi. 2002. The size and the speed
of the working stroke of muscle myosin and its dependence on
the force. J. Physiol. 545:145-151. http://dx.doi.org/10.1113/
jphysiol.2002.028969

487

920z Arenugad 20 uo1senb Aq pd'g091 1910z dbl/8Gz96.1/651/9/8Y L /pd-ajonie/dbl/Bio sseidny//:dpy wouy pepeojumoq


http://dx.doi.org/10.1073/pnas.0506795102
http://dx.doi.org/10.1073/pnas.0506795102
http://dx.doi.org/10.1073/pnas.96.6.2770
http://dx.doi.org/10.1073/pnas.96.6.2770
http://dx.doi.org/10.1113/jphysiol.1988.sp017291
http://dx.doi.org/10.1113/jphysiol.1988.sp017291
http://dx.doi.org/10.1016/S0006-3495(97)78802-7
http://dx.doi.org/10.1016/S0006-3495(97)78802-7
http://dx.doi.org/10.1063/1.1749604
http://dx.doi.org/10.1113/jphysiol.1977.sp011911
http://dx.doi.org/10.1113/jphysiol.1977.sp011911
http://dx.doi.org/10.1016/S0006-3495(95)79975-1
http://dx.doi.org/10.1016/S0006-3495(95)79975-1
http://dx.doi.org/10.1098/rspb.1938.0050
http://dx.doi.org/10.1098/rspb.1938.0050
http://dx.doi.org/10.1016/0079-6107(74)90020-0
http://dx.doi.org/10.1016/S0006-3495(94)80537-5
http://dx.doi.org/10.1038/173971a0
http://dx.doi.org/10.1038/173971a0
http://dx.doi.org/10.1038/233533a0
http://dx.doi.org/10.1038/233533a0
http://dx.doi.org/10.1038/173973a0
http://dx.doi.org/10.1038/173973a0
http://dx.doi.org/10.1016/S0006-3495(94)80728-3
http://dx.doi.org/10.1016/S0006-3495(94)80728-3
http://dx.doi.org/10.1113/jphysiol.1939.sp003756
http://dx.doi.org/10.1113/jphysiol.1939.sp003756
http://dx.doi.org/10.1007/BF02757783
http://dx.doi.org/10.1007/BF02757783
http://dx.doi.org/10.1115/1.2788875
http://dx.doi.org/10.1115/1.2788875
http://dx.doi.org/10.1073/pnas.91.26.12962
http://dx.doi.org/10.1016/S0031-8914(40)90098-2
http://dx.doi.org/10.1016/S0031-8914(40)90098-2
http://dx.doi.org/10.1016/S0006-3495(98)77954-8
http://dx.doi.org/10.1016/S0006-3495(98)77954-8
http://dx.doi.org/10.1529/biophysj.106.099549
http://dx.doi.org/10.1529/biophysj.106.099549
http://dx.doi.org/10.1098/rstb.2004.1557
http://dx.doi.org/10.1098/rstb.2004.1557
http://dx.doi.org/10.1016/0022-2836(80)90254-5
http://dx.doi.org/10.1016/0022-2836(80)90254-5
http://dx.doi.org/10.1016/j.jmb.2008.09.013
http://dx.doi.org/10.1016/0022-2836(72)90183-0
http://dx.doi.org/10.1016/S0006-3495(96)79348-7
http://dx.doi.org/10.1016/S0006-3495(96)79348-7
http://dx.doi.org/10.1016/S0006-3495(00)76505-2
http://dx.doi.org/10.1016/S0006-3495(00)76505-2
http://dx.doi.org/10.1085/jgp.66.1.31
http://dx.doi.org/10.1007/BF01739809
http://dx.doi.org/10.1016/S0006-3495(95)80374-7
http://dx.doi.org/10.1016/S0006-3495(95)80374-7
http://dx.doi.org/10.1113/jphysiol.2002.028969
http://dx.doi.org/10.1113/jphysiol.2002.028969

Prodanovic, M., T.C. Irving, and S.M. Mijailovich. 2016. X-ray
diffraction from nonuniformly stretched helical molecules.
Jo Appl. Cryst.  49:784-797.  http://dx.doi.org/10.1107/
S1600576716003757

Smith, D.A., and M.A. Geeves. 1995a. Strain-dependent cross-
bridge cycle for muscle. Biophys. J. 69:524-537. http://dx.doi.org
/10.1016/S0006-3495(95) 79926-X

Smith, D.A., and M.A. Geeves. 1995b. Strain-dependent cross-bridge
cycle for muscle. II. Steady-state behavior. Biophys. J. 69:538-552.
http://dx.doi.org/10.1016,/S0006-3495(95) 79927-1

Smith, D.A., and S.M. Mijailovich. 2008. Toward a unified theory
of muscle contraction. II: predictions with the mean-field
approximation. Ann. Biomed. Eng. 36:1353-1371. http://dx.doi
.org/10.1007/510439-008-9514-z

Smith, D.A., M.A. Geeves, J. Sleep, and S.M. Mijailovich. 2008.
Towards a unified theory of muscle contraction. I: foundations.
Ann. Biomed. Eng. 36:1624-1640. http://dx.doi.org/10.1007/
$10439-008-9536-6

Squire, J.M. 1992. The structures of striated and smooth muscles
related to their function. In Muscle Contraction and Cell Motility:
Molecular and Cellular Aspects. H. Sugi, editor. Springer-Verlag,
Berlin, Heidelberg. 87-131. http://dx.doi.org/10.1007,/978-3
-642-76927-6_4

Steffen, W., D. Smith, R. Simmons, and J. Sleep. 2001. Mapping the
actin filament with myosin. Proc. Natl. Acad. Sci. USA. 98:14949—
14954. http://dx.doi.org/10.1073/pnas.261560698

Tanner, B.C., T.L. Daniel, and M. Regnier. 2007. Sarcomere lattice
geometry influences cooperative myosin binding in muscle.
PLOS Comput. Biol. 3:e115. http://dx.doi.org/10.1371/journal
.pcbi.0030115

Tanner, B.C., M. Regnier, and T.L. Daniel. 2008. A spatially explicit
model of muscle contraction explains a relationship between

488

activation phase, power and ATP utilization in insect flight. J. Exp.
Biol. 211:180-186. http://dx.doi.org/10.1242/jeb.013466

Tanner, B.C., T.L. Daniel, and M. Regnier. 2012. Filament
compliance influences cooperative activation of thin filaments
and the dynamics of force production in skeletal muscle. PLOS
Comput. Biol. 8:€1002506. http://dx.doi.org/10.1371/journal
.pcbi. 1002506

Vilfan, A., and T. Duke. 2003. Instabilities in the transient response
of muscle. Biophys. J. 85:818-827. http://dx.doi.org/10.1016/
S0006-3495(03) 74522-6

Wakabayashi, K., Y. Sugimoto, H. Tanaka, Y. Ueno, Y. Takezawa, and
Y. Amemiya. 1994. X-ray diffraction evidence for the extensibility
of actin and myosin filaments during muscle contraction.
Biophys. J. 67:2422-2435. http://dx.doi.org/10.1016/S0006
-3495(94)80729-5

Williams, C.D., M. Regnier, and T.L. Daniel. 2012. Elastic energy
storage and radial forces in the myofilament lattice depend on
sarcomere length. PLOS Comput. Biol. 8:¢1002770. http://dx.doi
.org/10.1371 /journal.pcbi.1002770

Williams, C.D., M.K. Salcedo, T.C. Irving, M. Regnier, and T.L.
Daniel. 2013. The length-tension curve in muscle depends on
lattice spacing. Proc. Biol. Sci. 280:20130697. http://dx.doi.org
/10.1098 /rspb.2013.0697

Wood, J., and R. Mann. 1981. A sliding-filament cross-bridge
ensemble model of muscle contraction for mechanical transients.
Math.  Biosci. 57:211-263.  http://dx.doi.org/10.1016,/0025
-5564(81)90105-X

Zahalak, G.I. 1986. A comparison of the mechanical behavior of the
cat soleus muscle with a distribution-moment model. J. Biomech.
Eng. 108:131-140. http://dx.doi.org/10.1115/1.3138592

Interfilament binding of tethered molecules | Mijailovich et al.

920z Arenugad 20 uo1senb Aq pd'g091 1910z dbl/8Gz96.1/651/9/8Y L /pd-ajonie/dbl/Bio sseidny//:dpy wouy pepeojumoq


http://dx.doi.org/10.1107/S1600576716003757
http://dx.doi.org/10.1107/S1600576716003757
http://dx.doi.org/10.1016/S0006-3495(95)79926-X
http://dx.doi.org/10.1016/S0006-3495(95)79926-X
http://dx.doi.org/10.1016/S0006-3495(95)79927-1
http://dx.doi.org/10.1007/s10439-008-9514-z
http://dx.doi.org/10.1007/s10439-008-9514-z
http://dx.doi.org/10.1007/s10439-008-9536-6
http://dx.doi.org/10.1007/s10439-008-9536-6
http://dx.doi.org/10.1007/978-3-642-76927-6_4
http://dx.doi.org/10.1007/978-3-642-76927-6_4
http://dx.doi.org/10.1073/pnas.261560698
http://dx.doi.org/10.1371/journal.pcbi.0030115
http://dx.doi.org/10.1371/journal.pcbi.0030115
http://dx.doi.org/10.1242/jeb.013466
http://dx.doi.org/10.1371/journal.pcbi.1002506
http://dx.doi.org/10.1371/journal.pcbi.1002506
http://dx.doi.org/10.1016/S0006-3495(03)74522-6
http://dx.doi.org/10.1016/S0006-3495(03)74522-6
http://dx.doi.org/10.1016/S0006-3495(94)80729-5
http://dx.doi.org/10.1016/S0006-3495(94)80729-5
http://dx.doi.org/10.1371/journal.pcbi.1002770
http://dx.doi.org/10.1371/journal.pcbi.1002770
http://dx.doi.org/10.1098/rspb.2013.0697
http://dx.doi.org/10.1098/rspb.2013.0697
http://dx.doi.org/10.1016/0025-5564(81)90105-X
http://dx.doi.org/10.1016/0025-5564(81)90105-X
http://dx.doi.org/10.1115/1.3138592

