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The exceptionally high reactivity of Cys 621 is critical for electrophilic
activation of the sensory nerve ion channel TRPA1
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Activation of the sensory nerve ion channel TRPA1 by electrophiles is the key mechanism that initiates nocicep-
tive signaling, and leads to defensive reflexes and avoidance behaviors, during oxidative stress in mammals.
TRPAT1 is rapidly activated by subtoxic levels of electrophiles, but it is unclear how TRPA1 outcompetes cellular
antioxidants that protect cytosolic proteins from electrophiles. Here, using physiologically relevant exposures,
we demonstrate that electrophiles react with cysteine residues on mammalian TRPA1 at rates that exceed the
reactivity of typical cysteines by 6,000-fold and that also exceed the reactivity of antioxidant enzymes. We show
that TRPAT possesses a complex reactive cysteine profile in which C621 is necessary for electrophile-induced
binding and activation. Modeling of deprotonation energies suggests that K620 contributes to Cé621 reactivity
and mutation of K620 alone greatly reduces the effect of electrophiles on TRPA1. Nevertheless, binding of elec-
trophiles to C621 is not sufficient for activation, which also depends on the function of another reactive cysteine
(C665). Together, our results demonstrate that TRPAT acts as an effective electrophilic sensor because of the

exceptionally high reactivity of C621.

INTRODUCTION

Mammalian TRPAI is a tetrameric cation channel
expressed on nociceptive sensory nerve membranes
that plays an important role in initiating nociceptive
responses and pain to oxidative stress (Bandell et al.,
2004; Jordt et al., 2004). TRPA1 is directly activated by
electrophiles (e.g., 4-hydroxynonenal, cinnamaldehyde,
and iodoacetamide [IA]) capable of covalent modifica-
tion of cysteines (Hinman et al., 2006; Macpherson et
al., 2007a,b; Trevisani et al., 2007; Taylor-Clark et al.,
2008a,b, 2009). Nociceptive responses to electrophiles
are likely an adaptation to the destructive reactions of
electrophiles with DNA and proteins resulting in dys-
function (Marnett et al., 2003).

Oxidative stress and subsequent endogenous electro-
phile production is a major threat to aerobic cells, and
thus protective strategies have developed (Halliwell,
1999). In particular, eukaryotic cells contain millimolar
glutathione (GSH), a Cys-containing tripeptide that re-
acts with electrophiles. The GSH-electrophile reaction
is also accelerated by multiple enzymes, such as gluta-
thione-S-transferase (Hayes et al., 2005; Brigelius-Flohé
and Flohé, 2011). Therefore, this detoxifying system
protects Cys residues in other proteins. As such, elec-
trophile sensors (e.g., TRPA1l) must be able to detect
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electrophiles within the accelerated antioxidant envi-
ronment: sensor—electrophile reactions must compete
with existing reactions. This is particularly important
for nociceptive signaling that initiates responses in sec-
onds to stimuli that are simply potentially noxious; i.e.,
effective nociceptive signaling evokes action before cat-
astrophic injury.

Electrophiles activate TRPA1 expressed in either no-
ciceptive neurons or in heterologous systems within sec-
onds (Bandell et al., 2004; Jordt et al., 2004; Hinman et
al., 2006; Macpherson et al., 2007a,b; Trevisani et al.,
2007; Nassenstein et al., 2008; Taylor-Clark et al.,
2008a,b, 2009), suggesting a covalent modification rate
rivaling the fastest antioxidant enzymes. It is likely that
the unknown mechanisms underlying the rapid reac-
tion rates are fundamental to TRPA1’s ability to compe-
tently sense electrophilic danger. Until now, studies
have focused solely on outcomes of TRPAI activation,
which a priori include mechanisms involved in both
binding and channel gating. As such, the mechanisms
underlying electrophile sensing by TRPAI are uncer-
tain, although single channel recordings indicate that
this functionality is intrinsic to TRPAL. Under physio-
logical conditions, electrophilic activators of TRPAI
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such as 4-hydroxynonenal and IA only modify nucleop-
hilic Cys’s (Doorn and Petersen, 2002; Mendoza and
Vachet, 2009). Mutation studies have suggested Cys’s
(e.g., C414, C621, and C665) are critical to TRPAI acti-
vation by electrophiles (Hinman et al., 2006; Macpher-
son et al., 2007a; Takahashi et al., 2008), although it is
not clear whether these Cys’s are involved (directly or
indirectly) with binding or activation. Previous studies
have suggested that TRPA1 can be covalently modified
at most intracellular Cys’s (Macpherson et al., 2007a;
Wang et al., 2012), although these qualitative studies
used excess electrophile exposures that would bind
nonreactive and reactive Cys’s alike. Lastly, intracellular
polyphosphates are required for TRPAI activation (Kim
and Cavanaugh, 2007), but their role in electrophilic
binding has not been investigated. Thus, it is unclear
which factors determine the apparently extraordinary
reaction rate of TRPAI to electrophiles and also how
binding leads to activation. Moreover, some ortho-
logues (e.g., rattlesnake) are nonresponsive to electro-
philes despite possessing many of the same Cys’s that
have been identified as key sites in mammalian TRPA1
(Cordero-Morales et al.,, 2011). Thus, it is unclear
whether these differential responses represent differ-
ences in electrophilic binding or downstream activa-
tion mechanisms.

Here, we use physiologically relevant exposures in
binding studies and functional experiments to offer
mechanistic insights into the functional responses of
TRPALI to electrophiles. We demonstrate that TRPAI
possesses a complex reactive Cys profile centering on
the extraordinary reactivity of C621, which is depen-
dent on its neighbor K620, and that is necessary for
electrophile-induced activation. C665 only marginally
contributes to electrophilic adduction but is required
for electrophile-induced activation.

MATERIALS AND METHODS

Spectrophotometric assays of thiol chemistry

Reactions were performed in 0.1 M phosphate buffer
(at pH 7.4) containing 1 mM EDTA at room tempera-
ture and measured using a Jenway 6405 scanning spec-
trophotometer. Unreacted cinnamaldehyde and IA
were detected at 290 nm (Chen and Armstrong, 1995),
molar absorptivity of 18,463 M~'cm™ and 227 M~'ecm™,
respectively. Cinnamaldehyde or IA was reacted with
excess (4.3 mM) GSH (negligible absorption at 290
nm), and the loss of absorption at 290 nm was followed.
The natural log of [unreacted electrophile] was plotted
against time, and the slope (s™) of the straight line was
calculated. Given that [electrophile] << [GSH], the sec-
ond order reaction rate (M~'s™!) for each reaction was
calculated by dividing the slope by [GSH]. Activated
Thiopropyl Sepharose (Han et al., 1999) was reacted
with 50 pM DTNB to produce 100 pM 2-nitro-5-thio-
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benzoate (TNB), which was detected at 412 nm, molar
absorptivity of 14,140 M~'cm™". Reaction of TNB with
IA, n-ethylmaleimide (NEM), and n-methylmaleimide
(NMM) was performed in 0.1 M phosphate buffer (at
pH 7.4) containing 1 mM EDTA at room temperature,
in some cases also including 5 mM GSH, and measured
at412 nm. The natural log of [unreacted TNB] was plot-
ted against time, and the slope (s™') of the straight line
was calculated. Given that [TNB] << [electrophile], the
second order reaction rate (M~'s™!) for each reaction
was calculated by dividing the slope by [electrophile].

V5-tagged constructs, mutations, and expression

in HEK293 cells

Plasmids containing full-length TRPA1 genes were the
gifts of D. Julius (University of California, San Francisco,
San Francisco, CA; human or hTRPA1) and A. Patapou-
tian (Scripps Research Institute, La Jolla, CA: mouse
or mTRPA1). hTRPV1 was obtained from the Center
for Personalized Diagnostics via the DNASU Plasmid
Repository (HsCD00731917). The plasmid containing
full-length redox-sensitive green fluorescent protein
1 (roGFP) was a gift from J. Remington (University of
Oregon, Eugene, OR). TRP channel genes were sub-
cloned into pcDNA3.1 V5-His-TOPO or pcDNA3.1D
V5-His-TOPO (Thermo Fisher Scientific) using prim-
ers (Biosynthesis) containing restriction sites allowing
ligation into one or other vector. Point mutations were
made by PCR. TRP channels and roGFP were expressed
in HEK293 cells (cultured in Dulbecco’s modified Ea-
gle’s medium supplemented with 10% FBS, 100 U/ml
penicillin, and 100 pg/ml streptomycin) using Lipo-
fectamine 2000 (Thermo Fisher Scientific). mTRPA1
cultures were supplemented with 5 pM ruthenium red.

Calcium imaging

Cells were studied for changes in [Ca®*']; with 8 pM Fu-
ra-2AM. For imaging, cells were superfused with HEP
ES-buffered saline (HBS; composition [mM]: 154 NaCl,
4.7 KCl, 1.2 MgCl,, 2.5 CaCl,, 10 HEPES, and 5.6 dex-
trose adjusted to pH 7.4 with NaOH) for 10 min before
and throughout each experiment. Changes in [Ca* ],
were monitored by sequential dual excitation, 340 and
380 nm (emission 510 nm), measured by digital micros-
copy (CoolSNAP HQ2; Photometrics) and analyzed by
specialized software (Nikon Elements; Nikon). Cells
were exposed to 5 pM ionomycin (for 60 s) to obtain a
maximal response. For the analysis of [Ca®'];, we used
the excitation ratio 340 nm /380 nm and related all mea-
surements to the peak positive response in each cell. This
approach bypasses the conversion of ratiometric re-
sponses into absolute [Ca?']; using Tsien parameters
(Taylor-Clark et al., 2015). At each time point, each cell
was normalized to its maximum [Ca®']; (evoked by the
Ca®" ionophore ionomycin). Data were presented as the
percentage change in 340/380 ratio (R): response at
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time (x) = 100 x (R, — Ry,))/ (Ruax — Ryy), where R, was
the 340/380 ratio of the cell at a given time point, Ry,
was the cell’s mean baseline 340/380 ratio measured
over 60 s, and R, was the cell’s peak 340,/380 ratio. Only
cells that had low [Ca*']; at baseline (R<1.3) and yielded
a robust response to the positive control were included
in analyses. TRPAI expression was determined by a pos-
itive response to either 100 pM IA or 100 pM cinnamal-
dehyde or 200 pM thymol. The rate of TRPAI activation
was calculated for each cell from the normalized re-
sponse against time data. This was based on the assump-
tion that the [electrophile] >>> [functional TRPAI
groups], that electrophilic binding was irreversible, and
that the maximum response correlated with maximum
binding of functional groups on TRPAI. The time to half
maximum (t; ) was calculated for each cell. The second
order rate for the reaction (assuming pseudo-first order
conditions) in M™'s™' =1/((t1,2)/In(2)) * [electrophile].

Cytosolic redox assay using roGFP

HEK293 cells expressing roGFP were superfused with
HBS. Changes in cytosolic redox state were monitored
by sequential dual excitation, 405 and 470 nm (emis-
sion 525 nm). 300 pM HyO, was applied to cause an ox-
idation-induced increase in roGFP 405/470 ratio. The
difference (A) between baseline ratio and the maxi-
mum response to HyO, was quantified to represent the
responsiveness of roGFP to oxidation.

Electrophile binding of TRP

HEK293 transfected with Vb5-tagged TRP channels were
lifted with Accutase (Innovative Cell Technologies,
Inc.), spun down for 2 min at 700 g, and resuspended in
250 pl to 1 ml of PBS. BODIPY 507/545 IA (B-IA; Mo-
lecular Probes) was added to the PBS—cell suspension.
The B-IA-binding reaction was stopped by flooding
with 15 ml of 1 mM IA and spun down, and the flooding
repeated a second time. Cells were then resuspended in
lysis buffer (50 mM TRIS, 150 mM NaCl, 2% Triton
X-100, and 0.05% SDS) containing protease inhibitors
(Complete Mini; Roche) and then left on ice for 30 min
to solubilize protein. Lysates were spun down at 14,000 g
for 15 min to remove debris.

Permeabilization with saponin. For experiments requir-
ing changes in the intracellular milieu, cells were resus-
pended in buffer containing 50 pg/ml saponin. Saponin
selectively dissolves plasma membrane cholesterol, re-
sulting in permeabilization of intact cells (Jamur and
Oliver, 2010). The cells were left for 3 min at room tem-
perature to permeabilize and for the intra- and extracel-
lular solutions to equilibrate.

Effects of pH on B-IA binding. The different pH ranges

for phosphate-citrate buffer (PB) were achieved by add-
ing 0.1 M citric acid to 0.2 M NayHPO, and confirmed
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using a pH meter. HEK293 cells expressing hTRPAI
were initially resuspended in (pH 7.4) PBS or PBS con-
taining 100 pM IA and incubated at room temperature
for 7 min. They were then spun down and resuspended
in PB (buffered to pH 5.0 or 7.4) containing 50 pg/ml
saponin for 3 min before B-IA treatment.

Immunoprecipitation and Western blotting. All TRP
channels were immunoprecipitated and detected in
Western blot using the same primary antibody targeting
an identical Vb epitope in each construct. 25 pl Dy-
nabeads G (Thermo Fisher Scientific) was resuspended
in PBS in 0.02% Tween 20. 1 pg anti-V5 antibody was
added, and the bead-antibody complex was allowed to
form by agitating at room temperature for 45 min. The
antibody-containing supernatant was removed, and
treated HEK cell lysates were incubated with the bead—
antibody complex for 18 h at 4°C. Beads were washed in
PBS with 0.02% Tween 20 and then boiled in RIPA buf-
fer (100 mM TRIS, 150 mM NaCl, 1 mM EDTA, 1% Tri-
ton X-100, 1% Na deoxycholate, and 0.1% SDS)
containing 1x Laemmli buffer for 10 min. Total immu-
noprecipitated protein eluate and the ECL Plex Fluo-
rescent Rainbow markers (GE Healthcare) were then
separated by 9% SDS-PAGE and transferred onto Hy-
bond LFP PVDF membranes (GE Healthcare). Mem-
branes were blocked in 1% bovine serum albumin in
TRIS-buffered saline (TBS; 20 mM TRIS base and
500 pM NaCl). Membranes were then left in 1:2,500 an-
ti-V5 mouse monoclonal antibody (made up in block-
ing buffer; R960-25; Thermo Fisher Scientific) for 18 h
at 4°C. After three washes in TBS containing 0.025%
Tween 20, membranes were incubated in a goat anti—
mouse secondary antibody, Alexa Fluor 647 conjugate
for 1 h at room temperature. All blots were scanned
using a Typhoon 9410 imager (GE Healthcare): B-IA
excitation at 488 nm, emission at 520 nm; 2° Alexa
Fluor 647 excitation at 633 nm, emission at 670 nm.

B-IA assay data analysis. Band intensities of B-IA and
Alexa Fluor 647 (TRP protein) signals were measured
using Image]64 software (National Institutes of Health).
A horizontal region of interest (ROI) was placed within
the TRP band, and another ROI was placed below the
band as a measure of the background. The same ROIs
were used to analysis the B-IA fluorescence. The back-
ground (b) was subtracted from both, and then B-IA
data were normalized to TRP protein (normalized data
= (BIA —b)/(TRP — b)), thus allowing for comparisons
of normalized B-IA binding across all TRP channel or-
thologues, paralogues, and mutants.

IA binding of hTRPA1 for mass spectrometry (MS). 50
million live HEK293 cells overexpressing Vb-tagged
hTRPAI were treated with 30 pM IA for 2 min, then
flooded with 1 mM NEM to quench the reaction for 7
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min, and then lysed in the presence of protease inhibi-
tors. Lysates were immunoprecipitated and separated
by 6% SDS-PAGE. Two separate but identical experi-
ments were performed on separate days.

In-gel digests. 6% SDS-polyacrylamide gels were stained
with Coomassie blue to visualize protein gel bands and
washed in distilled water to remove excess background
stain. Protein bands were excised and destained with
three 15-min washes in 50 mM ammonium bicarbonate
(ABC) and 50% acetonitrile solution. Acetonitrile and
100 mM ABC were then used to dehydrate and rehy-
drate the gel pieces for 5 min. This was followed by 15
min in 1:1 acetonitrile and 100 mM ABC. To reduce di-
sulfide bonds, 45 mM DTT was added for 30 min, and
gels were left at 55°C. Free cysteines were alkylated with
50 mM NMM for 60 min. 100 pl of freshly prepared 100
ng/pl trypsin (sequencing grade modified; Promega)
in 50 mM ABC was added to the samples, which were
then digested at 37°C overnight. Digested peptides
were extracted with 1:1 acetonitrile and 0.1% formic
acid, dried, and dissolved in 0.1% formic acid solution
for MS analysis.

MS

Digested peptides were desalted inline using either an
Acclaim PepMap C18 Nano-Trap or a C4 sample trap
(New Objective) and then separated on an Acclaim
PepMap C18 (75 pm x 50 cm) UPLC column (Thermo
Fisher Scientific) or on a CMP Scientific C4 (75 pm x 20
cm), respectively, using an EASY-nLC 1000 with a gradi-
ent time of 90 min (2-40% acetonitrile in 0.1% formic
acid). Mass spectrometric analysis was performed on a
hybrid quadrupole-Orbitrap instrument (Q Exactive
Plus; Thermo Fisher Scientific), using a top 10 data—de-
pendent acquisition method with a dynamic exclusion
time of 20 s. Full scan and MS,/MS resolution was 70,000
and 17,500, respectively. Peptide and protein identifica-
tions were assigned through MaxQuant (version
1.5.0.30) using the UniProt Homo sapiens database.
Acetylation (protein N terminus) and oxidation of me-
thionine were set as default variable modifications. Ad-
ditional variable modifications included NEM (+125),
NMM (+111), and carbamidomethylation (CAM [+57],
after reaction with IA) of Cys residues. Other database
search parameters included trypsin/P as the enzyme
used with the possibility of two missed cleavages and 20
ppm (first search)/4.5 ppm (recalibrated second
search) mass tolerance for precursor ions and 20 ppm
mass tolerance for fragment ions. Further detection val-
idation of modified Cys-containing peptides identified
from data-dependent acquisition was performed using
targeted MS/MS analysis. Targeted MS/MS analysis was
performed at 17,500 mass resolution with an automatic
gain control target value of 1e6 and maximum ion in-
jection time of 200 ms. The inclusion list of all modified
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Cys-containing peptides for targeted MS/MS analysis
was generated based on identified peptides from Max-
Quant search results. Raw data can be found at CHO
RUS Project (#1055).

For site-specific quantitation of Cys residues modified
by IA, raw intensity values of Cys-containing peptides
from MaxQuant were used to determine the amount of
CAM at various sites in TRPAI. Specifically, a ratio of
the sum of intensities of all modified versions of a par-
ticular carbamidomethylated peptide over the sum of
intensities of all possible modified versions of that same
peptide (e.g., oxidized methionine, NEM/NMM modi-
fication of Cys, etc.) was calculated. Note that the per-
centage of CAM binding is based on the assumption
that ionization efficiencies are not significantly differ-
ent between NEM-, NMM-, and CAM-modified versions
of the same peptide. Although the absolute percentage
of CAM may not be an exact value based on this as-
sumption, the relative ranking of CAM percentage
among Cys-containing peptides would still be an accu-
rate approach to determine the highly reactive Cys resi-
dues in TRPAl. Two separate experiments were
performed, each with duplicate mass spectrometric
analyses performed. The first experiment used a C18
column; the second experiment used a C18 column for
one analysis and a C4 column for the other analysis.
Data are the mean across the two experiments. For each
analysis, an identified peptide with the lowest intensity
was used to approximate the limit of detection for the
system. The sum of the intensities (CAM bound, NEM
bound, and NMM bound) for each Cys was divided by
the intensity of the limit of detection peptide to yield an
approximate signal to noise ratio. To approximate reac-
tion rates of each Cys, the natural log of the percentage
of unreacted Cys after IA treatment was plotted against
time, and the slope (s™') of the straight line was calcu-
lated. Given that [electrophile] <<< [individual Cys],
the second order reaction rate (K., M~'s™!) for each
reaction was calculated by dividing the slope by [TA].

Quantum mechanical simulations of

cysteine deprotonation

The effect of a functional group X = {NH,*, HCOO™,
CH,4} on the deprotonation energy of Cys is determined
as AAE = E(Cys™,X) — E(CysH,X) — E(Cys™) + E(CysH).
Here, E(Cys,X) and E(Cys™) are the electronic ener-
gies of a deprotonated Cys in the presence and absence
of X, and E(CysH,X) and E(CysH) are the electronic
energies of a protonated form of Cys in the presence
and absence of X. These energies were determined
using the hybrid B3LYP (Lee et al., 1988; Becke, 1993)
density functional theory implemented in the Gauss-
ian09 suite of programs (Gaussian, Inc.). The reported
energies correspond to the single point values estimated
for the relaxed geometries. The 3-D geometries were
relaxed with positional constraints on the S atom of Cys,
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N atom of NH,*, C atom of HCOO™, and the C atom of
CH, to maintain distances between Cys and the differ-
ent functional groups. The effect of the solvent (e =
78.54) was modeled using the polarizable continuum
model (PCM) with the integral equation formalism vari-
ant (Canceés et al., 1997) and with a solvent radius of 1.4
A. Electron densities of all atoms were expanded on
6-311++G** basis sets. For a subset of cases, we also com-
pared estimates from this approach against the CBS-QB3
approach, an approach that belongs to the family of the
complete basis set (CBS) methods of Montgomery et al.
(1999). For functional groups placed at a distance of 6
A, we found that the CBS-QB3 approach yields A4 Exy, =
—1.8 kcal/mol, AAE,co0 = 1.6 keal/mol, and AA F¢y, =
0.3 kcal/mol. These values are quantitatively compara-
ble with those obtained from the B3LYP/6-311++G**
approach, where AAEyy, = —1.9 kcal/mol, AAEycoo =
1.5 kcal/mol, and A4 ¢y, = 0.3 keal/mol.

Immunocytochemistry

For Nrf2 translocation experiments, HEK293 were (a)
treated with HBS for 60 min, (b) treated with 1 mM IA
(made in HBS) for 60 min, or (c) treated with 30 pM TA
(made in HBS) for 2 min and then washed in HBS for
60 min. All treatments were performed at 37°C for the
duration of the experiment. Cells were then immedi-
ately fixed in 4% paraformaldehyde, washed once in
cold PBS, and then permeabilized in PBS containing
0.1% Triton X-100 (all steps were performed at room
temperature for 10 min). Cells were then blocked in
PBS with 0.025% Tween 20 (PBST) containing 1% BSA.
After blocking for 1 h at room temperature, cells were
incubated in 1:200 anti-Nrf2 primary antibody (C20;
Santa Cruz Biotechnology, Inc.) made up in blocking
buffer, overnight at 4°C. After three washes in PBST,
cells were incubated in 1:500 of the donkey anti-rabbit
Alexa Fluor 546—conjugated secondary (Thermo Fisher
Scientific) at room temperature for 1 h. After three
washes in PBST, the coverslips were mounted onto glass
slides using Vectashield hard-set mounting medium ei-
ther with or without DAPI (Vector Laboratories). Im-
ages were captured using an FV1000 MPE multiphoton
laser-scanning microscope (Olympus) and analyzed
with Image] (National Institutes of Health), with
straight line ROI drawn from outside of each cell
through the cytosol into the nucleus. The fluorescence
intensity of the anti-Nrf2 signal was calculated for the
background (b), cytosol (c), and nucleus (n). The nor-
malized cytosolic/nuclear ratio was calculated for each
cell thusly: (c —b)/(n = b).

For TRP construct expression experiments, con-
structs were expressed in HEK293 cells that were incu-
bated in 1 mM CellTracker green CMFDA (Thermo
Fisher Scientific) for 15 min at 37°C. Cells were then
fixed, permeabilized, and blocked as described for the
Nrf2 immunohistochemical experiments. Vb-tagged
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TRP proteins were detected with an anti-V5 primary an-
tibody (R960-25, 1:5,000; Thermo Fisher Scientific) and
the goat anti-mouse Alexa Fluor 647-conjugated sec-
ondary antibody (1:1,000).

Statistics

Data are presented as mean (+SEM where appropriate).
Data derived from spectrophotometric experiments of
electrophilic reactions, Fura-2AM functional experi-
ments, B-IA-binding experiments, and Nrf2 transloca-
tion experiments yielded Gaussian distributions. In
particular, similar variances were noted between B-IA—
binding datasets. Two sets of unpaired data were com-
pared with a one-tailed Student’s t test, using P < 0.05
as significant.

Online supplemental material

Fig. SI shows unreacted cinnamaldehyde and IA
absorbance at 290 nm. Fig. S2 shows that IA-induced
increase in cytosolic [Ca*] in hTRPAl-expressing
HEK293 is entirely dependent on Ca* influx. Fig. S3
shows that B-IA activates and binds hTRPAI. Fig. S4
shows a graphical representation of MS coverage of
hTRPAI after trypsin digest. Fig. S5 shows examples of
annotated MS/MS for IA adduction of hTRPAI
residues. Fig. S6 shows the calculated reaction rate of IA
with C273, C621, C665, and C1085 normalized to the
rate for Ch40. Fig. S7 shows that rapid IA treatment
causes minor activation of the Keapl-Nrf2 system. Fig.
S8 shows immunocytochemistry of hTRPA1 constructs.
Fig. S9 shows that K620 is required for the apparent low
pK. of hTRPAl-reactive Cys. Online supplemental
material is available at http://www.jgp.org/cgi/content
/full/jgp.201611581/DC1.

RESULTS

Electrophiles activate hTRPA1 faster than they react
with canonical Cys

Membrane-permeable electrophiles cinnamaldehyde
and IA both absorb at 290 nm (Fig. S1). This absor-
bance disappears upon reaction with Cys in GSH (Fig. 1,
Aand B). We compared the kinetics of 50 pM cinnamal-
dehyde activation of hTRPA1 expressed in HEK293
cells with cinnamaldehyde’s reaction with 5 mM GSH.
Complete activation of hTRPA1 occurred within 70 s of
cinnamaldehyde treatment, whereas only 50% of cin-
namaldehyde had reacted with GSH by 670 s (Fig. 1 A).
Similarly, 200 pM IA activated hTRPA1 at a much faster
rate than IA’s reaction with GSH (Fig. 1 B). We con-
firmed the slow reaction rate of IA with sulfhydryl
groups using 100 pM TNB, a molecule whose absor-
bance at 412 nm (Fig. 1 C) decreases after reaction with
electrophiles. Within 60 s, 30 pM IA reacted with <0.5%
of the TNB (Fig. 1, D and E). Higher concentrations of
IA and other electrophiles such as NEM and NMM re-
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Figure 1. Electrophiles activate hTRPA1 faster than they react with conventional sulfhydryl groups in vitro. (A) 50 uM cin-

namaldehyde activation of hTRPAT in HEK293 (top, n = 28) and 50 pM cinnamaldehyde reaction with 5 mM GSH (bottom, n = 3).
(B) 200 puM IA activation of hTRPA1 in HEK293 (top, n = 96) and its reaction with 5 mM GSH (bottom, n = 3). (A and B) Error bars
denote SEM. (C) Absorbance of TNB at 412 nm. (D) Mean * SEM loss of 100 pM TNB absorption at 412 nm after sequential reaction
with 30 pM 1A, T mM IA, and 100 mM NMM in control conditions (n = 3) and in the presence of 5 mM GSH (n = 3). (E) Mean + SEM
TNB loss after reaction with 30 uM 1A, 1 mM NEM, and 100 mM NMM in control (n = 3) and with 5 mM GSH (n = 3). Error bars are

too small to see on this scale.

acted significantly with TNB, with 1 mM NEM reacting
10 times faster than 1 mM IA (Fig. 1, D and E). GSH, at
a typical cytosolic concentration (5 mM), inhibited the
electrophile-TNB reaction as the result of preferential
binding of the electrophiles with the excess thiol.

To determine the kinetics of electrophilic modifica-
tion of Cys within the cell cytosol, we studied fluorescent
changes in roGFP expressed in HEK293 upon oxidation
by HyOy. 300 pM HyOs caused an increase in the roGFP
405,/488 ratio, as the result of the formation of a critical
disulfide bond (Fig. 2 A; Dooley et al., 2004). As such,
prior electrophilic modification of roGFP Cys would ren-
der it insensitive to HyOy. Indeed, treatment with 1 mM
NEM for 420 s prevented HyOo-induced roGFP responses
(Fig. 2, A—C). Treatment with 30 pM IA for 60 s had no
effect on HyOsinduced roGFP responses (Fig. 2, B and
(), again suggesting little covalent modification of Cys
(on roGFP) with this rapid IA treatment.

In comparison, we found that >1 pM IA caused signif-
icant activation of hTRPAl-mediated Ca* transients in
HEK293 (Fig. 2 D), and the time to half maximum acti-
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vation (t;,9) decreased as [IA] increased (Fig. 2 E). As
expected, IA had no effect on cytosolic [Ca*] in non-
transfected HEK293 and in TRPA1-transfected HEK293
in the absence of extracellular Ca?*, thus confirming
the specific role of TRPA1 channels on the IA-induced
Ca® transients (Fig. 2 D and Fig. S2). We calculated the
apparent second order rate constant for hTRPAI activa-
tion to be 500-900 M~'s~! (Fig. 2, E and F), which was
dramatically quicker than IA’s reaction with either GSH
(0.4 M 's™") or TNB (1.3 M~'s™'; Fig. 2 F). Cinnamalde-
hyde-induced h'TRPALI activation was also dramatically
quicker than its reaction with either GSH or TNB
(Fig. 2F). These data demonstrate the fundamental dif-
ference in the Kkinetics of electrophilic activation of
hTRPAI compared with electrophilic reaction with con-
ventional sulfhydryl groups.

Mammalian TRPA1 possesses a “reactive”

Cys subpopulation

We investigated the kinetics of electrophilic binding of
hTRPALI using fluorescently tagged B-IA. B-IA activated

Exceptionally high reactivity of TRPA1 Cys | Bahia et al.
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Figure 2. Electrophiles activate hTRPA1 faster than they react with cytosolic sulfhydryl groups. (A and B) 300 pM H,O, causes
an oxidation-induced increase in roGFP 405/470 ratio in HEK293 (n = 327), prevented by pretreatment with 1 mM NEM (420 s, n =
106) but not by 30 uM 1A (60's, n = 189). Bars, 20 pm. (C) Mean = SEM H,0,-induced change in 405/470 ratio is reduced by electro-
philic stimuli >30 pM IA (60 s; n > 84). *, P < 0.05. (D) IA activates hTRPA1 at[IA] > 1 uM within 120 s. The dashed gray line denotes
the response of nontransfected HEK293 to 100 uM IA (first and second stimuli); other colored lines denote hTRPA1-expressing
HEK293 cells responding to varying [IA] (first stimulus) and 100 pM IA (second stimulus; n > 36). Colored bars denote the specific
duration of each treatment: 1-3 pM (540 s), 10 pM (180 s), and >30 pM (120 s). (E) Increasing IA exposure activates hTRPA1 faster,
yielding consistent second order reaction rates. (F) Comparison of second order rates for electrophilic modification of GSH (n = 3

each) and TNB (n > 3) and the activation of hTRPA1 (n > 28). (E and F) Error bars denote SEM.

hTRPAI (Fig. S3 A) with an apparent second order rate
of 640 M~'s™!. Using a modified rapid pulse-chase reac-
tion, we exposed hTRPAl-expressing HEK293 cells to
B-IA and then quenched the reaction with nonfluores-
cent JA. B-IA binding was normalized to hTRPAI pro-
tein after background subtraction. Increasing B-IA
concentrations or exposure times resulted in greater
binding (Fig. 3, A and B). Two populations of B-IA-
binding sites were observed: a rapidly bound and satu-
rable population and a slowly bound population that
under these conditions failed to saturate. It is likely that
the former group includes Cys’s critical for hTRPAI ac-
tivation, whereas the latter group likely comprises non-
functional Cys’s. As expected, B-IA binding to hTRPAI
was irreversible (Fig. S3 B).

Pretreatment of HEK293 expressing hTRPA1 with
TRPA1 inhibitors HC-030031 and AP-18 (both 30 pM)
failed to reduce B-IA binding (Fig. 3 C). However, pre-
treatment with nonfluorescent IA (100 pM, 10 min)
reduced subsequent B-IA binding by 50%, suggesting
that half of the B-IA binding was quenchable under
these conditions (Fig. 3 C). Based on spectrophotomet-
ric analysis of the reaction of 5 pM TNB with 10-min
treatment of 100 pM IA (Fig. 3 D), we predict that this
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particular IA exposure would react with ~10% of con-
ventional Cys’s in hTRPAI. Thus, the difference be-
tween B-IA binding under control conditions and after
IA pretreatment largely reveals the B-IA binding of
“reactive” Cys.

Intracellular polyphosphates are required for TRPA1
activation by electrophiles (Kim and Cavanaugh, 2007).
Using saponin, which selectively dissolves membrane
cholesterol and dialyzes out soluble intracellular com-
ponents (Jamur and Oliver, 2010), we found that native
polyphosphates had no effect on B-IA binding (Fig. 3E).
Furthermore, supplementing saponin-treated HEK293
with 1 mM sodium polyphosphate also had no effect
on B-IA binding.

We compared rapid B-IA binding of hTRPAI with
similar ion channels: mouse TRPA1 (mTRPA1), which
is activated by electrophiles (Macpherson et al., 2007a);
rattlesnake TRPA1 (rsTRPA1), which is not activated by
electrophiles (Cordero-Morales et al., 2011); and
human TRP vanilloid 1 (hTRPV1), the capsaicin-sensi-
tive receptor that is also insensitive to electrophiles
(Bautista et al., 2006). B-IA pulse-chase experiments
were performed with and without pretreatment with
untagged IA to reveal B-IA binding of reactive Cys. Con-
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sistent with their sensitivity to electrophiles, mTRPAI (Fig. 3 F). Thus, our data indicate that a prerequisite
exhibited reactive Cys binding by B-IA, whereas rsTRPA1 for activation by electrophiles is the channel’s capacity
and hTRPVI1 only exhibited nonreactive B-IA binding  to rapidly react with electrophiles.
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Figure 4. hTRPA1 possesses four reactive Cys's. (A, top) Treatment protocol for brief IA exposure of HEK293 cells expressing
hTRPA1 for MS analysis. (bottom) Complete analysis of the percentage of each Cys adducted by IA, NEM, and NMM as determined
by comparisons of identified MS/MS peaks. (B) Representative MS/MS spectra for tryptic peptide containing C621 (CAM modified)
and C633 (NEM modified). (C) Representative MS/MS spectra for tryptic peptide containing C621 (CAM modified) and C633 (NMM
modified). (B and C) Asterisks denote fragment ions with CAM modification. (D) Superimposed full scan mass spectra for the mod-
ified C621- and C633-containing tryptic peptide showing relative differences in peak intensity for each modified version (identified
by different colors). Data are representative of the first analysis using a C18 column. Accurate mass-based (<5 ppm) reconstructed
ion chromatograms were generated for each modified peptide, and the signal was averaged over the chromatographic peak width
before superimposition. Overlay (3D) was performed in the Qual Browser (Thermo Fisher Scientific) data viewer followed by spec-
trum normalization to the largest peak in the scan with multiple scans normalized all the same. (E) Cartoon representation of hTRPA1
structure and approximate location of identified Cys's (red indicates IA adduction). (F) Calculated rate reaction of IA for select
hTRPA1 Cys's, indicating the high reactivity of C621.

Covalent modification of C621 in hTRPA1 is >6,000-fold maximal activation of hTRPA1 (Fig. 2 D). HEK293 cells
faster than nonreactive Cys expressing hTRPA1 were exposed to untagged IA
To identify the specific residues rapidly bound by electro- (30 pM, 120 s) and then quenched with 1 mM NEM (7
philes, we performed MS analysis of immunoprecipitated ~ min). After purification, hTRPA1 was reduced and the
hTRPALI after IA treatment that previously evoked sub-  remaining Cys’s were fully reacted by NMM. Our MS
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Error bars denote SEM.

analysis detected 768 out of 1,119 residues (Fig. S4). Spe-
cifically, we detected 22 out of 28 hTRPA1 Cys’s (Fig. 4, A
and E), with a mean signal to noise ratio of 543 + 145.
Only four Cys’s were reacted by IA (30 pM, 120 s) yield-
ing a CAM modification: C273, C621, C665, and C1085
(Fig. 4, A-D; and Fig. S5). The majority of the other Cys’s
were modified by NEM (1 mM, 7 min), indicating that
these Cys’s were also available for electrophilic modifica-
tion in hTRPAT1’s native state (Fig. 4 A). Some Cys’s, e.g.,
C173 and C308, were largely modified (by NMM) only
after denaturation and reduction. Control experiments
with excess IA treatment (not depicted) demonstrated
that all 22 detected Cys’s were fully modifiable by IA.
C621 was almost completely reacted by IA (97%),
whereas only 3-4% of C273, C665, and C1085 were re-
acted by IA (Fig. 4 A). The C621 peptide also contained
C633. Tandem MS (MS/MS) data showed no evidence
of IA reaction (CAM modification) with C633 (Fig. 4, B
and C): the most intense fragment ion, y5, which con-
tains only C633, would be detected at m/z 664.3 if mod-
ified by IA; however, no fragment ion signal at this m/z
value was observed in any of the MS/MS spectra. In-
stead, yb was detected at m/z 732.3 (Fig. 4 B) and 718.3
(Fig. 4 C), indicating C633 adducted by NEM and
NMM, respectively. We compared the IA binding (CAM
modification) of Cys with C540, a well-detected residue
that had no measurable IA binding. Assuming IA bind-
ing was lower than the limit of detection, the K, for
C540 was <0.16 M~'s7!, similar to the calculated second
order rates for IA reaction with GSH. K, for IA reac-
tion with C273, C665, and C1085 was ~11 M~'s™!, and
the K, for C621 was 980 M~'s™" (Fig. 4 F). Thus, the
reaction of C621 with IA was >6,282-fold quicker than
for C540 (Fig. S6). This very rapid modification of C621
is consistent with the second order rate reactions calcu-
lated for IA-induced hTRPA1 activation (Fig. 2 F).

460

To put the kinetics of hTRPAI electrophilic sensing
into context with other characterized electrophilic
sensors, we briefly investigated the activation of the
nuclear factor erythroid 2-related factor 2 (Nrf2) sys-
tem, which controls the protective antioxidant response
element (ARE) in neurons and other cells (Holland
and Fishbein, 2010; Brigelius-Flohé and Flohé, 2011).
Electrophiles react with the canonical electrophile
sensor Keapl, which then allows the translocation of
Nrf2 into the nucleus (Dinkova-Kostova et al., 2002).
30 pM IA for 2 min evoked only a minor response from
the Keapl-Nrf2 system (Fig. S7), compared with near
maximal response from hTRPA1 (Fig. 2 D), suggesting
that functional Cys’s in hTRPAI are more reactive than
those in Keapl.

The role of C621 and C665 in electrophilic

binding and activation

Using a C621A mutant, we found that the reactive com-
ponent of B-IA binding was significantly reduced com-
pared with the wild-type channel (Fig. 5 A), confirming
that C621 contributes overwhelmingly to rapid modi-
fication of hTRPA1 by IA. Unsurprisingly, the C621A
mutant was almost completely insensitive to activation
by 30 pM IA (Fig. 5 C). A previous study has suggested
(€665 as critical to hTRPAI activation by electrophiles
(Hinman et al., 2006), and although we observed rapid
modification of C665 in our MS experiments, it was
limited compared with C621. Consistent with this, we
observed little difference in B-IA binding of a C665L
mutant compared with wild type (Fig. 5 B), indicating
that the majority of reactive Cys modification occurs in-
dependently of C665. Nevertheless, the C665L. mutant
was completely insensitive to activation by 30 pM IA
(Fig. 5 C). Such data suggest that C665 plays a critical
role in hTRPAI activation downstream of rapid cova-
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lent modification of C621. Importantly, both mutants
were adequately expressed in HEK293 (Fig. S8) and
responded robustly to the non-electrophilic TRPAI ac-
tivator thymol (200 pM; Fig. 5 C), suggesting that dec-
rements in either IA binding/activation were caused by
specific perturbations rather than a nonspecific inhibi-
tion of channel functionality.

K620 is essential for C621 reactivity

The exceptional reactivity of C621 compared with other
Cys’s implies that C621 is embedded in a unique local
environment that lowers its reaction barrier. A major
contributor to a cysteine’s reaction barrier is its depro-
tonation energy (Bednar, 1990; Kortemme and Creigh-
ton, 1995). The standard aqueous phase pK, of Cys is
8.5, meaning that ~10% are thiolate at physiological
pH. For Cys’s whose pK, is lowered by their local envi-
ronment, the deprotonation barrier will be relatively
smaller at physiological pH, which increases reactivity.
We investigated the effect of pH on the B-IA binding of
hTRPAI expressed on HEK293, using saponin to access
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the intracellular milieu. As expected, decreasing intra-
cellular pH to 5 decreased B-IA total binding, as the re-
sult of a decrease in thiolate groups (Fig. 6 A). With
HEK293 first pretreated with IA at pH 7.4 (i.e., to bind
the reactive groups), decreasing the pH to 5 greatly re-
duced B-IA binding of the unreactive Cys groups, con-
sistent with their “putative” high pK,. By subtracting the
IA-pretreated groups from the control groups, we re-
solved the approximate B-IA binding of the reactive
groups. Thus, we found that decreasing intracellular
pH from 7.4 to 5 had little effect on B-IA binding of re-
active groups, suggesting that the proportion of thiolate
in these groups is stable at very low pH (Fig. 6 A).

To gain molecular insight into how the local environ-
ment may reduce the pK, of C621, we examined the dis-
tribution of acidic and basic residues within 10 A from
C621. The recent 4.2-A-resolution cryo-EM model of the
channel (Paulsen et al., 2015) indicates that C621 is
flanked by a pair of proximal basic (K620) and acidic
(E625) residues and a more distant E681 (Fig. 6 B). Such
a distribution, along with the fact that C621 is partly bur-
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ied in a low dielectric environment, suggests that C621
will have a pK, > 8.5 (Malmberg et al., 2004; Varma and
Jakobsson, 2004). However, we note that the a-helix that
contains C621 and E625 also contains an interleaved pro-
line, P622. This proline will either induce a kink in the
helix and/or reduce helicity (Gunasekaran et al., 1998),
and in both cases, E625 will be pushed away from C621.
As aresult of this structural change, the positively charged
K620 will be closer to C621 compared with the negatively
charged glutamates, E625 and E681.

What effect will such structural changes have on
C621°s pK,? To gain fundamental insight, we performed
a systematic quantum mechanical study of how proxim-
ity of representative functional groups (X = {NH,,
HCOO™, CHy}) affects the deprotonation energy of Cys
(AAE; Fig. 6 C). We note first that even the hydropho-
bic control group, CH,, affects AAE, although the ef-
fect is minor. We attribute this to CH,’s polarizability
(Rossi et al., 2013). We note next that when the basic
group (NH,") is placed at a distance of 6 A, which is
roughly the distance between C621 and K620 in the
cryo-EM model (Paulsen et al., 2015), it reduces the
AAE by 1.9 kcal/mol. Assuming that entropic contribu-
tions cancel out, such a change in electronic energy cor-
responds to a drop in 1.4 pK, units, as ApK, =
AAG/2.3RT, where AAG is the corresponding free en-
ergy change, R is the gas constant, and T = 298.15 K
(Varma and Jakobsson, 2004). We also note a nonlinear
dependence of AAE on the Cys—X distance, and as the
distance increases beyond 8 A, the contribution of func-
tional groups to AAE becomes relatively much smaller.
Therefore, considering that the interleaved proline
P622 likely causes the C621-E625 distance to be greater
than the C621-K620 distance, we expect that the pK, of
C621 will be lower than its standard value of 8.5, which
would enhance the reactivity of C621.

We tested the contribution of K620 to rapid covalent
modification and activation of hTRPAI by IA using a
K620A mutant. Despite the presence of all native Cys
residues, the reactive component of B-IA binding was
almost abolished in the K620A mutant (Fig. 6 D). Fur-
thermore, the K620A mutant was insensitive to activa-
tion by IA (Fig. 6 E), indicating the critical requirement
for a coordinated environment at C621 for hTRPAI
sensitivity to IA. Again, the K620A mutant was well ex-
pressed (Fig. S8) and responded robustly to thymol
(Fig. 6 E). Given that TRPAI possesses reactive Cys’s
that appear to have low pK, and given that K620 likely
coordinates the reactivity of C621, we hypothesized that
K620 contributes to the capacity for substantial binding
of B-IA at low intracellular pH. There was virtually no
B-IA binding of the K620A mutant at pH 5.0 (Fig. S9),
indicating that K620 likely coordinates C621’s reactivity
in part through decreasing its pK,.

We also briefly investigated the contribution of C621
and K620 to hTRPAI activation by HsO, and allyl iso-
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thiocyanate (AITC; Fig. 6 F). Neither the C621A or
K620A mutants responded to 100 pM HyOs, and both
responded weakly to 100 pM AITC, which is thought to
directly activate hTRPA1 via Cys residues and K708
(Hinman et al., 2006).

DISCUSSION

The rapid detection of electrophiles is fundamental to
TRPAI’s role in initiating rapid nociceptive responses
to oxidative stress. IA and cinnamaldehyde reacted with
conventional thiols at ~0.1-1 M~'s™" (Jones et al., 1975;
Bednar, 1990; Chen and Armstrong, 1995). Here, we
show that electrophile-induced TRPAI activation oc-
curred at 500-900 M~'s™!, suggesting exceptional reactiv-
ity of functional Cys residues in TRPAL. Previous studies
using excess exposures have shown TRPA1 modification
by electrophiles and, as a result, multiple TRPA1 Cys’s
have been implicated (Macpherson et al., 2007a; Wang
etal.,, 2012). Here, using concentrations and exposure
times sufficient to cause submaximal TRPAI activa-
tion, we determined two binding populations: a rapidly
bound and saturated group and a slowly bound, unsat-
urated group. The reactive population was detected in
hTRPA1 and mTRPAI, both of which are rapidly acti-
vated by electrophiles (Jordt et al., 2004; Hinman et al.,
2006; Macpherson et al., 2007a), whereas rsTRPA1 had
no reactive population, indicating rsSTRPAI insensitivity
to electrophiles (Cordero-Morales etal., 2011) is caused
by a lack of rapid electrophilic binding.

MS analysis indicated only four TRPAI Cys residues
were modified within the short IA exposure: C273, C621,
C665, and C1085. All are intracellular, consistent with
reported accessibility requirements for electrophile-in-
duced TRPA1 activation (Macpherson et al., 2007a). In
particular, C621 was almost completely modified by IA,
making up the majority of rapid TRPAI modification.
None of the other 18 TRPAI Cys’s were modified by IA,
although 17 were available for modification in TRPA1’s
native state. Thus, the selective modification of the four
Cys’s by brief IA treatment was the result of high reactiv-
ity. It is likely that these Cys’s represent the population
of reactive groups detected in the B-IA binding experi-
ments. This was confirmed by use of the C621A mutant,
which displayed greatly reduced B-IA binding.

Pretreatment with nonfluorescent IA (100 pM, 10
min) was estimated to react with ~10% of free conven-
tional Cys’s. Unsurprisingly, this failed to abolish rapid
B-IA binding to TRPs. The modification of the nonreac-
tive Cys’s was so limited that we failed to detect CAM
modifications on 18 of 22 Cys’s after rapid IA treatment.
The mean signal to noise ratio in the MS analysis was
>500, suggesting that IA reacted with <0.2% of these res-
idues, compared with 97% for C621 and 3-4% for C273,
C665, and C1085. Therefore, C540 reacted with IA at a
rate of <0.16 M~ 's7!, compared with ~11 M~ 's7! for C273,
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(665, and C1085 and 980 M~'s™" for C621. Thus, C621
was modified >6,282 times faster than C540. These rates
are consistent throughout our study: the IA reaction rate
for C540 in the MS analysis was similar to the rate for
conventional Cys’s determined spectrophotometrically,
and the reaction rate for IA-induced C621 modification
in the MS analysis was similar to the rate reaction calcu-
lated for IA-induced hTRPALI activation. Potentially un-
derestimating the rates determined from the cell-based
assays is the requirement for IA to first cross the mem-
brane, although this has been previously shown to occur
very rapidly at ~400 nm/s (Sha’afi and Pascoe, 1973).
Our data provide an explanation for the mechanism
of hTRPAI activation by electrophiles. We have shown
that electrophilic binding occurs within the time frame
of activation and that binding is required for activation.
A critical step in rapid binding is modification of C621.
The C621A mutant displayed greatly reduced reactive
binding of B-IA and was not activated by IA. Interest-
ingly, binding of C621 alone was not sufficient for acti-
vation. Although only 4.6% of C665 residues in wild-type
hTRPA1 were bound, the mutant C665L was not acti-
vated by IA, demonstrating an absolute requirement for
C665 in the activation of hTRPAIL. Despite evidence of
rapid C665 binding, we cannot definitively state that
C665 binding specifically is required for activation. Al-
though likely, we have no direct evidence that the
hTRPAI population adducted at C621 overlaps with the
population adducted at C665. A substantial proportion
of C665 was protected from IA/NEM modification in
the native state of the channel, possibly because of C665
involvement in disulfide bonding (Wang et al., 2012).
Thus, it is plausible that C621 binding may modulate
C665’s reactivity, but we presently have no evidence sup-
porting this hypothesis. Intracellular polyphosphates
are known to be required for TRPA1 activation by elec-
trophiles (Kim and Cavanaugh, 2007) and have been
shown to stabilize the coil-coiled domains in the intra-
cellular C terminus (Paulsen etal., 2015). The presence
or absence of polyphosphates had no effect on hTRPA1
binding of B-IA, suggesting that polyphosphates and
the stabilized coiled-coil domains are required for pro-
cesses involved in activation downstream of binding.
Unsurprisingly, inhibitors of TRPA1, which block elec-
trophile- and non-electrophile-induced TRPA1 activa-
tion, had no effect on rapid binding of TRPAI, thus
confirming their role as allosteric channel inhibitors.
The high reactivity of C621 is crucial to subsequent
activation by electrophiles. However, there are no
known identifying sequences that confer reactivity to
Cys (Marino and Gladyshev, 2012). Thiolate is the active
moiety; thus, low pK, can contribute to reactivity. De-
creasing the pH to 5 had little effect on B-IA binding of
the reactive groups, suggesting a low pK, compared
with conventional Cys. Adjacent to C621 in mammalian
TRPAL is a conserved lysine/arginine, which our quan-
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tum mechanical study suggests can significantly lower
C621 pK,, and thereby increase its reactivity. Mutational
experiments performed in this study confirm the criti-
cal role of K620: the K620A mutant displayed little B-IA
reactive binding and was not activated by IA even
though all h\TRPA1 Cys’s were present. Nevertheless, we
also note that the reaction rate of completely deproton-
ated thiolate in GSH with IA is 33 M~'s™ (Bednar,
1990), much slower than the C621 reaction rate. Thus,
a low pK, of C621 alone does not explain fully its high
reactivity, and it is possible that the local environment
(including K620) participates directly in the reaction of
electrophiles with C621.

Our data indicate critical roles of K620 and C621 in
rapid electrophilic adduction of hTRPAI and K620,
(€621, and C665 in rapid activation of hTRPA1 by elec-
trophiles. Nevertheless, rsTRPA1, which is insensitive to
electrophiles, possesses equivalent lysine and cysteine
residues (Gracheva et al., 2010; Cordero-Morales et al.,
2011). Therefore, the residues identified in this study
are not the sole determinants of high reactivity (and
subsequent channel activation) to electrophiles. Fur-
ther work is required to fully identify the reactive Cys
motifs in TRPAT.

Previous studies have identified residues important
for electrophilic activation of TRPAI. Combined muta-
tion of C621, C641, and C665 abolished hTRPA1 activa-
tion by NMM and 4-hydroxynonenal (Hinman et al.,
2006; Trevisani et al., 2007). Single mutations of C621
or C414 or C421 also decreased hTRPA1 activation by
the electrophile 15d-Prostaglandin J, (Takahashi et al.,
2008), although the latter two mutants displayed poor
overall channel function. Our data are consistent with a
role of C621 and C665 in binding and activation. We
find no evidence that C414, C421, or C641 is modified
by rapid electrophilic treatment, and thus we argue that
these residues are not directly involved in binding (al-
though their modification by NMM after reduction sug-
gests disulfide bonding).

To be an effective sensor of electrophiles, TRPAI
must react with electrophiles in the presence of intra-
cellular GSH and enzymes that accelerate GSH-medi-
ated detoxification (Brigelius-Flohé and Flohé, 2011).
The exceptionally high reactivity of C621 (980 M~'s™")
provides TRPA1 with this critical function. Reactive
Cys’s are commonly found in antioxidant defense pro-
teins such as thioredoxins and glutaredoxins, which
have IA reactions rates <100 M~'s™" (Yang and Wells,
1991; Nelson and Creighton, 1994; Mossner et al.,
1998); thus, TRPA1 is able to compete effectively within
this environment. This is illustrated by its comparison
with electrophilic modulation of Keapl-Nrf2 activity,
the canonical electrophile sensor in the ARE system
(Holland and Fishbein, 2010), which was barely acti-
vated by IA exposures capable of substantial C621 mod-
ification and hTRPA1 activation.
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In conclusion, TRPA1’s function as an initiator of ox-
idative stress—induced nociception depends on the high
reactivity of C621, a property that is dependent on the
proximity of K620. Nevertheless, complete binding of
(€621 is not sufficient for activation, which also depends
on the function of the reactive C665. By studying the
kinetics of both binding and activation, it may yet be
possible to determine the mechanisms underlying the
exceptional electrophilic sensitivity of TRPAL.
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