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Generally Physiological

This month’s installment of Gener-
ally Physiological considers the non-
vesicular transfer of lipids between 
membranes, channels and transport-
ers that enable microorganisms to 
resist the toxic effects of F, and al-
ternative, stimulus-dependent open 
channel conformations of a pan-
nexin channel.

Transferring lipids to 
target membranes
The endoplasmic reticulum (ER) 
comes into close proximity with the 
plasma membrane and the mem-
branes of other organelles, forming 
contact sites that enable signaling 
between cellular compartments and 
the nonvesicular exchange of lipids 
between the apposed membranes. 
Proteins in the extended synapto-
tagmin (E-SYT) family, which act  
as tethers between the ER and  
the plasma membrane, contain an  
N-terminal ER membrane anchor 
domain, C2 membrane-targeting 
domains, and a region identified by 

bioinformatics analyses as a poten-
tial lipid-binding module (the SMP 
domain). Schauder et al. (2014) de-
termined the 2.44-Å-resolution crys-
tal structure of a fragment of human 
E-SYT2 (residues 163–634) that in-
cluded the SMP domain and two of 

its three C2 domains (C2A and 
C2B) and found that the SMP do-
main dimerized to form a cylinder. 
A 10-Å-wide channel lined with  
hydrophobic residues spanned the 
90-Å-long cylinder, connecting to 

solvent at both ends and through a 
longitudinal seam. A combination 
of electron density mapping and 
mass spectrometric analysis indi-
cated that E-SYT2 binds lipids; each 
monomer can bind two lipid mole-
cules, with the fatty acid moiety 
lying in the hydrophobic SMP chan-
nel and the polar head group pro-
truding through the seam. The 
authors thus conclude that E-SYTs, 
and perhaps other SMP domain–
containing proteins present at  
ER membrane contact sites, play  
a role in lipid transport, propos
ing “bridge” or “shuttle” models, 
whereby SMP dimers, perhaps in 
conjunction with other lipid trans-
fer proteins, could transfer lipids 
from sites of synthesis in the ER to 
target membranes.

Fighting against fluoride
Fluoride (F) is ubiquitous in soil 
and in water, posing an existential 
threat to unicellular microorgan-
isms through its inhibition of cru-
cial enzymes. Two distinct families 
of F exporters that help combat 
Fl toxicity have recently been iden-
tified, the bacterial CLCF-type F/
H antiporters (a subset of the CLC 
superfamily of anion transport pro-
teins) and the Fluc family of F 
channels. Noting that Cl is far 
more abundant in the environment 
than F, Brammer et al. (2014) in-
vestigated the basis of CLCF selectiv-
ity for Fover Cl. Sequence analysis 
showed that the CLCFs lacked a 
serine implicated in coordinating 
Cl in canonical CLCs; moreover, 
two phylogenetically distinct CLCF 
subclades showed distinct amino 
acid signatures, with one subclade  
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(a) E-SYT2 at a contact site between the ER and the plasma membrane. The C2C domain binds 
to the plasma membrane, and the N-terminal domain region provides an anchor to the ER.  
(b) If the two membranes are ∙90 Å apart, SMP dimers may provide a lipid transfer tunnel. 
(c) If the two membranes are closer than 200 Å, the SMP dimer may act as a shuttle. (Reprinted 
by permission from Macmillan Publishers, Ltd. C.M. Schauder. 2014. Nature. http://dx.doi
.org/10.1038/nature13269, copyright 2014.)
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characterized by an asparagine  
and a tyrosine (N-T subclade) near 
the ion-binding region and the 
other bearing a methionine and a 
valine (M-V subclade) in the same 
positions. Intriguingly, the M-V  
subclade showed increased F 
selectivity compared with the  
N-T subclade with regard to both  
transport kinetics and equilibrium 
binding, and residue-swapping ex-
periments confirmed the impor-
tance of these key amino acids to 
the differences between the two 
groups. In a second paper from the 
same research group in this issue, Ji 
et al. show that, in acidic environ-
ments, E. coli lacking Fluc channels 
accumulate F through ion trap-
ping. The membrane-permeant HF, 
a weak acid, crosses the membrane 
to deliver F to the cytoplasm, and 
the F-permeable Fluc channels 
protect against such accumulation 
by enabling the escape of F from 

the bacterium—with its highly nega-
tive membrane potential—down its 
own electrochemical gradient.

Promoting distinct Panx 
conformations?
Although various lines of evidence 
indicate that Pannexin1 (Panx1) 
forms a large-conductance channel 
(450 pS) that mediates ATP release, 
this view has been challenged by  
research indicating that it forms a  
low-conductance (∙70 pS), anion-
selective channel. Noting that these 
different channel properties were 
observed under distinct experimen-
tal conditions, Wang et al. (2014)  
explored the hypothesis that they  
depended on stimulus-specific open 
channel states. Whereas exposing 
Xenopus oocytes that heterologously 
expressed Panx1 to high [K+]o stimu-
lated ATP release regardless of  
membrane potential, depolarization 
in the absence of high [K+]o failed to 
do so. Furthermore, patch clamp 
analysis of Panx1-expressing oocytes 
indicated that single-channel prop-
erties differed under different ex-
perimental conditions: a channel 
with multiple subconductance states 
and a maximal single-channel con-
ductance of ∙520 pS was apparent at 
100 mV in 150 mM [K+]o, whereas 

in 1 mM K+, a channel with a unitary 
conductance of ∙44 pS (and no sub-
conductance states) was observed only 
at positive potentials. A C-terminal  
cysteine reactive to thiol reagents 
when the channel opens in response 
to depolarization was apparently in-
accessible in the K+-gated config
uration, and electron microscopic 
analysis indicated that K+ promoted 
the formation of channel with a 
larger pore than was otherwise ap-
parent. The authors thus conclude 
that the Panx1 channel may assume 
different conformations that are  
associated with distinct biophysical 
properties in response to different 
forms of stimulation.
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(top) Conserved Glu, Ser, and Tyr residues 
implicated in coordinating Cl in canonical 
CLCs. (bottom) Sequence alignment of CLCF 
homologues, highlighting residues that dif-
fer between the two subclades (yellow). Se-
quences in same region of canonical CLCs are 
shown below, with the Cl-coordinating Ser 
residue highlighted in red. (From Brammer  
et al., 2014.)

Electron microscopic analysis reveals an increase in the pore diameter of Panx1 oligomers ex-
posed to 50 mM KCl. (From Wang et al. 2014. Sci. Signal. http://dx.doi.org/10.1126/scisignal
.2005431. Reprinted with permission from AAAS.)
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