Commentary

Keeping you healthy: BK channel activation by omega-3 fatty acids

Ramon Latorre and Gustavo Contreras

Centro Interdisciplinario de Neurociencia de Valparaiso, Facultad de Ciencias, Universidad de Valparaiso,

Valparaiso 2366103, Chile

In the exuberant world of K channels, the Ca?- and
voltage-activated K" (BK, MaxiK, Slol) channel stands
alone. Itis coded by a single gene (slol or KCNMAI), and
the pore-forming a subunit has seven transmembrane
segments instead of six as found in voltage-dependent
K channels (Atkinson etal., 1991; Adelman et al., 1992;
Butler etal., 1993; Wallner et al., 1996). Being activated
by depolarizing voltages and cytoplasmic Ca®*, the BK
channel is the perfect molecular machine to retard or
to simply stop excitatory signals. The negative feedback
(hyperpolarization) created by the opening of these K
channels is caused by the perfect tuning between Ca**
and voltage sensors. The communication between these
two types of sensors is allosterically established, that is, volt-
age or internal Ca*" alone is able to open the BK chan-
nel, but channel opening is increasingly facilitated as
more Ca* and voltage sensors are activated (Horrigan and
Aldrich, 2002; Horrigan, 2012) (Fig. 1 A). Another impor-
tant difference between BK channels and Kv channels,
where opening is tightly coupled to voltage-sensor activa-
tion (Soler-Llavina et al., 2003) (Fig. 1 B), is that, albeit
with a very low probability, BK channels can open in a
voltage sensor— and Ca*-independent manner (reaction
C<>0 defined by the equilibrium constant Lin Fig. 1 A).

Despite being coded by a single gene, BK channel diver-
sity is large. Alternative splicing, posttranslational modi-
fications, and/or the presence of modulatory  or vy
subunits create this diversity (Orio et al., 2002; Salkoff
etal., 2006; Yan and Aldrich, 2010, 2012). In particular,
modifications induced in BK gating kinetics by the 31, 2,
and 34 subunits proved to be of crucial importance in
many physiological processes, ranging from shaping neu-
ronal excitability and neurosecretion to smooth muscle
tone, and in others not so physiological, such as alcohol
tolerance (Brenner etal., 2000; Hu et al., 2001; Gollasch
etal., 2002; Grimm and Sansom, 2007; Martin etal., 2008).
The expression of 3 subunits is highly tissue specific; 1
is the only 3 subunit expressed in smooth muscle, and 34
is mainly expressed in the nervous system (Orio etal., 2002;
Wu and Marx, 2010). In vascular smooth muscle cells
(SMCs), the presence of B1 plays a vital role in vasoregu-
lation, and its lack leads to hypertension (Brenner et al.,
2000; FernandezFernandez et al., 2004; Nelson and Boneyv,
2004). B1 and B2 have been observed to dramatically
slow down activation and deactivation kinetics as well as
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increase the apparent Ca*" sensitivity of the BK channel.
Although 4 also decelerates BK activation and deacti-
vation kinetics, even more so than 31, Ca* sensitivity of
channels formed by «/f4 subunits is complex. Chan-
nels are less sensitive to Ca®* at low internal Ca®* concen-
trations (<10 pM) than channels formed by the o subunit
alone. However, Ca® is more effective in activating o/ 34
channels at higher Ca®' concentrations (Ha et al., 2004;
Wang et al., 2006).

In addition to their effects on channel gating, 3 sub-
units grant BK channels sensitivity to several physiologi-
cally important compounds, thus making these subunits
targets for possible pharmacological interventions. For
example, B1-containing BK channels but not channels
formed by the o subunit alone appear to be the target
of 17B-estradiol and other compounds such as estrogen
analogues, anti-estrogens, and the bile salt component
lithocholic acid (Valverde et al., 1999; Dick et al., 2001;
Bukiya et al., 2009; Maher et al., 2013). The activation of
BK channels by 17B-estradiol has been proposed as the
possible mechanism that mediates the acute relaxation
of vascular smooth muscle induced by the hormone (White
etal.,, 1995; Ruehlmann et al., 1998). On the other hand,
stress steroids activate channels formed by the o/34 com-
plex but not by /B2 (King et al., 2006). Polyunsaturated
fatty acids such as arachidonic acid (AA) are also able to
directly activate BK channels, but in this case, AA enhances
BK current in the presence of either 32 or 33 (Sun etal.,
2007). Findings by Sun et al. (2007) also show that AA is
able to remove inactivation, suggesting that this fatty acid
is interacting with the 32-inactivating peptide. Tissue spec-
ificity of 3 subunits and their particular capacity to endow
BK channels with different pharmacological profiles have
greatly increased the importance of BK channels in main-
taining the adequate cellular electrical homeostasis in
different tissues.

Docosahexaenoic acid (DHA), an omega-3 fatty acid
known to be associated with beneficial cardiovascular
effects, was reported to be a potent activator of BK cur-
rents in rat coronary artery SMCs and to promote dila-
tion of isolated small coronary arteries (Lai et al., 2009;
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Wang etal., 2011). DHA, an omega-3 fatty acid found in
fish oil (salmon, sardines, herring, etc.) and also in plant
seeds, is the most abundant omega-3 fatty acid in the brain.
By studying the Greenland Inuit tribe, which consumes
large amounts of fat from fish, the conclusion was reached
that high levels of omega-3 fatty acids consumed by the
Inuit were the cause of their reduced triglycerides and
blood pressure. Hence, this study underscores the bene-
fits of consuming this type of lipid (Dyerberg et al., 1975).
Below-normal levels of this fatty acid have been also as-
sociated with cognitive decline and increase in neural
cell death (Serhan et al., 2004; Lukiw et al., 2005). How-
ever, the detailed mechanisms underlying the mode of
action of this important fatty acid remain unclear.

The work done by Hoshi et al. (2013b) adds to the
numerous beneficial effects of DHA by including the
possibility that this fatty acid could be clinically relevant
if targeted to BK channels, because of its blood pres-
sure-lowering effects. In wild-type mice, but not in Slol
knockout (SLOI™/") mice, DHA injections have been ob-
served to reversibly reduce blood pressure and produce
asignificant increase in BK-mediated K' currents in iso-
lated aortic vascular SMCs, a current enhancement that
was absent in SMCs dissociated from SLOI™/~ mice. When
applied to the intracellular side of inside-out membrane
patches, DHA was able to quickly activate o/B1 channels
in a reversible manner and with an ECs, of ~500 nM. These
findings indicate that the omega-3 fatty acid directly acts
on the o/B1 complex with an affinity that is ~20-fold
greater than the affinity to a G-coupled receptor associ-
ated to the antiinflammatory properties of this fatty acid
(Oh et al., 2010). Other important fatty acids like, for
example, omega-6 fatty acids, a-linoleic and eicosapen-
taneoic acid or AA, are also able to activate BK channels,
albeit with a lower potency. Because DHA BK channel
activation can be elicited with all the voltage sensors at
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rest and in the absence of internal Ca*, Hoshi’s group
arrived at the conclusion that DHA acts directly on the
C<>O equilibrium (Fig. 1 A) and destabilizes the chan-
nel closed conformation of the pore gate.

The next step in this BK channel saga was to identify the
molecular determinants in the 31 subunit that confer BK
its ability to be activated by the omega-3 fatty acid (Hoshi
et al.,, 2013a). The effects of DHA were first tested in chan-
nel with various subunits (1, B2 [inactivation removed],
B4, and y1 [LRRC26]), with the result that robust channel
activation by DHA was only observed in channels formed
by a/B1 and o/B4. B subunits consist of two transmem-
brane domains connected by a large external loop and
with N and C termini oriented toward the cytoplasm. The
B1 phenotype can be recovered by creating a chimera
containing the N terminus and the N-terminal half of the
first transmembrane segment (TM1) of 81 in a 2 back-
ground. Two 31 amino acid residues, one in the amino ter-
minus (R11) and the other in TM1 (C18), proved to be
enough to recover the full effect of DHA when replacing
the corresponding amino acids in 32 (A42, L49). On the
other hand, the corresponding amino acids in 34 are
E12 and R19. As in the case of the double mutant 2
A42R:149C, BK channels formed by a/B2 A42E:1L49R
subunits have very similar responses to DHA as o/fB4
channels. Mechanistically, it is still unclear how these of
amino acid residues in 81 and (34 confer DHA sensitivity
to the BK channel. However, the fact that the a/B1 as well
as the a/B4 channel can be activated by DHA opens the
possibility that DHA regulation of neuronal BK channel
activity may play an important role in the nervous system.

In this issue of JGP, Hoshi et al. continue dissecting
the effects of DHA, and their queries have led them to
the identification of a single amino acid residue in the
BK S6 transmembrane domain, which has been seen
to establish the sensitivity to the omega-3 fatty acid.

Figure 1. Sequential versus allo-

steric models. (A) Allosteric model.

In this model, P, is given by the

expression: P, = [L(1 +JD + KC +

JKCD)*]/[L(1+]JD +KC+]JKCD)*+

(1 +J + K+‘]KE)4] ;J — e(—/;iF(\'—\’h)/RT>’

with z; = 0.6 ey, V;, = 168 mV; L =

) Loe™V/RD " with zL = 0.3 e, and

i Lo = 1075 The values for the allo-
- steric factors were: D = 19, C = 14,
and E = 3.8, and the constant K; =
8.211M defines the Ca**binding re-
action X¢<>XCa (Orio and Latorre,
2005). (B) A sequential model of
the Hodgkin and Huxley type. In
this type of model, the open prob-
ability (P,) is given by the expres-
sion: P, = (1/(1 +]))*, where the
equilibrium constant that defines
the reaction Resting<>Active of
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The finding that DHA is able to activate BK channels in
the absence of 3 subunits, albeit with about a fivefold
loss in potency, led Hoshi et al. (2013c) to search for the
molecular determinants of this § subunit-independent
mode of action of the lipid, for which the fruit fly
came to the rescue. Drosophila melanogaster BK channels
turned out to be insensitive to DHA, and chimeras cre-
ated by mixing regions of Drosophila and human BK
channels made it possible to identify the pore domain
(PD; S5-P loop-S6) as the region that is necessary and
sufficient to recover the full effect of DHA in the ab-
sence of 3 subunits (about a fourfold increase in ionic
currents). From all the point mutations made in the
PD, Y318S was the only one capable of dramatically de-
creasing the DHA effect. Y318 is located toward the C
terminus end of S6. However, before continuing with
the DHA issue, an overview of certain BK activation gate
characteristics having direct implications on the DHA
mode of action must be offered. The BK internal vesti-
bule is much wider than the intracellular mouth of Kv
channels (Li and Aldrich, 2004; Brelidze and Magleby,
2005; Geng et al., 2011; Zhou et al., 2011). Additionally,
large quaternary ammonium ions and the Shaker “ball”
peptide can block closed channels, implying that the
bundle crossing does not hinder the passage of ions
(Wilkens and Aldrich, 2006; Thompson and Begenisich,
2012). Although this evidence strongly suggests that the
BK activation gate is not cytoplasmic like in Kv channels
and may reside in the selectivity filter, there is ample
evidence that certain key residues in the S6 transmem-
brane segment can control channel gating (Wu et al.,
2009; Chen and Aldrich, 2011). In particular, some of
the point mutations introduced in S6 (e.g., L312Q) pro-
duced permanently open channels at all the potentials
studied. The fact that the S332Y mutation located near
the C terminus of S6 renders the BK channel insensitive
to DHA draws attention to the importance of the S6
transmembrane segment in modulating BK channel gat-
ing. Recalling the finding that DHA is able to potentiate
BK currents in the absence of activated voltage and/or
Ca* sensors (Hoshi et al., 2013a), Hoshi et al., (2013c)
advance the hypothesis that this omega-3 lipid modifies
the closed—open equilibrium of the ion conduction gate,
possibly by increasing the forward rate constant with the
B1 subunit playing an amplifying role within the func-
tional effects of DHA binding. How this potentiating
effect of the B1 subunit develops is not clear, as its mod-
ulatory effects on BK channels gating are caused by a
stabilization of the active configuration of the voltage
sensor and to a large increase in the energy barrier that
separates the closed from the open channel configuration
(Bao and Cox, 2005; Contreras et al., 2012). One possi-
bility, however, could be that the interaction between
o and Bl produces structural changes that favor DHA
binding. Whether serine 332 is a key residue in a DHA
binding pocket or if it is part of the coupling system that

transforms DHA binding energy into the pore opening
is an open question. Perhaps the answer will emerge in
the next paper by Hoshi’s group.
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