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Single molecule photobleaching is a powerful tool for determining the stoichiometry of protein complexes. By
attaching fluorophores to proteins of interest, the number of associated subunits in a complex can be deduced by
imaging single molecules and counting fluorophore photobleaching steps. Because some bleaching steps might be
unobserved, the ensemble of steps will be binomially distributed. In this work, it is shown that inferring the true
composition of a complex from such data is nontrivial because binomially distributed observations present an ill-
posed inference problem. That is, a unique and optimal estimate of the relevant parameters cannot be extracted
from the observations. Because of this, a method has not been firmly established to quantify confidence when
using this technique. This paper presents a general inference model for interpreting such data and provides meth-
ods for accurately estimating parameter confidence. The formalization and methods presented here provide a
rigorous analytical basis for this pervasive experimental tool.

INTRODUCTION

The method of single molecule photobleaching has be-
come a popular tool to examine stoichiometry and oligo-
merization of protein complexes. In recent work, this
method has been used to determine the stoichiometry
of a great variety of transmembrane proteins such as
ligand-gated ion channels (Ulbrich and Isacoff, 2008;
Reiner etal., 2012; Yu et al., 2012), voltage-gated ion chan-
nels (Nakajo et al., 2010), mechanosensitive channels
(Coste et al., 2012), and calcium release—activated calcium
channels (Ji etal., 2008; Demuro etal., 2011). Addition-
ally, this method has been used to examine complexes
of other types of proteins such as 3-Amyloid (Ding et al.,
2009), helicase loader protein (Arumugam etal., 2009),
and toxin CrylAa (Groulx et al., 2011), among many
others. The approach consists of attaching a fluorescent
probe (typically GFP or a variant) to a protein subunit
of interest and imaging single molecules. After suffi-
cient excitation, a fluorophore will bleach, resulting in
a step-wise decrease in observed fluorescence. Then, by
simply counting the number of these bleaching steps,
one can observe how many fluorophores were imaged
and thus how many subunits, n, were associated in the
observed complex. However, there is a nonzero proba-
bility, 1 — 6, that any given fluorophore will already be
bleached (or otherwise unobserved), and thus less than
the highest possible number of fluorescence decreases
will be observed. Stated differently, the parameter 0 is
the probability of successfully observing each possible
photobleaching event. As noted by the originators of
this method, the resulting observations are drawn from
a binomial distribution (Ulbrich and Isacoff, 2007), and
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thus the highest observed number of bleaching steps is
the minimum number of subunits in the complex.

As an example, consider the data shown in Fig. 1
(A and B). Here, the distributions of observed bleach-
ing steps reported in Ulbrich and Isacoff (2007) and
Coste et al. (2012), respectively, have been reproduced.
In both of these studies, the investigators are using the
method of single molecule photobleaching to quantify
the assembly of o subunits of the cyclic nucleotide—gated
(CNG) ion channel. These experiments are performed
on the same protein, and both show that the highest
observed number of bleaching steps is four. Note that
these distributions are quite different, as preparation
variability between the two experimental groups has
likely led to differences in fluorophore prebleaching
(i.e., differences in 0). In Ulbrich and Isacoff (2007),
the authors report that 6 = 0.8, and in Coste et al. (2012),
the value is not reported, but I estimate it to be ~0.5,
which is not much lower than other reported values,
such as 0.53 (McGuire etal., 2012). Itis unclear how the
differences in these distributions (and in 6) should impact
the interpretation of these results. Both of these distri-
butions provide evidence that the CNG channel is a tet-
ramer, but to what extent does one of these distributions
provide better evidence in support of this conclusion?

It is not immediately obvious how to determine the
confidence with which the number of subunits can be
inferred from these observations. In particular, it is pos-
sible that the true n is actually larger than the highest
observed number of bleaching steps, but because of the
finite sample size, the true tails of the distribution were
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Figure 1. Example distributions reproduced
from the literature. (A and B) The observed
distributions reported in Ulbrich and Isacoff
(2007) in A and Coste et al. (2012) in B, when
using the method of single molecule photo-
bleaching to assess the stoichiometry of the
CNG ion channel. In both of these distribu-
tions, the highest observed number of bleach-
ing events is four. However, note that these
distributions are quite different, likely because
of preparation variability. It is unclear how
these differences should influence the inter-
pretation of such data. A method has not been

established that takes into account the prop-
m erties of the observations to accurately accept

n= 374

[ CNG channel experiment 0

[ Fit of calculated binomial distribution 1 2

not observed. Alternatively, the data collection algorithm
might have resulted in artifactual observations, causing
an overestimation of n. A method has not been firmly
established to determine whether parameter estimates
are unique and the confidence with which parameters
can be inferred from this data. I show that this infer-
ence is nontrivial because binomial distributions pres-
ent an ill-posed inference problem: there does not exist
a unique combination of n and 6 that could have pro-
duced a particular set of observations. As a result, it may
be highly likely that these data are misinterpreted. To
resolve this disparity, I present a generalized method of
inference that provides accurate estimates of parameter
confidence. The methods developed here will prevent
misinterpretation and will yield more fruitful experimen-
tation and accurate conclusions.

MATERIALS AND METHODS

All simulations and figures were generated using R.

Online supplemental material

A TXT file contains functions written in R that can be used to
implement the methods described in the Results and discussion.
A separate PDF file provides a walk-through for the use of the
R language and the analysis functions contained in the TXT file.
A CSV file contains simulated data in a comma-separated for-
mat; it is used to illustrate how to import and analyze data using
the methods contained in the TXT file. Online supplemental
material is available at http://www.jgp.org/cgi/content/full/
jgp-201310988/DCL.

RESULTS AND DISCUSSION

Bayesian inference

Because the analysis presented in this paper employs
Bayesian inference, this section provides a brief tutorial.
Suppose that we have some probability model with m
parameters {0y, 0,,..., O} = 6. This model will be denoted
p(5%]6 ) for any observable y and quantifies the proba-
bility of observing y given the values of parameters 0.
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and reject hypotheses. Images in A and B are
reprinted with permission from Nature Methods
and Nature, respectively.

It we gather observations {y;, ys,..., 3}, denoted yy,
then the aim of statistical inference is to use observations
yx to infer the true values of parameters 0. Although
it may be simple to obtain a single, optimal estimate of
the parameters given the data, the goal of Bayesian in-
ference is to consider all possible values of the param-
eters and quantify which regions of parameter space are
most consistent with the observations. This is achieved
by constructing a probability distribution over the pa-
rameter space (the posterior distribution), where areas
of higher posterior probability are in better agreement
with the data than areas of lower posterior probability.
In this way, our uncertainty in estimating the parameters
is captured by the posterior distribution of the param-
eters given the data, p(0 |yy). Posterior distributions
are calculated from POyl 0 ), the likelihood of observing
y given 0, and p(6 ), the prior distribution of the
parameters. A prior probability distribution is simply a
quantification of any prior knowledge we might have
about the parameters before conducting an experiment.
Using the posterior distribution, we are able to quantify
the full uncertainty in all model parameters.

Binomial distributions and ill-posed inference

If k fluorescently labeled protein subunits are associated
together, then one might expect to observe k photo-
bleaching steps. However, each fluorophore may al-
ready be bleached, with probability 1 — 6. The likelihood
of observing k bleaching steps, if a total of n steps are
possible, will follow a binomial distribution:

p(k) = p(k|n,0) = Bn(n,0)

"M gyt
(n—k)!k! '

Consider that we have one observed number of bleach-
ing steps, y, and wish to estimate 6 and n. Furthermore,
we wish to estimate the full distributions over parameters
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0 and n that are most consistent with this observation.
From Bayes’ rule, we calculate this posterior probability
distribution as

pO,n | ¥i) o< p(y; | 0,n)p(0) p(n)

= ey po)pn),
(n _J’i)!yﬂ

where p(0) and p(n) are the prior distributions over
the values taken by parameters 6 and n. If N observa-
tions are independent, this proceeds similarly for the
full set yn:

pO,n|yy) <

N n! (1)
[1—==0"a-0y" po)pm).

i (=)l !

As an example of posterior inference, imagine that
we have observations drawn from a binomial distri-
bution with a known n and we wish to estimate 6. Be-
cause we suppose that n is known, the joint posterior
distribution (Eq. 1) reduces to just the posterior dis-
tribution of 6:

p(9|yN,n)oc
N nl

— 07 (1-6)" p(6
]:[(n h 1-6)"" p(6).

We need to decide on a form for the prior distribution
p(0). As 0 is the probability of a binary event, a useful
and flexible form for the prior will be the Beta distri-
bution, Be(a,b). This distribution is defined on the in-
terval [0,1] and has two parameters, e and b. If we have
little prior information about 6, then setting a= 6 =1
results in a flat prior distribution. If, however, we have
a strong guess about 0, then parameters ¢ and b can be
chosen to properly reflect our prior belief. In either
case, the posterior distribution is

PO | yy.n) o

N nl

[15 =50 a-0r o=

i=1 v

N a-1 b-1
[[—""grqooy 20=0")
L=t Bla.b)

where ((a,b) is the proper normalization constant. The
form of this posterior simplifies to a useful result:

PO [yy,m)

N a-1 b-1
H o1 —gy—» 1207
i (n yl)'yz B(a,b)

N

y;+a—1 (1 _ G)n—yfrb—l

Hﬁ(a b) (n— yl)'yl

oc Hgyfrafl (1 _ O)n—yfrb—l

i=1

= 92;’\:71%4”171 (1 _ 9)211 n—y;+b-1 )

It can be seen that this posterior of 0 is also a Beta
distribution:

where
N
A= Zyi +a-1
i=1
and

N
B=) n-y+b-1
i=1

Therefore, if data are drawn from a binomial distribu-
tion, the posterior distribution of ¢ (with respect to a
fixed n) will be a Beta distribution with parameters for
A and B as shown above. The choice of Beta prior will
have little qualitative effect on the findings presented
here and the use of any reasonable prior would yield
the same general conclusions. However, the Beta prior
is particularly appropriate for the parameter 6 and also
results in a simple form for the posterior (Eq. 2). Fig. 2
is an example of the posterior distribution of 6 for some
simulated data with n = 4. The black vertical line is sim-
ply the estimate of 6 that one would calculate by varying
the value of 6 to find a best fit to the model Bn (4,0): this
is the maximum likelihood estimate (MLE). The other
curves in Fig. 2 are the posterior probabilities of 6 for
two hypothetical datasets of different sizes. Note that in
the absence of strong prior information, the maximum
value of the posterior distribution (the maximum a pos-
teriori [MAP] estimate) will be equal to the value of 6 that
we estimate by finding the best fit to the data (the MLE).
In this way, the full posterior distribution over the param-
eter not only provides an optimal point estimate (MAP),
but also provides a confidence about the full range of
the parameter and which values are consistent with the
data. As we would expect, as the number of observations
increases, the resulting posterior distribution will become
narrower, and we will have less uncertainty regarding
the true value of 0. Finally, note that the estimates of 6
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Figure 2. Posterior probability distribution of . An example of
the posterior probability of 6 for hypothetical datasets. The verti-
cal black line represents the optimal point estimate of 6 that
one would calculate by error minimization (the MLE). The other
curves are the posterior probability distributions of 0 for different
sample sizes. Note that as the number of observations increases,
the posterior distribution is narrowed as our confidence about the
true value is improved. Also note that the maximum value of pos-
terior probability coincides with the MLE that would be calculated
by minimizing error. Calculating the posterior distribution over
parameters provides not only an optimal point estimate, but also
a quantification of parameter uncertainty.

(Eq. 2) will depend on the value of » and that the con-
ditional posterior distribution, p(60|yx,n), defines a fam-
ily of distributions for various values of n. This result will
be useful later.

For the experimental setting of single molecule pho-
tobleaching, n is not known but instead needs to be in-
ferred from the data. After gathering some observations,
yx, we can determine the highest observed number of
bleaching steps, Ig, and be tempted to conclude that
n= k. Before doing this, we will want a way to establish
that n = k is highly supported by the data and that all
other n > k are not supported by the data. We want
to calculate p(n|yy), the marginal posterior distribution
over n. This is the probability (over all n) of a particular
n having given rise to the observations. We can directly
calculate the marginal distribution of n for this model.
Consider a single observation y = k. The joint posterior is

Pp(O,n| k) oc 0" (1-6)"" p0) p(n).

n!
(n—k)'k!

Because 6 represents the probability of a binary event,
we use a Beta distribution as the prior, p(6) = Beta(a,b).
For the prior on n, we will use a bounded uniform dis-
tribution to reflect that we have no prior guess or bias as
to the true value. Because this prior of nis flat, the prior
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contributes only a linearly proportional term to the pos-
terior and thus can be ignored. As mentioned previously,
we never know 0 with certainty, so we must consider all
possible values of 6 for each n. The marginal posterior
of nis then found by integrating over 0:

1
Pl K)o [ p(O.n ] ) p(O)pin)d0
0

|
"t 1-6)"t0(1-6) do 3)

o —

o
(=11 T'(k+a)[ (n—k+b)
=Rk T(n+a+b)

for n > k, where I' is the gamma function. The marginal
posterior of n takes the form of this ratio of gamma
functions, and it can be seen that this function is zero
for n < k, is maximized at k, and is monotonically de-
creasing for n > k. For many independent observations,
the relevant posterior, p(n|yy), is just a product of these
functions and will have the general property of being
maximized at the largest observed y and rapidly decrease
for n> k.

Note that the marginal posterior of n (Eq. 3) will de-
pend only on the largest observed y. Consider the case
that the true »nis larger than lg, but because of the finite
sample size, no evidence of the true nwas observed. In
this case, the posterior distribution will always be peaked
at the smallest n that can explain the data, and any greater
n will have much smaller posterior probability. This pro-
vides little ability to compare the evidence from, say, Fig. 1
(A and B). We can ignore the Bayesian approach used
thus far and simply calculate the maximum likelihood
estimate for n given k. If we consider n = k, the com-
puted likelihood will be larger than if we consider any
n> k, as the optimal estimate of 6 will necessarily be
lower than that for n= k. Because of this, the likelihood
is always maximized at the smallest n that can account
for the data. Therefore, typical methods of estimation
will fail in this pursuit, and it is worth understanding why
this is the case. This undesirable property stems from
the fact that this inference problem is ill-posed: there is
generally not a unique solution for »n and 0 for a given
dataset. To visualize this, we can compute the joint pos-
terior distribution (Eq. 1) for simulated data. This joint
posterior is plotted in Fig. 3 A for a region of the param-
eter space in 6 and 7, and areas of lighter color corre-
spond to areas of higher posterior probability (analogous
to lower error between the data and the model). For ex-
ample, if we examine p(6|n = 4,)y), then a horizontal slice
through the joint posterior (at n = 4) corresponds to
our estimate of 6 given that n =4 and this distribution is
peaked around 0.6. Notice that for each 7 > 4, the esti-
mate of 0 systematically shifts to lower values. This must
be the case because if a binomial distribution of n = 10
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Figure 3. Ill-posed inference. (A) Joint posterior distribution of
n and 6, given simulated data, yy. Areas of lighter color reflect
areas of higher posterior probability. Note that n can grow quite
large and a compensation in 6 results in high posterior probabil-
ity. There does not generally exist a unique combination of n and
0 that could produce some particular observations: this inference
problem is ill posed. (B) Data drawn from a binomial distribution
with n =4 and 6 = 0.8. (C) Data drawn from a binomial distribu-
tion with » =4 and 6 = 0.5. In B and C, circles (o) represent the
best fit to a binomial distribution with n = 4, and crosses (+) rep-
resent the best fit to a binomial distribution with » = 5. In C, the
best fits to the data for n = 4 and n = 5 are equally good because
such fits are not unique.

somehow generated the data in Fig. 1, then the failure
probability, I — 6, would have to be quite high to have
generated no observations exceeding y = 4. As a conse-
quence, notice that the joint posterior (Fig. 3 A) is highly
structured, and it is possible for any arbitrary n to have
generated the data with a compensatory decrease in 6.
Furthermore, the most probable estimate for n will always
be the smallest possible one, regardless of the observed
distribution (Eq. 3). As a result of this, methods that
rely solely on likelihood calculation will not be able to
discern the most accurate estimate of these parameters.
To demonstrate how this ill-posed inference impairs
our ability to learn n from data, Fig. 3 (B and C) shows
simulated data meant to mimic the range seen in Fig. 1

(A and B) by drawing from a binomial distribution with
n=4and 6 equal to 0.8 (Fig. 3 B) and 0.5 (Fig. 3 C). In
each case, we are tempted to conclude the true »is four,
but can we make this assertion with equal vigor in both
instances? An obvious approach is fitting binomial dis-
tributions to the data and assessing the quality of fit. The
circles in Fig. 3 represent the best fit to a binomial dis-
tribution with n =4, and it is clear that these fit the data
well in both cases and that we are able to accurately es-
timate the optimal value of 6. However, to be confident
about the assertion that n = 4, we must ask whether these
fits are unique. The crosses in Fig. 3 show the best fit to
a binomial distribution with n = 5. In Fig. 3 B, it is im-
mediately obvious that even the best fit is a poor match
to the data: the n = 5 binomial distribution underesti-
mates the number of observed three and four bleach-
ing steps and also predicts that roughly 10% of the data
should have reflected five bleaching steps, whereas no
five bleaching steps are observed. In this case, it is very
obvious that n = 4. In Fig. 3 C, we cannot be so certain.
Although the n = 4 binomial distribution certainly pro-
vides a good fit to the data, the n = 5 model also fits the
data quite well for all observed bleaching steps. Further-
more, the n = 5 fit predicts that only 1% of the data
should reflect five bleaching steps, and thus we might not
have seen any simply because of the finite sample size. In
this case, fits to the data are not unique and » and 6 can
compensate to produce identically good fits. This stems
directly from the fact that this inference problem is ill
posed, as depicted in the joint posterior distribution
(Fig. 3 A). However, note that the possibility of this un-
derestimation of n depends very strongly on the value
of 6 and qualitatively we can be more confident in the
data in Fig. 3 B than Fig. 3 C. The methods proposed in
the next section quantify this confidence.

Parameter confidence

Returning to example data, such as thatin Fig. 3 (B or C),
suppose we have observed some maximum number of
bleaching steps, k, and are tempted to conclude that
n= k but want to consider the irksome possibility that
n> k, although we did not observe any evidence of it.
We would like to make a statement to the effect of: Given
Nobservations less than or equal to k, we can conclude
with confidence a that the true nis less than k + 1. The
strategy proposed here is similar, in spirit, to classical hy-
pothesis testing, where the null hypothesis is that n > k
and 1 — « quantifies the probability of observing k under
the null hypothesis.

As the null hypothesis, assume that n = k + 1, but
we simply did not observe any y; = k + 1 because of
the finite sample size. For simplicity, assume (unreal-
istically) that we have an exact point estimate of 6 for
n=k +1denoted 6 (this assumption will be relaxed
later). Then the probability of observing an event of
size k +1is
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We then need to calculate the probability of not seeing
this event, given that we have N observations. To do this,
we consider the sampling distribution of events y,= k + 1
under the null hypothesis, Bn(k + 1,8). This results in
another binomial distribution, Bn (N, 9"”), where there
are N chances of observing the event and the probabil-
ity of the eventis 6!, Then the probability of k being
the highest observed y; is p(0|N, 6"*") and our estimate
of confidence, a, is 1 — p(0|N, 9"

a=1-p(0|N,0%")
N! Af Af
:1_ 9k+1 0 1_ 9k+1 N
o=@
=1_ 1_él€+1 N
( ) @

As an approximate guide for experimental design, we
can systematically explore the space of § to understand
how probable this underestimation actually is. Fig. 4 A
plots a (confidence) for a region of # and N and for a
fixed value of k = 4. Again, smaller values of & mean
that there is a higher probability of not observing the
true tails of distribution under the null hypothesis. For
smaller values of «, we cannot be confident that a data-
set with a similar 6 and N was not drawn from a bino-
mial distribution that was larger than indicated by the
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data. For visual ease, the color map in Fig. 4 A focuses
on several contours of «, and the colors threshold all
a values to where they lie within these regimes. From this
systematic exploration, some useful insights emerge. As
we might have guessed, for large 6, the probability of un-
derestimating the true nis trivially small, even for small
datasets. However, for 6 in the range of only 0.5, which
has been seen multiple times in the literature (Coste et al.,
2012; McGuire et al., 2012), this possibility is not so rare.
This same information is presented in Table 1 in a more
accessible form. For concreteness, Fig. 4 B shows o (con-
fidence) as a function of sample size for two values of 6.
For high 0, we can have high confidence in a conclusion
even for a dataset of size 25. Conversely, if 6 is 0.5, then
a dataset of the same size would lead to the wrong con-
clusion with probability approximately 1/2. Returning to
the data from Fig. 1, we can now (approximately) assess
the strength of each of these data sources. We can be
very confident in these data sources as 1 — a < 10° in both
instances. Fortunately, these two examples from the lit-
erature both provide reliable evidence that the CNG chan-
nel is a tetramer, although without using such methods,
we would have been unable to quantify this confidence.

It is also important to establish that our estimate of
confidence with respect to the hypothesis n = k +lisa
lower bound on all conceivable hypotheses n > ko+1.
For simplicity, we will first consider the potential null hy-
pothesis n=k +2. Again, we are assuming that we have an
optimal estimate 6, but now with respect to the model
Bn(k + 2, 9) As above, the probability of observing an
event y, = k +2is %2, Given that we have N observa-
tions, the probability of observing zero events of size
Y= k\ +2is

Akl Ak+2\N
PO|N,0") =(1-0"*)N. (5)
B
0.99 ] —
0.95 1.0 Ve
0.90
|
o8 |
0.75 | —— 0=08
7 0=0.5
|
o 0.6 4 "
3 |
5 |
0.50 2 |
s |
© 044 |
0.25 024
0.0 4
0.00 T T T T T T
o] 20 40 60 80 100

Sample Size

Figure 4. Estimated parameter confidence. (A) Estimated a for various 6 and sample sizes. The value of « is represented by the color
map. For simplicity, contours of a are shown, and the color of each region indicates areas where «a lies between these contours. (B) a as

a function of sample size for two values of 6.
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TABLE 1
Approximate guide for experimental design

6 n
2 3 4 5 6 7 8

0.85 5 8 10 12 15 18
0.8 7 12 16 20 26 32
0.75 9 13 17 24 33 44 60
0.7 11 17 26 37 54 78 112
0.65 15 24 38 59 92 143 221
0.6 19 34 57 97 163 272 455
0.55 26 48 90 165 301 548 998
0.5 35 72 146 293 588 1,177 2,356
0.45 49 110 248 553 1,231 2,737 6,048

This table enumerates how many observations (NN) would be required to achieve a confidence in excess of 0.99 for various values of 6 and n.

The probability of observing an event of size y; = k +1is

pk+1]k+2,0)

B (k+2)!
C((R+2)—(k+1)!(k+2)!
=(k+ 20" (1- ).

9*12+1 a- 9*)(12+2)7(1€+1)

The probability of observing exactly zero of these events,
given a total of N observations is

(6)
PO|N,(k+2)0M2(1-0))=(1-(k+20" 1-0)) .

1.0

Olis2
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06
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Figure 5. Comparison of parameter confidence when consid-
ering multiple models. The black curve is a plot of confidence
versus sample size for the null hypothesis n = k + 1. The gray
curve is the parameter confidence for the null hypothesis n =
k + 2. Itis clear that only the hypothesis n= k + 1 needs to be
considered and will result in an estimate of confidence that is
a lower bound on all possible hypotheses.

Thq probability of seeing no observations of size E+1
or k + 2 is just the product of Equ. 5 and 6. Therefore,
our confidence that true nis not k + 2 goes as

a=1-1-0"N1—(h+26"a-6))y~y. @

Generally, the estimate 6 used in Eq. 5 will be less than
that of Eq. 4 (see Fig. 3 A). However, the confidence esti-
mate in Eq. 7 involves multiplication with an additional
term than Eq. 4. Therefore, the confidence estimated
when considering the hypothesis n = k +2will always be
higher than that for the hypothesis n= k + 1. This is visual-
ized in Fig. 5 where confidence is plotted as a function of
sample size for the null hypothesis n = k +1 as well as for
the null hypothesis n = k+2. Clearly, the estimate of con-
fidence with respect to k + 1 is the most conservative esti-
mate. It is easy to see that this relationship will persist for
all n> k + 1. Because of this, we only need to calculate
confidence with respect to k + 1, as this provides a lower
bound on confidence with respect to all possible 7 > k.

The previous discussion provides a notion of confi-
dence only if we know the value of 6 exactly. As this is
never the case (Fig. 2), we need to generalize Eq. 4 to
include our uncertainty in the value of 6. This uncer-
tainty is quantified by the conditional posterior distribu-
tion, p(f|yn, k + 1), with respect to the null hypothesis
n=k + 1. Our estimate of confidence should consider
all possible values of 6, weighted by their posterior prob-
ability. In particular,

1
a=1- jp(0|N,9’5+1)p(9|yN,z€+1)d9

0
1

-1- j (0| N,0"")Be(A, B)dO (®)
0
1
oL [q_pi\Npd B
T J‘(l 0 1 \NoA(1-0)2 a0,

0
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where A and Bare calculated from observed distribution
asin Eq. 2. In the absence of a simple form of the integral
in Eq. 8, we turn to Monte Carlo integration. Calculation
of a entails integrating a function over a probability dis-
tribution. In particular, integration is over the condi-
tional posterior of 6, i.e.,

1
[r© 0135+ 10,
0

where f(0) is the probability of observing zero events of
size k +1 under the null hypothesis. If we can draw inde-
pendent and identically distributed (iid) samples from
a probability distribution, then a finite number of such
samples can be used to approximate the integration.
For example, if we draw S samples § from the distribu-
tion p(0), then

I -
Jromexne~3r6).

Fortunately, the form of the conditional posterior of 0 is
simple (Eq. 2), so generating iid samples, 6, can be
achieved by drawing Beta random variables: § ~Be(A,B).
Then a can be estimated as

1 S A \h+1
~]l—-— 0|N, (6.
a S ;:1 PO N,(6,)") o

S ~
=1—12(1—(9~i)k+1)N.
S i=1

In this way, a proper estimate of confidence can be
calculated that takes into account the total uncertainty

091
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in all of the model parameters. The Monte Carlo inte-
gral in Eq. 9 converges quickly as is shown in Fig. 6 A,
which is a plot of the estimate of a (for some simulated
dataset) as a function of the number of samples, 6. In
Fig. 6 B is a comparison of the estimate of confidence as
calculated using the two methods developed so far. The
smooth curve is a plot of confidence as a function of
sample size for a point estimate of 6 (¢, ). The circles
are the corresponding estimate of confidence using the
Bayesian model (o), which takes into account the full
uncertainty in 6. Generally, the simplified estimation of
confidence (¢ P ) overestimates confidence because of
the assumption that 6 is known with certainty. Indeed,
the estimated confidence when considering the full pa-
rameter uncertainty is consistently less than with the sim-
plified approach, and thus this method affords a more
realistic and conservative estimate of parameter confi-
dence. Finally, note that as Nincreases, so too will A and
B (of Eq. 2). The result is that the conditional posterior
of 0 becomes narrowed and more probability mass is
located closer to the optimal estimate, § (see Fig. 2). In
the limit of large N, the posterior of ¢ shrinks to a point
estimate, and confidence calculated via Eq. 8 converges
exactly to Eq. 4 (see also Fig. 6 B). Thus, the Bayesian
method presented here is a generalized approach that
collapses to the more simplified estimate in the limit of
large sample sizes.

I now address a related problem when interpreting
such data, which is discussed only briefly as the basic
method was proposed previously in Groulx etal. (2011).
Consider that an imperfect data collection algorithm
induces artifactual observations into the distribution. In
particular, suppose that the largest number of observed
bleaching steps, k, occurs with an anomalously low prev-
alence and we are tempted to conclude that all y, = £

B =4 o © 0 0 00
o
o
@ J
o
o
(0]
2 S @ o
3 o o o
g
O I
N
o
<
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0 100 200 300 400 500
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Figure 6. Estimation of parameter confidence using Monte Carlo integration. (A) The estimate of confidence from Eq. 9 as a function
of the number of posterior samples, 9, used for Monte Carlo integration. This estimate converges quickly. (B) Confidence as a func-
tion of sample size estimated using a point estimate of 6 (a 9-) and the Bayesian estimate (ay). Itis clear that o; overestimates parameter
confidence and that the true uncertainty in § must be taken into account for an accurate estimate of confidence.
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are artifacts and the true nis k¢ — 1. Given that we have
observed K events of size k, we simply need to consider
the sampling distribution of events of size  under the
hypothesis Bn(k,0) and calculate the rarity of K in this
sampling distribution. As before, this sampling distribu-
tion is binomial, Bn(N,8"""), and we simply calculate
P(K|IN,8""). Previous authors estimated this sampling
distribution using the Poisson approximation to the bi-
nomial distribution and using a fixed estimate of 0 (see
supplemental material in Groulx et al. [2011]). I gener-
alize this by considering the full uncertainty in the esti-
mate of 6. The probability of observing K or fewer
events of size k under the null model Bn(l%,()) will be
denoted v. If we integrate over the uncertainty in 0,
then v is calculated as

1 K . )
7= [| 261Ny a0
0

j=1

1 S K

=5 2| 2PN (10)
i=1| j=1

Ly f (@)Y A

A ])Y i i -

Here, we again draw samples, 8, from the posterior of
0 to use for Monte Carlo integration. This integration is
approximated by the sum over i in the above equation.
The rest of Eq. 10 is the sampling distribution of observa-
tions of size k, and we sum up to Kto calculate the prob-
ability of seeing K or fewer observations. If -y is very small,
it means that our observation of K instances of size k is
quite rare under the model Bn( k,0) and that we might
exclude all observations of size k as artifacts and accept
the hypothesis n = k — 1.1 have provided code for the
implementation of this analysis, as well as the calcula-
tion of a (Eqs. 8 and 4; see Supplemental material.)

A potential complication that has been ignored in
this work is the possibility of multiple complexes within
the same observation volume. This could occur if the
density of complexes is sufficiently high or if complexes
have a tendency to cluster together. In this instance, the
observed distribution of bleaching events would be
drawn from a heterogenous population of species, some
of which contain »n subunits and others which contain
some multiple of n subunits. In fact, this complication
seems to be fairly common in the literature, and the
interpretation of such artifactual data needs to be for-
mally addressed. In previous work, the strategy of fitting
sums of binomial distributions proved successful at
overcoming this complication (McGuire et al., 2012).
This strategy would be useful only to the extent that the
uniqueness of fits could be established. In principle, the
methods presented in this paper could be generalized
to a model of heterogeneous populations of binomially

distributions observations. Such a model would necessar-
ily have more parameters, which would exacerbate the
problem of ill-posed inference. However, I believe that
methods of confidence estimation should be applicable
to a more generalized model. Future work remains to be
done in this area.

Conclusions

Single molecule photobleaching is a pervasive tool for
determining protein association that relies on attaching
fluorescent probes to molecules of interest and counting
distinct photobleaching events. Because there is a non-
zero probability of not observing a particular fluoro-
phore, the resulting distribution of photobleaching steps
will be binomial. Although it seems a straightforward task
to interpret such data and deduce stoichiometry, it was
shown that this inference is ill posed. This means that
many possible combinations of n and 6 can produce very
similar observations. Because there is not generally a
unique and optimal estimate of the relevant parameters
for a given dataset, extracting the stoichiometry can be
error prone without careful analysis. A general inference
model was developed for this type of data that takes into
account the full uncertainty in all model parameters.
Using this framework, methods were developed for hy-
pothesis testing and calculating parameter confidence
that allow for a rigorous interpretation of such data. This
work provides a rigorous analytical basis for the interpre-
tation of single molecule photobleaching experiments.
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