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Skeletal muscle fibers: Inactivated or depleted after

long depolarizations?
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Skeletal muscle consists of large multinucleated fibers
that rapidly contract in response to action potentials
generated in their surface membrane. The fiber’s con-
tractile apparatus is activated by Ca®' ions that are re-
leased into the cytoplasm from an extensive intracellular
storage compartment, the sarcoplasmic reticulum (SR),
in response to the action potential. Ca* concentra-
tion changes in the cytoplasm during the excitation—
contraction (EC) coupling process have been recorded
for several decades, but only in recent years have me-
thods been developed to monitor Ca®" in the SR. In this
issue of the Journal, Robin and Allard make use of this
approach to study the functional basis of changes in
the filling state of the SR during long-lasting mem-
brane depolarizations.

Voltage-controlled Ca?* release in muscle fibers

The efflux of Ca®" from the SR is mediated by ryanodine
receptors (RyRs), members of a family of giant intra-
cellular channel proteins. The subtype 1 (RyR1) forms
regular arrays in specialized zones of the SR membrane
that communicate with the transverse tubules (TTs),
narrow invaginations of the surface membrane, which
conduct the surface action potential into the center of
the fiber (Manno et al., 2013). The TT-SR junction is
the basis of a unique voltage control mechanism for the
rapid opening and closing of the RyR1 in response to ac-
tion potential depolarization and repolarization (Melzer
et al., 1995; Dulhunty, 2006; Baylor and Hollingworth,
2012). Whereas “standard” voltage-activated channels
contain both of their essential functional elements, i.e.,
a voltage sensor and an ion-conducting pore, within
a single protein, the RyR1 protein has no comparable
voltage-sensitive region. The SR membrane does not
seem to develop a substantial voltage, either at rest or
during Ca* release (Fink and Veigel, 1996). Instead, it
relies on the voltage of the TT membrane and the voltage
sensitivity of a separate protein located in this mem-
brane, the dihydropyridine receptor (DHPR; an L-type
Ca* channel, CaV1.1), which is mechanically connected
to the RyR1. The DHPR itself is not a very effective Ca*
channel. Its pore-opening reaction is much slower than
the coupling reaction that bridges the junctional gap
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and gates the RyR1. Moreover, opening the DHPR pore
requires stronger depolarization than does the coupling
reaction, and the Ca® inward current it passes is far
smaller than the Ca®' release flux from the SR (Ursu et al.,
2005). In fact, in some fish (higher teleosts), the DHPR
does not pass Ca®* at all (Schredelseker et al., 2010).

The TT voltage controls the gate of the RyR1 but—
being generated in a separate membrane—has no direct
influence on the driving force for the efflux of Ca®' from
the SR, which is provided by the steep transmembrane
Ca®' concentration gradient between the SR lumen and
the cytoplasmic space. The resting gradient is estab-
lished by the constant action of adenosine triphosphate
(ATP)-driven Ca®" pumps (SERCA) and supported by
Ca®' buffers in the SR lumen, of which calsequestrin is
the most important (Murphy et al., 2009). Calseques-
trin’s high capacity (up to 80 Ca®* per molecule) enables
storage of large amounts of Ca®" in the SR and further
stabilizes the concentration gradient during Ca* release.
The affinity of calsequestrin for Ca® appears to decrease
when the free Ca® concentration in the SR starts to fall,
and it may even act as a funnel that guides Ca®' ions to
the releasing sites (Royer and Rios, 2009). Moreover,
calsequestrin probably also acts as a Ca®" sensor that
modulates RyR permeability depending on the Ca*-
loading state of the SR (Beard et al., 2009).

Voltage-dependent inactivation of EC coupling

Loss of the normal resting membrane potential may
occur in extensively stressed muscle fibers. If not counter-
acted by protective mechanisms, this condition would
lead to maintained activation of Ca*' entry from the
extracellular space and Ca* release from the SR, and to
dramatically increased ATP consumption. Long-lasting
depolarization leads to the spontaneous relaxation of
force, a phenomenon first analyzed by Hodgkin and
Horowicz (1960) in frog muscle using potassium-induced
contractures. They suggested that depolarization “liber-
ates an activator which is used up in generating tension.”
Later, this spontaneous relaxation process was linked
to the immobilization of a transverse tubular charge
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movement (Chandler et al., 1976) and attributed to an
inactivation process. During strong depolarization the
transition from the activatable to the inactivated state
takes seconds to develop, and it takes minutes to fully
recover from inactivation after repolarization. This in-
activation is enhanced by L-type Ca® channel antago-
nists (Berwe etal., 1987; Feldmeyer etal., 1990). Indeed,
like other voltage-dependent channels, the DHPR en-
ters an inactivated state during long-lasting membrane
depolarization (Cota et al., 1984). Inactivation can be
studied by recording the L-type Ca** current or the gat-
ing charge movement produced by the DHPR. Like its
voltage-dependent activation, inactivation of the DHPR
is communicated to the RyR1 and leads to its closure.

Availability curves, i.e., the graded sigmoidal depen-
dence of fractional force or Ca® release activation on
steady-state voltage, belong to the standard repertoire
in the characterization of the EC coupling mechanism.
It is generally assumed that these curves demonstrate
the voltage dependence of the inactivation mechanism
of the voltage sensor. Yet, in experiments in which L-type
Ca* current and Ca®' release are measured in parallel,
Ca” release availability reaches its half-maximal value at
more negative holding potentials compared with the
availability of the Ca®" inward current produced by the
DHPR (Andronache et al., 2009). One explanation would
be that the voltage control of RyR1 inactivation and the
inactivation of the L-type channel permeation pathway
are mediated by different states of the DHPR. A compa-
rable situation is found in the activation process in which
different states of the DHPR, attained at different volt-
ages, appear to control Ca®* release and Ca®* entry, re-
spectively (Garcia et al., 1994; Dietze et al., 2000). In this
issue, Robin and Allard (2013) challenge the view that
DHPR inactivation is the dominant cause of the decline in
Ca” release during long-lasting depolarization. Instead,
they suggest that Ca* depletion in the SR lumen shapes
the “steady-state availability curve” of Ca®* release.

Monitoring Ca?" in the storage compartment

It is obvious that the large voltage-activated flux of Ca*"
from the SR may also appreciably alter its own driving
force. However, separating RyR gating from SR depletion
is difficult. Until recently, indirect methods were used
to estimate the Ca®" content of the SR and its changes
during various Ca** release paradigms (Pape et al., 1995;
Posterino and Lamb, 2003). Within the last couple of
years, progress has been made in imaging intra-SR cal-
cium using fluorescent probes (Rudolf et al., 2006; Ziman
etal., 2010; Sztretye et al., 2011; Robin and Allard, 2012).
Two different methods have been established. One uses
the permeable acetoxymethyl ester form of a synthetic
fluorimetric dye loaded into the SR lumen. The other
uses protein-based Ca®" sensors that can specifically
be targeted to the SR. The indicators should be of low
affinity to avoid saturation by the high resting free Ca*"
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concentration in the SR (~0.5 mM). The advantages and
disadvantages of the two methods have recently been
summarized by Manno et al. (2013). Robin and Allard
(2013) used the first method in their experiments and the
indicator Fluo-5N (Kabbara and Allen, 2001; Ziman et al.,
2010) to record intra-SR Ca®' concentration changes.
They combined this with an electrophysiological tech-
nique termed “silicon clamp” (Pouvreau et al., 2007),
which allows single electrode voltage clamping of large
muscle cells using conventional whole cell patch clamp
circuitry. The notorious problems of space-clamping
muscle fibers are avoided by electrically isolating a small
region of the cell by covering the rest of it with a silicon
grease. The micropipette used for voltage clamping di-
alyses the intracellular space with an artificial solution
to dilute the indicator present in the cytoplasm. In this
study, the pipette solution also contained a very high
concentration of the Ca** chelator EGTA (50 mM). This
ensures that any residual cytoplasmic Fluo-5N produces
negligible fluorescent Ca®* transients during depolar-
ization and, therefore, permits the specific recording
of free Ca®* concentration changes within the SR. Con-
ditions remain remarkably stable for considerable peri-
ods of time in this configuration and thus permit the
repeated fluorimetric recording of Ca** concentration
changes within the SR during the long-lasting prepulse
protocols that are necessary to determine the steady-
state voltage dependence of Ca® release availability.
Under comparable conditions, Robin and Allard (2013)
also recorded cytoplasmic Ca** transients using Fura-2.
Inspecting the decay of a cytoplasmic Ca® transient that
occurs during maintained depolarization does not allow
one to determine whether it results from inactivation of
the release pathway or SR Ca®* depletion. When looking
at the Ca®* level within the SR, however, the distinction
is possible: depletion will cause a decrease, whereas in-
activation will lead to the opposite. Exploiting these
properties, the study came to the interesting conclusion
that the slow decline in Ca* transients recorded with
cytoplasmic indicators during long-lasting depolarization
is largely caused by depletion. Inactivation gets started
only at lower (more depolarized) membrane potential
and follows with a delay.

These findings are compatible with the discrepancy
between steady-state availability curves of Ca* release
and L-type Ca®* current we have observed in our own
experiments (Ursu et al., 2004; Andronache etal., 2009).
We noticed a markedly elevated free cytoplasmic Ca* con-
centration in a voltage range whose center was ~20 mV
more positive than the threshold for release activation.
We viewed this steady increase in basal Ca** concentra-
tion as resulting from a window Ca®* release (Ursu etal.,
2004; Andronache et al., 2009) in analogy to the window
current known from “conventional” voltage-dependent
channels. Window currents arise from the overlap be-
tween activation and availability curves at voltages where
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there is some degree of activation but incomplete steady-
state inactivation. During long depolarizations, even a
small fractional activation of the Ca* release mechanism
may shift a substantial amount of Ca®* from the SR lumen
to the cytoplasmic space. When we depolarized the mus-
cle fiber membrane beyond a certain value, the ele-
vated cytoplasmic basal Ca** concentration declined to
normal values. The fluorescence signal from the intra-
SR Ca* sensor provides a direct demonstration of this
effect in Fig. 3 A of Robin and Allard (2013) and in a
previous paper by the Allard laboratory (Robin et al.,
2012): When the voltage step exceeds a certain depolar-
ization level and duration, the fluorescence signal starts
rising instead of further decreasing, showing that Ca®*
returns into the release compartment. This is interpreted
as occurring because more and more DHPR voltage sen-
sors and consequently RyRs enter inactivated states, and
release finally falls to a level that can be overcompensated
by the activity of the SERCA pumps. Thus, it is likely
that the shape of the steady-state availability curve of
Ca” release assessed by cytoplasmic Ca* indicators does
not simply reflect the voltage dependence of the DHPR-
mediated inactivation gating of the RyR1 but is mixed
with or even dominated by changes of the driving force
for Ca®* efflux from the SR as a result of depletion.

There is agreement in general but deviation in detail
between the present results and our previous findings.
In the present study, the voltage ranges of Ca® release
leading to depletion and inactivation are apparently
farther apart from each other than found in our experi-
ments (Andronache et al., 2009). As a consequence, the
predicted window range is substantially broader. This
mainly seems to result from a considerably more nega-
tive voltage threshold for Ca®* release activation. Because
the experimental design differs, it is not evident what
causes these differences. One possible reason is the buff-
ering to very low cytoplasmic free Ca* concentrations in
the present experiments because the internal solution
did not contain any Ca*". On one hand this may impede
reloading of the SR by the SERCA pumps and might
cause a right shift in the apparent voltage dependence
of DHPR inactivation, on the other hand it may interfere
with Ca*-dependent inactivation (Schneider and Simon,
1988; Jong et al., 1995) and therefore lower the voltage
threshold for activation.

Is SR depletion a player in muscle fatigue?

A further question emerging from these findings is
whether SR Ca** depletion or DHPR inactivation could
contribute to skeletal muscle fatigue caused by strenu-
ous exercise. To investigate this point, Robin and Allard
(2013) studied intra-SR Ca*" changes during various pro-
tocols in which long trains of action potentials or voltage
pulses were applied. Action potentials did in fact produce
significant SR Ca®* depletion but no DHPR inactivation
even if applied in rapid succession. Only repetitions of

rectangular pulses that were considerably longer than
an action potential produced clear evidence of inactiva-
tion, i.e., a recovery of SR Ca?" after an initial decline
during the course of stimulation. According to current
knowledge, it is unlikely that muscle fatigue can be attrib-
uted to a single cellular event; instead, it includes con-
tributions from action potential changes, alterations in
the contractile apparatus, and Ca* release (Allen et al.,
2008). Therefore, the authors’ conclusion that SR deple-
tion may predominantly contribute to fatigue should be
considered with a bit of caution. Their method required
intracellular conditions that are quite far from physio-
logical. ATP turnover was probably far lower than under
normal conditions in working muscle during high fre-
quency stimulation, and the very high concentration of
the Ca* chelator in the cytoplasm likely favored SR de-
pletion. It seems worthwhile to further investigate this
question using less invasive methods. Here, protein-based
Ca” indicators that can be used even in intact muscle
(Rudolf et al., 2006) could show their full potential.
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