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C o m m u n i c a t i o n

I N T R O D U C T I O N

The main function of the heart is to pump blood to 
meet the demands of the body. This pumping activity 
depends on cardiac muscle contraction, which, in turn, 
depends on the interaction of sarcomeric thick and thin 
filaments, which form cross-bridges that generate force. 
Consequently, the pumping capability of the heart is 
determined by the number of cross-bridges capable 
of generating force and the rate at which they cycle 
through unbound, weakly bound, and strongly bound 
(force-generating) states (Hanft et al., 2008; McDonald, 
2011). Therefore, alterations in either of these two fac-
tors can affect cardiac function.

The Frank–Starling law of the heart—as ventricular 
volume (corresponding to muscle length) increases, the 
heart intrinsically strengthens—describes a well-known 
cardiac regulatory mechanism. Although increased 
muscle length generally results in improved force devel-
opment, in parallel with a prolonged time to peak (TTP) 
force and a slowing of relaxation time (Allen and Kentish, 
1985; Monasky et al., 2008, 2010), it is unclear whether 
changes in muscle length per se affect cross-bridge ki-
netics. Some previous studies found that cross-bridge 
cycling kinetics decreased with increased sarcomere 
length (Adhikari et al., 2004; Stelzer and Moss, 2006; 
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Korte and McDonald, 2007), whereas others found that 
sarcomere length has no effect on the rate of cross-bridge 
cycling (Hancock et al., 1993; Edes et al., 2007). These 
previous studies, however, were performed using per-
meabilized cardiac preparations, sub-physiological tem-
peratures, or both. Data obtained under physiological 
temperature and in intact muscle preparations might 
help resolve this discrepancy and clarify the effects of 
muscle length on cross-bridge kinetics.

Various laboratory techniques have been used to 
study cross-bridge cycling, including Edman’s slack test, 
actomyosin ATPase activity, rate of tension redevelop-
ment, and sinusoidal perturbation (Ruf et al., 1998; 
Wannenburg et al., 2000; Brixius et al., 2003). Of these, 
the rate of tension redevelopment (ktr) (Brenner and 
Eisenberg, 1986) has been the most widely adopted ap-
proach. This technique assesses the rate at which force 
redevelops after a rapid slack–stretch maneuver has dis-
connected all cross-bridges. The ktr protocol has been 
used by many investigators and has provided valuable 
information with regard to quantifying the kinetic steps 
in thick and thin filament interactions. However, intact 
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Dynamic force generation in cardiac muscle, which determines cardiac pumping activity, depends on both the 
number of sarcomeric cross-bridges and on their cycling kinetics. The Frank–Starling mechanism dictates that 
cardiac force development increases with increasing cardiac muscle length (corresponding to increased ventricu-
lar volume). It is, however, unclear to what extent this increase in cardiac muscle length affects the rate of cross-
bridge cycling. Previous studies using permeabilized cardiac preparations, sub-physiological temperatures, or both 
have obtained conflicting results. Here, we developed a protocol that allowed us to reliably and reproducibly mea-
sure the rate of tension redevelopment (ktr; which depends on the rate of cross-bridge cycling) in intact trabeculae 
at body temperature. Using K+ contractures to induce a tonic level of force, we showed the ktr was slower in rabbit 
muscle (which contains predominantly  myosin) than in rat muscle (which contains predominantly  myosin). 
Analyses of ktr in rat muscle at optimal length (Lopt) and 90% of optimal length (L90) revealed that ktr was signifi-
cantly slower at Lopt (27.7 ± 3.3 and 27.8 ± 3.0 s1 in duplicate analyses) than at L90 (45.1 ± 7.6 and 47.5 ± 9.2 s1). 
We therefore show that ktr can be measured in intact rat and rabbit cardiac trabeculae, and that the ktr decreases 
when muscles are stretched to their optimal length under near-physiological conditions, indicating that the Frank–
Starling mechanism not only increases force but also affects cross-bridge cycling kinetics.
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134 Length dependence of cross-bridge kinetics

nonbranched trabeculae (average dimensions of 159 ± 11–µm 
wide, 106 ± 7–µm thick, and 1.5 ± 0.1–mm long; n = 11; rat) were 
dissected leaving free ventricular wall at both ends. Muscles with 
a thickness of >150 µm were excluded from analysis to avoid the 
effects of core hypoxia (Raman et al., 2006).

Experimental apparatus
Muscles were mounted in a custom-made bath and connected to 
a force transducer (Scientific Instruments Heidelberg) on one 
end by means of two parallel hooks (to eliminate rotation move-
ment artifacts) and to a linear motor (Scientific Instruments 
Heidelberg) (Xu et al., 2011a,b) on the other end. Vibrations  
associated with the movement of the motor and the flow of the 
superfusate were reduced by placing a small glass slide over the 
bath, and an electronic signaling anti-oscillation unit with an ef-
fective time constant faster than 1.2 ms was used to improve signal 
resolution (Scientific Instruments Heidelberg) (Xu et al., 2011a). 
The muscles were perfused with Krebs–Henseleit solution as 
described in the section above (without BDM and containing 
2.0 mmol/L CaCl2). The solutions were kept at a constant tem-
perature of 37°C and equilibrated with 95% O2/5% CO2. Rat and 
rabbit muscles were stimulated at 4 and 1 Hz, respectively. The 
optimal lengths of the muscles were determined as described pre-
viously (Janssen et al., 2002). Clear striation patterns cannot  
always be observed with intact trabeculae preparations, but 
previous work (Rodriguez et al., 1992) has shown that optimal 
length (Lopt) corresponds to a sarcomere length of 2.2 µm, 
which is close to the sarcomere length at the end of diastole.

Experimental protocol
The rate of tension redevelopment was measured for each rat 
muscle at both the optimal length (Lopt) and at a shorter length, 
L90 (90% of Lopt), close to the in vivo sarcomere length at the end 
of systole. To determine whether experimental order affected the 
results, we measured ktr in the following order: Lopt→L90→Lopt→L90 
in one subset of rat muscles (n = 6) and L90→Lopt→L90→Lopt in a 
second set (n = 5). The K+ contracture plateau (peak) allows for a 
steady-state equilibrium between calcium and force (Varian et al., 
2006). Therefore, we performed all ktr experiments when the 
muscles were under maximal force–inducing K+ contracture, con-
ditions under which calcium concentration is 1 µM or higher, 
which is saturating for force in intact preparations (Varian et al., 
2006, 2009; Monasky et al., 2010). After the muscles were main-
tained in Krebs–Henseleit solution for 15–20 min at either Lopt or L90, 
we induced K+ contracture by switching to a solution containing 

cardiac preparations do not normally produce tetanic 
(fused) contractions, even at very high stimulation rates 
(Slabaugh et al., 2012). This makes measuring ktr, which 
requires a stable level of Ca2+ activation, very difficult. 
The few studies that measured ktr in preparations with 
intact membranes (Hancock et al., 1993; Baker et al., 
1998; Hannon et al., 2001) combined high frequency 
stimulation with irreversible SR poisoning (using cyclo-
piazonic acid or ryanodine) to maintain stable Ca2+ con-
centrations, an approach that is constrained to low 
(nonphysiological) temperatures. Our goal here was to 
design a protocol that allows repeated assessment of ktr 
in intact cardiac trabeculae at physiological body tem-
perature. We found that this could be done reliably and 
reproducibly by using K+ contractures, a technique that 
leads to depolarization of the muscle, causing an influx 
of calcium into the cytoplasm that produces a tetanus-
like steady-state contraction. We then used this method 
to show that an increase in cardiac muscle length leads 
to a decrease in ktr.

M A T E R I A L S  A N D  M E T H O D S

Animal model and trabeculae isolation
For the first part of the study, we assessed three muscles from rab-
bit hearts. Rabbits were anesthetized using 50 mg/kg sodium pen-
tobarbital, delivered intravenously (into the lateral ear vein). 
However, we used rats for most experiments. Male brown Norway 
rats (3 mo old and weighing 250 g; n = 11) were anesthetized 
intraperitoneally with 50 mg/kg sodium pentobarbital. The chest 
wall was opened by means of bilateral thoracotomy, and the heart 
was injected with 1,000 U heparin. In all cases, the heart was rap-
idly removed and perfused via the ascending aorta with Krebs–
Henseleit solution containing (mM) 137 NaCl, 5 KCl, 10 glucose, 
20 NaHCO3, 1.2 MgSO4, 1.2 NaH2PO4, 0.25 CaCl2, and 20 2,3-
butanedione monoxime (BDM) (Bupha-Intr et al., 2009; Slabaugh 
et al., 2012). The BDM prevents contractions and minimizes cut-
ting injury during dissection (Mulieri et al., 1989). The Krebs–
Henseleit solution was equilibrated with 95% O2/5% CO2 
resulting in a pH of 7.4. The right ventricle was opened, and thin 

Figure 1.  Tracings of K+ 
contracture and ktr protocols 
performed in intact rat tra-
beculae. (A) Representative  
K+ contracture in an intact 
rat muscle preparation at L90. 
The ktr protocol was executed 
at the plateau stage of each 
contracture (indicated by ar-
rowhead). Changes in K+ con-
centration are indicated by  
arrows. (B) Representative ktr 
tracing in a single intact mus-
cle at Lopt (value amounted 
to 28.2 s1). The motor po-
sition is shown at the top of  
the tracing.
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linear transformation of the data and used for calculation of ktr, 
where ktr = ln(2) · (t1/2)1. The differences between multiple groups 
were analyzed via two-way ANOVA with a significance threshold of 
P < 0.05. The differences between ktr calculated by monoexponen-
tial curve fit and linear transformation were determined by paired 
Student’s t test with a significance threshold of P < 0.05. The data 
are presented as mean ± SEM.

R E S U L T S

Intact muscle can be used to assess ktr in rat 
and rabbit myocardium
First, we compared ktr in two species: the rat, which ex-
presses the fast -myosin isoform, and the rabbit, which 
expresses the slow -myosin isoform. In Fig. 2 (A and B), 
we show traces of ktr performed in a rabbit muscle. We 
obtained typical force tracings, similar to those described 
in permeabilized muscles at sub-physiological tempera-
tures (Brenner and Eisenberg, 1986). Analyses of dupli-
cate measurements showed that results were repeatable 
and reproducible (Fig. 2 C). ktr is considerably slower 
(10.6 ± 1.2 s1; n = 3) in rabbit than in rat (27.7 ± 3.3 s1; 
n = 11; P < 0.01) under identical conditions (Fig. 2 D), 
indicating that the rate of ktr at physiological tempera-
ture differs with different myosin isoforms.

Next, we investigated the effect of temperature on ktr. 
We observed an increase in ktr as temperature was in-
creased from 27 to 37°C (n = 4 trabeculae, each from 

(mM) 121.4 KCl, 20.6 NaCl, 10 glucose, 20 NaHCO3, 1.2 MgSO4, 
1.2 NaH2PO4, and 6 CaCl2. Once the K+ contracture started, the 
stimulation was turned off and the contracture was allowed to 
reach its plateau (maximum tension) phase. At this point the ktr 
was determined, and the solution was rapidly switched back to 
Krebs–Henseleit buffer (inducing relaxation of the K+ contrac-
ture) and the electrical stimulation was restarted. Muscle length 
was then adjusted to Lopt or L90 as appropriate, and the prepara-
tion was allowed to stabilize at the new length for 15–20 min, after 
which the K+ contracture and determination of ktr protocol were 
repeated. A typical tracing of an entire K+ contracture containing 
a ktr is given in Fig. 1 A for a muscle at L90. An example of a ktr 
tracing is given in Fig. 1 B. ktr was determined through the follow-
ing protocol: the muscle was rapidly shortened to 80% of its 
length during 1 ms (“slack” phase), maintained at this length for 
10 ms, and then rapidly restretched to the original length during 
1 ms. This maneuver disrupts cross-bridges, resulting in a decrease 
in force, followed by an exponential increase in force as the cross-
bridges reattach (Brenner and Eisenberg, 1986; Campbell et al., 
2003). Data were collected at a rate of 10 kHz.

Data analysis and statistics
All data were collected be means of a custom-made application in 
LabView (National Instruments). The cross-sectional areas of the 
muscles were used to normalize absolute force measurements to 
reduce variations among muscles of different diameter. The rate 
of tension redevelopment (ktr) was obtained by fitting the force 
redevelopment curve following the slack–restretch maneuver to 
the equation F = Fmax · (1  ektr(t)) + Finitial (in which F = force, 
Fmax = maximal force, and Finitial = initial force) using a nonlinear 
least-squares fitting method (Kemmer and Keller, 2010). Fitting a 
double exponential did not significantly improve the fit. Addition-
ally, the half-time of force redevelopment, t1/2, was determined by 

Figure 2.  The ktr protocol can be 
performed in intact rabbit myocar-
dium. (A and B) Consecutive ktr trac-
ings in a rabbit trabecula at Lopt. 
(C) Detail of duplicate ktr tracings shows 
the repeatability and reproducibility of 
these analyses. (D) A comparison with 
rat trabeculae, under otherwise iden-
tical conditions, shows that rabbit ktr 
(10/s) is significantly slower than rat 
(30/s) (representative of n = 11 rat, 
n = 3 rabbit).
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reproducibility (Fig. 4 C). Ktr was significantly different 
between the two lengths (P < 0.05), but similar between 
the initial and repeat measurements at each length, P = 
0.84. Quantification of the ktr data by linear transforma-
tion yielded values in close agreement and not signifi-
cantly different from the above data (P > 0.4; not 
depicted). Finally, analysis of residual tension (Fres) after 
ktr revealed a ratio of Fres to Fdev of 0.07 ± 0.05 at L90, 
and this ratio was not significantly (ANOVA; P = 0.85) 
different from that at Lopt (0.09 ± 0.05).

D I S C U S S I O N

We have developed a method for studying the effect of 
muscle length on cross-bridge cycling kinetics in intact 
cardiac trabeculae at physiological temperatures. We 
found that (a) it is feasible to assess in ktr repeatedly in 
intact muscle preparations at physiological temperature 
using K+ contractures; and (b) under these conditions, an 
increase in rat muscle length leads to a decrease in ktr.

We found effects of both different myosin isoforms 
and different temperature on cross-bridge kinetics simi-
lar to those described previously in permeabilized 
muscle at sub-physiological temperatures. ktr for the 
-myosin isoform was significantly faster than with the 
 isoform (Bottinelli et al., 1994; Herron et al., 2001), 
and increased temperature sped up ktr (Hancock et al., 
1996; de Tombe and Stienen, 2007). Given a Q10 of 
2–3, the rate of tension redevelopment in our studies 
(up to 45–50 s1) would virtually be identical to six pre-
viously reported values (average of 9 s1 and range of 
7–13 s1) for rats in skinned preparations at colder tem-
peratures (Wolff et al., 1995; Hancock et al., 1996; 
Fitzsimons et al., 2001; Adhikari et al., 2004; Chen and 
Ogut, 2006; Chandra et al., 2007) and also be very close 
to those obtained in intact SR-poisoned cardiac trabec-
ulae, where ktr at normal calcium was 11 s1 (Baker 
et al., 1998).

different rats), using a stimulation frequency of 1 Hz. 
We measured a Q10 in the range similar to that observed 
in permeabilized preparations (average Q10 of 2.2, 
ranging from 1.9 to 2.8; not depicted). The tempera-
ture dependence of our ktr measurements supports the 
notion that ktr in our experiments reflects cross-bridge 
cycling kinetics in a similar way as it does in permeabi-
lized preparations at sub-physiological temperature.

Increase in muscle length increases maximal  
tension and reduces ktr

Stretching the muscle from L90 to Lopt resulted, as ex-
pected, in a significant increase in twitch tension (Fig. 3 A) 
from 17.0 ± 2.8 to 30.9 ± 3.3 mN/mm2 (L90 vs. Lopt, re-
spectively; P < 0.05). In addition, at longer length, as 
expected (Janssen, 2010a,b), the TTP (Fig. 3 B), which 
measures the time it takes for maximal twitch tension to 
develop, was prolonged from 50.2 ± 1.7 ms at L90 to 55.7 ± 
2.2 ms at Lopt (P < 0.05). Similar results were observed 
for RT50, which is the time from peak twitch force to 
50% relaxation (Fig. 3 C), which increased from 30.2 ± 
1.6 to 37.5 ± 1.5 ms (P < 0.05). The increase in muscle 
length resulted in an increase in the maximal tension 
obtained during the K+ contracture. The maximum 
(plateau) K+ contracture tension was 32.7 ± 5.1 mN/mm2 
at L90 and 67.2 ± 6.6 mN/mm2 for Lopt (Fig. 4 A). Maxi-
mum K+ contracture tension was not affected by time-
dependent rundown; repeat measurements showed 
similar values (35.3 ± 8.0 mN/mm2 for L90 and 61.2 ± 
7.0 mN/mm2 for Lopt; P = 0.80). Maximum K+ contrac-
ture tension between L90 and Lopt was significantly dif-
ferent (P < 0.05).

Ktr decreased as muscles were stretched from L90 to 
Lopt (see example in Fig. 4 B). The average rate of tension 
redevelopment was 45.1 ± 7.6 s1 at L90 and 27.7 ± 3.3 s1 
at Lopt (Fig. 4 C). When ktr for each length was measured 
a second time, the repeat ktr measurements were 47.5 ± 
9.2 s1 for L90 and 27.8 ± 3.0 s1 for Lopt, indicating a high 

Figure 3.  Increasing muscle length results in an increase of twitch force and prolongation of twitch kinetics. (A) Rat muscle twitch 
tension increases with length (P < 0.05). (B) TTP is greater at Lopt than at L90 (P < 0.05). (C) RT50 (time from TTP to 50% relaxation) 
increases significantly as muscles are stretched to Lopt (P < 0.05). *, differences between Lopt and L90. Data are represented as mean ± 
SEM (n = 11).
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(Allen and Kentish, 1985), the effect of sarcomere length 
on cross-bridge cycling rate remains controversial. We 
found that, when intact muscle length is reduced to 
90% of optimal length, the rate of tension redevelop-
ment was significantly accelerated. This is consistent 
with previous studies that used permeabilized cardiac 
preparations at sub-physiological temperatures (Adhikari 
et al., 2004; Stelzer and Moss, 2006; Korte and McDonald, 
2007). However, other studies indicated that sarcomere 
length has no effect on rate of cross-bridge cycling 
(Hancock et al., 1993; Edes et al., 2007). The different 
results obtained in these studies could stem from vari-
ous sources. First, they reflect experiments performed 
with different animal species or strains. Additionally, all 
but one (Hancock et al., 1993) of the past studies used 
permeabilized cardiomyocytes, which do not fully reca-
pitulate intact myocardium. For instance, they do not 
have constant volume behavior when stretched; the in-
terfilament spacing upon stretch may not reduce as 
much in skinned preparations compared with a similar 
stretch in intact muscle. Furthermore, many of these ex-
periments were performed at a temperature range of 
12–27°C, at which the behavior of many physiological 
processes may differ from that at mammalian physiolog-
ical temperatures (37°C) (Little et al., 2012). More-
over, posttranslational modification of myofilament 
targets influences contractile properties, and the in situ 
status of posttranslational modifications may be (partially) 
lost with preparation of the muscle or myocyte for in 
vitro experimentation. As a result, assessment of cross-
bridge cycling rate could thus be affected by prepara-
tion-induced or reduced levels of such modifications 
(Marston and de Tombe, 2008; Monasky et al., 2010). 
In addition, myofilament compliance may affect cross-
bridge cycling rate (Martyn et al., 2002), and the pres-
ence of compliant structures, such as collagen and titin, 
in muscle preparations may render ktr rates at different 

Permeabilized or “skinned” preparations, which have 
typically been used to determine cross-bridge kinetics, 
have produced a wealth of critical knowledge. Although 
they are ideally suitable for highly controlled experi-
ments on cross-bridge kinetics, these preparations are 
devoid of posttranslational modification machinery be-
cause membranous structures have been (partially) re-
moved. This in turn may render inactive or altogether 
removes signaling kinases and phosphatases. However, 
posttranslational modification of contractile proteins is 
encountered under different conditions of preload, fre-
quency, and -adrenergic stimulation, and it has been 
proposed as a mechanism for altering cross-bridge cy-
cling dynamics (Kranias and Solaro, 1982; de Tombe, 
2003; Tong et al., 2004; Layland et al., 2005; Lamberts 
et al., 2007; Varian and Janssen, 2007; Ait Mou et al., 
2008; Hidalgo et al., 2009; Varian et al., 2009; Monasky 
et al., 2010).

We used a modified K+ contracture protocol 
(Holubarsch, 1983; Varian et al., 2006; Varian and Janssen, 
2007; Monasky et al., 2010) to reversibly “tetanize” in-
tact cardiac trabeculae to assess cross-bridge kinetics at 
physiological temperature. This type of contracture in-
duces a reversible steady-state force, without the need 
for compounds that interfere with SR calcium cycling 
(Hancock et al., 1993; Gao et al., 1994; Baker et al., 
1998; Hannon et al., 2001), and can be repeated many 
times in the same muscle. The maximum tension devel-
oped during the K+ contracture did not change between 
duplicate measurements; this suggests that the maximal 
force generating capacity of myofilaments was not affected 
by a prior measurement per se, nor by the passage of 
time during the course of our analyses. Furthermore, 
we found that maximum tension at a given muscle 
length was independent of the order of length changes.

Although the relationship between muscle or sar-
comere length and force development is well known 

Figure 4.  Increase in muscle length decreases ktr in intact rat trabeculae. (A) Increase in muscle length is associated with a significant 
increase in maximal tension during K+ contracture (*, P < 0.05). (B) Superimposed ktr tracings of Lopt and L90 in a single rat muscle. 
The tracings show the initial 100 ms of force redevelopment. (C) Increasing muscle length results in a decrease in ktr (*, P < 0.05). The 
tensions and ktr were not significantly different between duplicate measurements of each group (P = 0.80 [tension] and P = 0.84 [ktr]). 
Data are represented as mean ± SEM (n = 11).
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