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Light inactivation of water transport and protein—protein interactions

of aquaporin—Killer Red chimeras
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Aquaporins (AQPs) have a broad range of cellular and organ functions; however, nontoxic inhibitors of AQP water
transport are not available. Here, we applied chromophore-assisted light inactivation (CALI) to inhibit the water
permeability of AQP1, and of two AQP4 isoforms (M1 and M23), one of which (M23) forms aggregates at the cell
plasma membrane. Chimeras containing Killer Red (KR) and AQPs were generated with linkers of different
lengths. Osmotic water permeability of cells expressing KR/AQP chimeras was measured from osmotic swelling—
induced dilution of cytoplasmic chloride, which was detected using a genetically encoded chloride-sensing fluores-
cent protein. KR-AQP1 red fluorescence was bleached rapidly (~10% per second) by wide-field epifluorescence
microscopy. After KR bleaching, KR-AQP1 water permeability was reduced by up to 80% for the chimera with the
shortest linker. Remarkably, CALI-induced reduction in AQP4-KR water permeability was approximately twice as
efficient for the aggregate-forming M23 isoform; this suggests intermolecular CALI, which was confirmed by native
gel electrophoresis on cells coexpressing M23-AQP4-KR and myc-tagged M23-AQP4. CALI also disrupted the inter-
action of AQP4 with a neuromyelitis optica autoantibody directed against an extracellular epitope on AQP4. CALI
thus permits rapid, spatially targeted and irreversible reduction in AQP water permeability and interactions in live
cells. Our data also support the utility of CALI to study protein—protein interactions as well as other membrane

transporters and I'CCCptOfS.

INTRODUCTION

Aquaporin (AQP) water channels are integral mem-
brane proteins of ~30 kD molecular mass that consist
of six membrane-spanning helical segments surround-
ing a narrow aqueous pore (Walz et al., 1994, 2009; Ho
et al., 2009). AQPs are assembled in membranes as
tetramers in which each monomer functions as an in-
dependent transport unit (Verbavatz et al., 1993; Shi
et al., 1994). AQP-facilitated water transport is involved
in many aspects of mammalian physiology, including
transepithelial fluid transport, brain water balance, cell
migration, and neuroexcitation (Verkman, 2008). AQPs
are important as well in invertebrates, plants, yeast,
and bacteria (Maurel, 2007; Soveral et al., 2010). A sub-
set of the AQPs, called aquaglyceroporins, transport
both water and glycerol, and are involved in fat me-
tabolism, cell proliferation, and epidermal hydration
(Rojek et al., 2008).

Much of the information about the biological func-
tions of AQPs has come from phenotype studies on
knockout mice lacking individual AQPs, in part because
nontoxic inhibitors of AQP function are not available.
The water/glycerol transport functions of some AQPs
are inhibited by Hg*" and other heavy metal ions by
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nonspecific sulfhydryl reaction (Preston et al., 1993;
Zhang et al., 1993); however, heavy metal ions are too
toxic for use in live cells. A few small-molecule AQP in-
hibitors have been described (Ma et al., 2004; Huber
et al., 2009a,b); however, subsequent work has not con-
firmed their activity (Yang et al., 2006, 2008; Sggaard
and Zeuthen, 2008). There is thus a need for ap-
proaches to rapidly and selectively reduce AQP water
permeability in live cells and tissues. For example,
rapid inactivation of water permeability in migrating
cells would allow quantification of the water permea-
bility dependence of lamellipodial dynamics, and hence
clarify proposed cellular mechanisms of AQP-facilitated
cell migration (Saadoun et al., 2005; Papadopoulos
et al., 2008).

Here, we investigated the utility of chromophore-as-
sisted light inactivation (CALI) to reduce AQP-facilitated
water permeability in live cells. CALI relies on the local-
ized generation of oxygen radicals by a fluorophore
after light exposure. CALI has been used to abolish
membrane targeting of lipid-interacting PH domains
(Bulina et al., 2006), interfere with myosin-dependent
cell polarization in whole Drosophila embryos (Monier
etal., 2010), inhibit cell cycle progression (Serebrovskaya
et al., 2011), and ablate specific cells in developing
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zebrafish embryos (Del Bene etal., 2010). Based on our
successful use of fluorescent protein—-AQP chimeras for
a variety of studies on AQP targeting, function, diffu-
sion, and membrane assembly (Umenishi et al., 2000;
Levin etal., 2001; Tajima et al., 2010), we generated chi-
meras of AQPs 1 and 4 with Killer Red (KR), a geneti-
cally encoded protein with efficient photosensitizing
activity (Bulina et al., 2006). We demonstrate CALI-
mediated inhibition of osmotic water permeability in
live cells and investigate the intra- and intermolecular
determinants of CALI efficiency. In addition to the
utility of CALI for rapid and irreversible inhibition of
cell membrane water permeability, we provide evidence
for application of CALI for investigation of protein—
protein interactions.

MATERIALS AND METHODS

DNA constructs

pKillerRed-C was purchased from Evrogen. Human AQP1 and
AQP4 sequences were PCR-amplified from pcDNA3.1-AQP1 and
AQP4, respectively. KR was appended at the N terminus of the
AQP1I sequence as follows (Fig. 1): KR-AQP1 long was generated
using KpnI and Apal restriction sites, in which a 17-amino acid
linker separates KR and AQP1. KR-AQP1 was generated using
BspEI and BamHI sites, giving a 3—amino acid linker. KR-AQP1
short, which was generated by PCR, contains AQP1 at the C termi-
nus of KR in which the seven C-terminal amino acids were de-
leted. We also created a chimera with KR at the C terminus of
AQP1 (AQP1-KR). KR was appended at the C terminus of AQP4
sequences. Membrane-targeted KR (KRmem) was generated by
ligating a duplex of complimentary oligonucleotides encoding
the C-terminal 12 amino acids of H-Ras (GPGCMSCKCVLS) in
frame with the KR sequence. M23-AQP4 containing an extracel-
lular myc tag has been described previously (Crane and Verkman,
2009). All constructs were verified by sequence analysis.

Cell culture and transfection

Fisher rat thyroid (FRT) cells (American Type Culture Collection
CRL-1468) were cultured in Coon’s modified F-12 medium
(Sigma-Aldrich) supplemented with 10% fetal bovine serum, 2 mM
glutamine, 100 U/ml penicillin, and 100 pg/ml streptomycin.
U87MG cells (human glioblastoma-astrocytoma, American Type
Culture Collection HTB-14) were cultured in DME supplemented
with 10% fetal bovine serum, 2 mM glutamine, 100 U/ml penicillin,
and 100 pg/ml streptomycin. Cells were maintained at 37°C in
5% CO9/95% air. For CALI, cells were seeded on glass cover-
slips and transfected with the respective DNA constructs
in antibiotic-free medium 12-24 h before experiments using
Lipofectamine 2000 (Invitrogen) according to the manufac-
turer’s instructions.

Osmotic water permeability

Osmotic water permeability was measured from the kinetics of
cell swelling after rapid reduction in extracellular osmolality
from 300 to 150 mOsm. Cell swelling causes instantaneous di-
lution of cytoplasmic chloride, which was detected from the
fluorescence of the genetically encoded fluorescent protein,
YFP-H148Q/V163S (Galietta et al., 2001). Cells expressing YFP-
F148Q/V163S alone or together with an AQP/KR chimera were
mounted in a custom perfusion chamber. YFP-H148Q/V163S
fluorescence was recorded at 2 Hz for 60 s using an inverted epi-
fluorescence microscope (TE200S; Nikon) equipped with a 40x
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objective lens and an FITC filter set. Single-cell fluorescence was
quantified using Fiji software (http://fiji.sc/wiki/index.php/Fiji).
After background subtraction, YFP fluorescence versus time
was fitted to a single exponential function to give the exponen-
tial time constant 7. Percentage inhibition was computed as:
% inhibition = 100 [1 — (7 'car — 7 %)/ (7% — 7 '4) ], where
771y is the water transport rate in cells outside the bleached area,
7 eanr is the rate in bleached cells, and the 77, is the baseline,
AQP-independent water transport rate measured in FRT cells
expressing YFP alone.

Light inactivation

For CALI KR fluorescence was bleached for specified times using
a TR/Cy3.5 filter cube (540-580 nm transmitted light at 18 mW/ cm?;
Chroma Technology Corp.) through a 100x oil-immersion objec-
tive lens (numerical aperture 1.4; Nikon), which bleached a 175-pm-
diameter circular area. After bleaching, osmotic water permeability
was measured as described in the previous paragraph.

Cell viability assay

Cell viability after CALI was determined using SYTOX green
(Invitrogen). After CALI as described in the previous paragraph,
cells were incubated for 10 min with 5 pM SYTOX green in PBS.
As a positive control, cells were incubated for 10 min with 0.3%
Triton X-100 before SYTOX green staining.

Gel electrophoresis and immunoblot analysis

SDS/PAGE was done using NuPAGE 4-12% Bis-Tris precast gels
(Invitrogen). Proteins were blotted onto polyvinylidene difluo-
ride (PVDF) membranes (Millipore) in NuPAGE transfer buffer.
AQPI1, AQP4, and myc-epitope tagged AQP4 were immunode-
tected using polyclonal antibodies (Santa Cruz Biotechnology,
Inc.). Blue-native PAGE (BN/PAGE) was performed as described
previously (Rossi et al., 2011).

CALI of cell homogenates

FRT cells were transfected with M1-AQP4-KR or M23-AQP4-KR,
each together with unconjugated AQP1. In some experiments,
FRT cells were transfected with M23-AQP4-KR together with M23-
AQP4 containing an extracellular myc tag. At 24-28 h after trans-
fection, cells were detached using trypsin, pelleted, and lysed in
50 pl of native buffer (500 mM e-aminocaproic acid, 50 mM imid-
azole, pH 7.0, 12 mM NaCl, 10% glycerol, 1% Triton X-100, and
protease inhibitor cocktail). The cell homogenate was transferred
to a coverglass and subjected to CALI using a 561-nm argon ion
laser to reduce KR fluorescence by >95%. Cell homogenates were
analyzed by BN/PAGE and immunoblotted with anti-AQP4, anti-
AQP1, and/or anti-myc antibodies.

Total internal reflection fluorescence microscopy (TIRFM)
TIRFM was done using a microscope (Eclipse TE2000E; Nikon)
equipped with a through-objective TIRF attachment and a 100x
oil immersion objective lens (numerical aperture 1.49). M23-
AQP4-GFP and M23-AQP4-KR fluorescence were excited using an
argon ion laser and appropriate filter sets. Images were acquired
using a deep-cooled charge-coupled device camera (QuantEM
512SC; Photometrics).

Neuromyelitis optica (NMO)-IgG binding

NMO serum was obtained from an NMO-IgG seropositive pa-
tient. Purified IgG from NMO serum was isolated using a
Melon Gel IgG Spin Purification kit (Thermo Fisher Scien-
tific). US7MG cells transfected with M23-AQP4-KR or M23-
AQP4 + cytoplasmic KR (as control) were incubated in blocking
buffer (PBS containing 6 mM glucose, 1 mM pyruvate, and 1%
BSA) for 20 min followed by 30 min of incubation with puri-
fied NMO-IgG (1:100 dilution in blocking buffer). Cells were
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linker

KR-AQP1 NH, BaElGE AQP1
239aa 3aa 269 aa

KR-AQP1 short NH, NAU/ElCE] AQP1
232aa 2aa 269aa

AQP1-KR NH, Ivitele]

KillerRed

M1-AQP4-KR  NH, [VI&IY

M23-AQP4-KR NH, BSlel2

then rinsed with PBS three times and labeled with Alexa Fluor
488-conjugated goat anti-human secondary antibodies (1:1,000
dilution in blocking buffer; Invitrogen). CALI was performed
as described in the previous paragraph. Images were analyzed
to compute area-integrated, background-subtracted Alexa Fluor
484 fluorescence within and outside of the KR bleached area.

RESULTS

To apply CALI for spatially targeted inactivation of
AQP-mediated water transport in live cells, chimeras
were generated consisting of KR and AQPs 1 or 4 (Fig. 1).
KR is a genetically encoded photosensitizer. Light inac-
tivation by KR is thought to involve the local generation
of reactive oxygen species (ROS) and consequent dam-
age to nearby proteins (Liao etal., 1994). AQP1 assembles
at the cell plasma membrane in tetramers (Verbavatz
etal., 1993), where it freely diffuses (Crane and Verkman,
2008). KR was appended to the N terminus of AQP1
because of'its shorter length compared with the AQP1 C
terminus and because N-terminal GFP-AQP1 chimeras
were found previously to be functional and efficiently
processed (Umenishi et al., 2000). Linkers of different
lengths connecting KR and AQP1 were tested. We also
generated an AQP1-KR chimera with KR appended at
the AQP1 C terminus.

AQP4 is another water-selective transporter, which
is expressed in two isoforms produced by alternative
splicing: a long isoform with translational initiation
at Met-1 (M1-AQP4) and a short isoform with trans-
lation initiation at Met-23 (M23; Yang et al., 1995;
Lu et al., 1996). M1-AQP4 tetramers freely diffuse in
the cell plasma membrane, whereas M23-AQP4 tet-
ramers assemble in large, nearly immobile aggregates
called orthogonal arrays of particles (OAPs; Yang
et al., 1996; Verbavatz et al., 1997). Because N-terminal
interactions are responsible for OAP formation by

KR-AQP1 long NH, BNIEEE] AQP1
239aa 17aa 269aa

COOH 511 aa

Figure 1. KR/AQP chimeras. (left) Sche-
matic of a KR/AQP1 chimera with KR at the
AQP1 N terminus. (right) Chimeras gener-
ated for CALI studies, including three AQP1
N-terminal chimeras of different lengths.
Linkers of 17 and 3 amino acids separated KR
and full-length AQP1 in KR-AQP1 long and
KR-AQPI, respectively. In KR-AQP1 short,

COOH 525 aa

COOH 503 aa the seven C-terminal amino acids of KR were

truncated. AQP1-KR and AQP4-KR (M1 and
M23) were generated as C-terminal chimeras.

EaeB COOH 510 aa
269aa 2aa 239aa

2 H COOH 576 aa
269aa 17aa 239aa

EaERN COOH 553 aa
246aa 17aa 239aa

M23-AQP4 (Crane and Verkman, 2009), KR was ap-
pended to the AQP4 C terminus. AQP4-GFP chimeras
were shown previously to be functional and processed
efficiently (Tajima et al., 2010). These constructs
allowed investigation of the intramolecular and in-
termolecular determinants of CALI inactivation of
AQP water permeability.

Each of the chimeras was expressed in FRT cells,
which were chosen for their low basal water permeabil-
ity, absence of AQP expression, and efficient transfec-
tion. A new fluorescence method was developed to
measure osmotic water permeability in transiently
transfected cells expressing KR/AQP chimeras. The
method uses a genetically encoded fluorescent chlo-
ride sensor (YFP-H148Q /V163S), which was developed
previously by our laboratory (Galietta et al., 2001), to
follow the kinetics of decreasing cytoplasmic chloride
concentration that accompanies osmotically induced
cell swelling. Cells were transfected with YFP alone or
together with a KR/AQP chimera. The time course of
YFP fluorescence was measured in response to a rapid,
twofold dilution of the extracellular solution. For
CALI, a small circular area was illuminated with red
light using a high-magnification (100x) objective lens,
which bleached KR but not YFP fluorescence (Fig. 2 A).
Osmotic water permeability was then measured at
lower magnification (40x) to enable visualization of
cells that were exposed to the red light as well as non-
exposed cells. KR bleaching was rapid, with 50% loss
of red fluorescence in <10 s (Fig. 2 B). Cell viability
was not affected by CALI as shown by vital dye exclu-
sion (Fig. 2 C).

With SDS/PAGE and AQP1 immunoblotting, the
KR/AQPI1 chimeras expressed in FRT cells migrated
at their appropriate molecular sizes, with no nonconju-
gated AQP1 seen (Fig. 3 A, top). For comparison, AQP1
(in kidney homogenate, left lane) and a GFP-AQP1
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Figure 2. Photobleaching of KR-AQP1. (A) FRT cells coexpressing a YFP chloride sensor (green) and KR-AQP1 short (red) were
imaged at 20x magnification before (top) and after (bottom) CALI (exposure to red light for 60 s) in the indicated circular regions
(circles). (B) Fluorescence of YFP and KR during CALI (error bars indicate standard error [SE], n = 4). (C) Cell viability assayed after
CALI (0.3% Triton X-100 as a positive control). Dead cells were stained green (SYTOX).

chimera (second lane) are shown. Fig. 3 A (bottom)
demonstrates the YFP method for measurement of
osmotic water permeability as applied to FRT cells ex-
pressing (nonconjugated) AQP1. After rapid reduction
in extracellular osmolality, YFP fluorescence increased
in an approximately exponential manner with a time
constant of 1.5 + 0.2 s.

Fig. 3 B shows slow osmotic cell swelling in control
(non-AQP1l-expressing) cells, which was much more
rapid in cells expressing each of the three KR/AQP1
chimeras. Fig. 3 C summarizes osmotic swelling rates.
Although CALI had little effect on water permeability
of the KR/AQPI construct with the longest linker
(KR-AQP1 long), water permeability was reduced by
45% and 80% for KR-AQP1 and KR-AQP1 short, re-
spectively. CALI of a C-terminal AQP1/KR chimera
did not reduce water permeability, nor did CALI of
cells coexpressing AQP1 and a membrane-targeted KR.
CALI efficiency was measured as a function of the
time of red light exposure. Fig. 3 D (top) shows lower
water permeability with more prolonged red light ex-
posure. The data summary in Fig. 3 D (bottom) indi-
cates an approximately exponential reduction in
osmotic water permeability with red light exposure
time, with a maximum ~80% reduction. The figure inset
shows a nonlinear relationship between percentage
water transport inhibition and percentage KR bleach,
which suggests a cooperative mechanism in which more
than one “hit” is required to produce inactivation.

CALI measurements were also done for KR/AQP4
chimeras. BN/PAGE, which has been used to resolve
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supramolecular AQP4 aggregates, shows the presence
of aggregates in cells expressing M23-AQP4-KR but
not M1-AQP4-KR (Fig. 4 A, left). TIFRM of the trans-
fected cells confirmed aggregate/OAP formation by
M23-AQP4-KR but not by M1-AQP4-KR (Fig. 4 A, right).
Fig. 4 B shows representative data for osmotic cell swell-
ing and Fig. 4 C summarizes swelling rates. Both M23-
AQP4-KR and MI-AQP4-KR substantially increased
osmotic water permeability compared with control
(non-AQP4-expressing) cells. CALI resulted in 42% in-
hibition of water permeability of M1-AQP4-KR, com-
pared with 75% for M23-AQP4-KR. The increased CALI
efficiency for M23-AQP4-KR is likely the consequence
of AQP4-M23 clustering in the plasma membrane and
intermolecular CALI effects.

The enhanced CALI efficiency found for M23-AQP4
aggregates suggested to us the possibility of applying
CALI to study protein—protein interactions. As a test
example, CALI of AQP4-KR was done to attempt to dis-
rupt the interaction of AQP4 with an anti-AQP4 antibody
that binds to an extracellular AQP4 epitope (Fig. 5).
This antibody has been implicated in the neuroinflam-
matory demyelinating disease NMO, in which antibody-
AQP4 binding causes astrocyte damage in the central
nervous system (Jarius and Wildemann, 2010). Purified
NMO-IgG was bound to live US7MG cells expressing
M23-AQP4-KR, or, as a control, unconjugated M23-
AQP4 and cytoplasmic KR. Fig. 5 shows that after
NMO antibody binding followed by labeling with an
Alexa Fluor 488-labeled secondary antibody, CALI re-
sulted in ~70% reduction in NMO-IgG binding in
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Figure 3. Reduced osmotic water permeability of KR/AQP1 chimeras after CALL FRT cells were transfected with YFP alone or together

with indicated KR/AQP1 chimeras. (A, top) AQP1 immunoblot after SDS/PAGE of cells expressing indicated KR/AQP1 chimeras. Also
shown are AQP1 (in kidney lysate) and FRT cells expressing a GFP-AQP1 chimera. Gels that are apart were run separately. (A, bottom)
Time course of YFP fluorescence in cells expressing AQP1 (without KR) after rapid reduction in osmolality of the extracellular solu-
tion from 300 to 150 mOsm. (B) Osmotic water permeability as in A (bottom) for FRT cells expressing YFP and KR in cytoplasm, KR
targeted to the plasma membrane (KRmem), and indicated KR/AQP1 chimeras. (C) Summary of relative osmotic water permeabilities
(expressed as reciprocal exponential time constant 71 deduced from experiments in B (n = 5-8 cells on three cover glasses, error bars
indicate SE; *, P < 0.01). (D) Dependence of AQP1 water permeability inactivation on KR bleaching for KR-AQP1 short. (D, top)
Osmotic water permeability in cells exposed to CALI for the indicated times. (D, bottom) Relative water permeability versus CALI bleach
time (n = 5-8 cells on three cover glasses, error bars indicate SE; *, P < 0.01). (D, inset) Percentage inhibition of water permeability

versus percentage of KR bleach (reduction in fluorescence).

cells expressing M23-AQP4-KR in a circular spot preil-
luminated by the red light, whereas NMO-IgG binding
to unconjugated M23-AQP4 was not reduced.

We postulated that the reduction in NMO-IgG bind-
ing to AQP4 after CALI was caused by generalized
disruption of AQP4 structure. BN/PAGE was done on
homogenates from FRT cells expressing M1-AQP4-KR
or M23-AQP4-KR, each together with unconjugated
AQP1 as a non-KR-conjugated bystander membrane
protein. Fig. 6 A shows that CALI produced extensive
alterations in the gel pattern of M1-AQP4-KR and M23-
AQP4-KR, without effect on AQP1.

Last, to further investigate intermolecular CALI, cells
were transfected with M23-AQP4-KR together with myc-
tagged M23-AQP4, which are expected to co-assemble
in OAPs. CALI performed on cell homogenates produced
extensive alterations in the gel patterns of both pro-
teins, as seen in AQP4 and myc immunoblots (Fig. 6 B).
These data implicate intermolecular CALI, which sug-
gests that ROS produced from light-exposed KR can
affect nearby proteins.

DISCUSSION

We established the utility of CALI, using the pho-
tosensitizer KR, for targeted inactivation of AQP water
transport in live cells. Various light inactivation strat-
egies have been described previously, including dye-
conjugated antibodies (Liao et al., 1994; Lamb et al.,
1997), genetically encoded photosensitizers such as
GFP (Rajfur et al., 2002; Vitriol et al., 2007), and a tetra-
cysteine motif that binds biarsenical-fluorophore con-
jugates (Marek and Davis, 2002; Tour etal., 2003). KR
was used here because of its approximately sevenfold
greater CALI efficiency compared with GFP (Bulina
et al., 2006), and because we were unable to obtain
selective fluorescent biarsenical binding to tetracyste-
ine motifs introduced in various extracellular loops
in AQPs. Given the lack of nontoxic AQP inhibitors,
spatially targeted inactivation of AQP water transport
function provides an incisive tool for the study of AQP
functions, such as cell migration, cell proliferation,
and neural excitation.
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Figure 4. CALI efficiency depends on intermolecular topography. FRT cells were transfected with YFP alone or together with M1-
AQP4-KR or M23-AQP4-KR. (A, left) AQP4 immunoblot after BN/PAGE. Gels that are apart were run separately. (A, right) TIRFM
showing OAP formation by M23-AQP4-KR but not by M1-AQP4-KR. (B) Osmotic water permeability measured by YFP fluorescence, as
in Fig. 3 B. (C) Relative osmotic water permeabilities (error bars indicate SE, n = 5-8 cells on three cover glasses; *, P < 0.01).

Our results provide evidence for both intramolecular ~ a KR fluorophore affects proteins in a radius of 1-6 nm.
and intermolecular CALI, as CALI efficiency depended In OAPs, where M23-AQP4-KR is clustered, ROS thus
on the length of the linker between AQP1 and KR, and  affects AQP4 molecules within some distance from the
on the intramembrane aggregation state of AQP4. CALI  site of ROS production.
inactivation of M23-AQP4-KR caused disruption of myc- BN/PAGE analysis of AQP4 suggested that CALI
tagged M23-AQP4 coexpressed in intramembrane ag-  produces intra- and intercellular crosslinking events
gregates. Prior data indicate ROS production by the  and aggregation. Evidence for CALI-induced aggregate
chromophore during CALI and presumed diffusion of ~ formation by SDS/PAGE was previously described for
ROS over 1-6 nm to inactivate the conjugated protein  purified GST-GFP chimeras (McLean et al., 2009). It is
(Liao et al., 1994; Davies, 2003; Jacobson et al., 2008). thought that CALI results in the modification of spe-
Our data suggest that the ROS produced during CALI  cific amino acid side chains (histidine, tyrosine, trypto-
can inactivate nearby, but not covalently conjugated,  phan, methionine, or cysteine) by ROS (Davies, 2003),
proteins. As diagrammed in Fig. 6 C, ROS generated by ~ which leads to both intra- and intermolecular protein

fluorescent 2°Ab M23-AQP4-KR "
N

0.8
FcaLl 0.6

NMO-1gG

Figure 5. CALI reduces binding of
NMO-IgG to an AQP4/KR chimera.
(left) Schematic showing CALI of cells
expressing M23-AQP4-KR and labeled
with NMO-IgG and a secondary Alexa
Fluor 488 anti-human antibody. (top
middle) CALI (exposure to red light
for 60 s) was performed in the indicated
circles on cells expressing M23-AQP4-
KR and labeled with NMO-IgG and a
secondary Alexa Fluor 488 anti-human
antibody. (bottom middle) CALI of
control cells expressing cytoplasmic KR
and unconjugated M23-AQP4. (right)
Quantification of KR bleaching and loss
of green Alexa Fluor 488 fluorescence
after CALI (n=4, error bars indicate SE;
* P<0.01).

4
M23-AQP4
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cross-linking, aggregation, and loss of activity. The
global disruption of AQP structure likely accounts for
CALI inhibition of AQP4 water transport and autoanti-
body binding.

In conclusion, we demonstrate the utility of KR
for CALI of the AQPs 1 and 4. CALI produced rapid,
spatially targeted, and irreversible inhibition of AQP
water permeability as well as AQP-antibody association
in live cells. Our results support the utility of KR to
study the function and interactions of other membrane
transporters and receptors, such as ion channels.
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Figure 6. Intermolecular CALI in KR/AQP4
chimeras. (A, left) Schematic of cells express-
ing KR/AQP4 chimeras together with un-
conjugated AQP1. (A, right) AQP4 or AQP1
immunoblot after BN/PAGE of lysates from
cells expressing M1-AQP4-KR or M23-AQP4-
KR, together with unconjugated AQP1, with
and without CALIL (B, left) Schematic of cells
expressing M23-AQP4-KR together with myc-
tagged M23-AQP4. (A, right) AQP4 and myc
immunoblot of BN/PAGE of lysates from cells
expressing M23-AQP4-KR together with myc-
M23-AQP4, with and without CALI. Gels that
are apart were run separately. (C) Schematic
I of distance and clustering-dependent CALI in
MI1-AQP4 and in OAP-forming M23-AQP4.
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