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In the auditory system, acoustic information conveyed
by hair cells and auditory nerves is broken up into dif-
ferent components in central neural circuits, which can
then be processed and encoded separately. This process
relies on the generation of a variety of response features
different from auditory nerve activity. Inhibition in
the central circuits proves crucial for the creation and
refinement of these functional response properties.
Previous understanding of inhibitory mechanisms for
auditory information processing has been limited by
the methodology of deriving inhibition indirectly from
spike and membrane potential responses. Recent appli-
cation of in vivo whole cell voltage-clamp recordings
(iVCRs) to auditory cortical neurons directly reveals
the spectral and temporal properties of synaptic inhibi-
tion evoked by auditory stimuli. These findings provide
new insights into how cortical inhibition shapes spike
responses of excitatory neurons through its specific inter-
action with their excitatory synaptic input. This review
highlights our current understanding of cortical in-
hibitory mechanisms underlying several fundamen-
tal functional properties of auditory cortical neurons.
In particular, we propose that the variation in spectro-
temporal pattern of cortical inhibition in relation to
excitation contributes to the functional diversity of au-
ditory cortex.

In the central auditory system, a variety of response
features that do not resemble auditory nerve activity are
found. For example, although the auditory nerve fire
spikes continuously during sound duration, some cen-
tral auditory neurons only respond transiently to the
onset or the offset of sound stimuli (Fig. 1). The firing
rate of the auditory nerve increases monotonically as
sound intensity increases, whereas that of some central
auditory neurons reaches a peak and then declines with
further intensity increments. These diverse functional
properties may set a foundation for parallel processing
of different components of acoustic information. It is
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believed that the generation of many of these novel
response properties depends on inhibitory circuits. How-
ever, the detailed underlying mechanisms remain largely
unclear, as it has been difficult to directly reveal synap-
tic inhibition in previous studies. Recently, in vivo whole
cell recording techniques, especially, those of iVCR, have
been successfully applied to auditory cortical neurons.
These studies provided new insights into the inhibitory
synaptic circuitry basis for the generation and refine-
ment of these functional response properties, even though
many of them are originated in subcortical nuclei.
Cortical responses are know to be strongly influenced
by synaptic inhibition, which plays important roles in
defining frequency-intensity receptive fields (RFs) and
shaping sound-evoked responses of individual cortical
neurons (e.g., Feng and Ratnam, 2000; Wang et al.,
2000, 2002; Ojima and Murakami, 2002; Oswald et al.,
2006). The inhibitory control is mediated by cortical
GABAergic interneurons through their feedforward or
feedback projections. To understand the inhibitory con-
tribution to cortical information processing, two major
questions need to be addressed: (1) How do GABAergic
interneurons respond during cortical processing? (2)
What kind of interplay between coactivated excitatory
and inhibitory synaptic inputs to the cortical neuron de-
termines the inhibitory shaping of its responses?

Response properties of inhibitory neurons

Because of the relative sparseness of GABAergic inter-
neurons, which account for only 15-25% of total corti-
cal neurons (Peters and Kara, 1985; Hendry et al., 1987;
Prieto etal., 1994), our knowledge on in vivo functional
properties of these cells has lagged far behind that of
pyramidal cells. The inhibitory neuron population con-
tains more than a dozen morphologically and neuro-
chemically distinct subgroups (Kawaguchi and Kondo,
2002; Markram et al., 2004). The high heterogeneity of
inhibitory neurons, as well as the technical challenge of
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identifying inhibitory neurons with either extracellular
or intracellular recordings, greatly increases the difficulty
in studying this population of cortical cells. Current un-
derstandings of response properties of cortical inhibi-
tory neurons are mostly on fastspike neurons, which
exhibit distinctive narrow spike waveforms and can
be identified with extracellular recordings (Mountcastle
et al., 1969; Swadlow, 2003; Atencio and Schreiner,
2008; Wu et al., 2008). These cells have also been cate-
gorized as basket or chandelier cells based on mor-
phology, and parvalbumin-positive neurons based on
molecular markers (Kawaguchi and Kondo, 2002;
Markram et al., 2004). Extracellular recording studies
demonstrate that fastspike inhibitory neurons exhibit
different functional properties from excitatory neurons
(Atencio and Schreiner, 2008; Wu et al., 2008). They
display broader spectral tuning, shorter response la-
tency, lower intensity threshold, and higher response
reliability, whereas their preferred frequency is essen-
tially the same as that of excitatory neurons in the same
column. Intracellular recordings further indicate that
the spectral range of excitatory inputs received by fast-
spike neurons is not different from that of nearby excit-
atory neurons (Wu et al., 2008), suggesting that the two
classes of cells receive common thalamocortical inputs.
However, fast-spike neurons are more efficient in con-
verting synaptic input to spike output, resulting in more
broadly tuned spike responses than excitatory neurons.
This observed broader tuning of fastspike neurons is
also consistent with results in other sensory cortices
(Bruno and Simons, 2002; Swadlow, 2003; Niell and
Stryker, 2008; Liu et al., 2009; Kerlin et al., 2010; Ma et al.,
2010). These unique response properties of fast-spike
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neurons place them in a strong position to supply fast,
reliable, and temporally precise feedforward inhibi-
tion to other cells (Gabernet et al., 2005). Functional
properties of other inhibitory neuron subtypes and
their involvement in auditory cortical processing remain
to be addressed.

Approaches to unraveling cortical inhibitory mechanisms

To understand the role of inhibition in shaping audi-
tory cortical function, two approaches have been ap-
plied. First, functional properties of neurons have been
compared before and after removing cortical inhibition
pharmacologically. Local iontophoretic application of
an antagonist of GABA, receptors results in the broad-
ening of frequency tuning of cortical neurons (Wang
et al., 2000, 2002). These results provide evidence for
an inhibitory sharpening of frequency tuning. However,
they could not generate deeper insights into detailed
underlying mechanisms. Second, RF properties of cortical
inhibition have been indirectly derived by examining
spike responses. In a two-tone forward-masking para-
digm, inhibition is revealed by the suppression of re-
sponses to a characteristic frequency (CF) tone caused
by a leading tone (Calford and Semple, 1995; Chen and
Jen, 2000; Sutter and Loftus, 2003; Zhang et al., 2003).
In these studies, it is found that inhibitory RFs flank the
excitatory RFs, leading to the proposal of a lateral inhibi-
tion model. Inhibition has also been estimated based on
the suppression of spontaneous spiking activity (e.g., Qin
and Sato, 2004; Sadagopan and Wang, 2010; Zhou et al.,
2010). Furthermore, intracellular sharp-electrode re-
cording has revealed inhibition as a hyperpolarizing mem-
brane potential response (Ojima and Murakami, 2002).
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Figure 1. New functional response features are generated in the central auditory system. Two examples are shown. First, the discharge
pattern of the auditory nerve in response to tones (marked by the gray line) exhibits a sustained response, with strong firing at stimulus
onset. Many central auditory neurons, however, only exhibit transient responses to the onset or offset (not depicted) of stimulus.
Second, the firing rate of the auditory nerve increases monotonically with the increase of sound intensity and may reach a plateau
at high intensities. Central auditory neurons, however, can be intensity selective, as demonstrated by their nonmonotonic response—

intensity functions.
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The above studies, although providing persuasive evi-
dence for inhibition, cannot give a quantitative mea-
surement of inhibition. For example, in the two-tone
suppression experiments, the leading tone may result
in both excitation and inhibition, and the apparent sup-
pression of the CF-tone response cannot be simply viewed
as a pure inhibitory effect. In addition, short-term plas-
ticity of excitatory and inhibitory inputs should also be
considered because the temporally close two tones may
not activate completely independent pathways.

In previous intracellular or whole cell recording ex-
periments, many attempts to derive synaptic conductances
may have been compromised by the high impedance
of recording microelectrodes. Recently, the successful
application of high-quality iVCR technique opens the
door to probing into synaptic circuits underlying corti-
cal processing. Only with low access-resistance whole
cell recording and sufficient voltage clamp of neuronal
membranes has it become possible to isolate excitatory
and inhibitory synaptic conductances reliably (Wehr
and Zador, 2003; Tan et al., 2004; Wu et al., 2006; Liu
et al.,, 2007). It is worth noting that an evaluation of
clamping quality cannot be based simply on the linear-
ity of current-voltage relationship, but should also be
based on the proximity of measured reversal potentials
of synaptic currents to theoretical values. The iVCR
technique is particularly important and useful for inves-
tigating inhibition because indirect derivations of inhibi-
tion could be problematic, as discussed above. Recent
studies in the primary auditory cortex (Al) using the
iVCR technique have revealed inhibitory patterns un-
derlying several fundamental functional properties of
cortical neurons, such as selectivity for auditory features
and specific temporal response profiles (Wehr and Zador,
2003, 2005; Zhang et al., 2003; Tan et al., 2004, 2007;
Wu et al., 2006, 2008; Liu et al., 2007; Sun et al., 2010;
Zhou et al., 2010). The results provide us with a more
thorough picture on the inhibitory mechanisms underly-
ing auditory cortical processing.

Temporal shaping of auditory responses by

cortical inhibition

Sound-evoked responses of individual cortical neurons
are primarily determined by the temporal integration
of coactivated excitatory and inhibitory synaptic inputs
to the cell. Recent iVCR studies have allowed a detailed
comparison of onset latency between excitation and in-
hibition evoked by the same stimulus. The results re-
vealed that the temporal relationship between excitation
and inhibition is not fixed, but varies in different corti-
cal locations as to fulfill different processing functions.
Three salient excitatory—inhibitory temporal relation-
ships have been observed.

Canonical inhibitory delay. A stereotyped excitatory—
inhibitory temporal relationship is found for layer 4

neurons in the auditory cortex, with the onset of inhibi-
tion delayed by 2-3 ms compared with that of excita-
tion (Wehr and Zador, 2003; Tan et al., 2004; Wu et al.,
2008; Zhou et al., 2010). This relative onset of inhibi-
tion appears constant across different tone frequencies
(Wehr and Zador, 2003). A similar excitation—inhibition
response sequence is also widely observed in other sen-
sory cortices (Douglas and Martin, 1991, 2004; Higley
and Contreras, 2006; Liu et al., 2010). As shown in
Fig. 2 A, the briefly delayed inhibition has three effects
on the membrane potential response: (1) suppressing
the depolarization response level; (2) narrowing the
time window for depolarizing response; and (3) creat-
ing a relatively long period of hyperpolarization after
the initial depolarization. Such excitatory-inhibitory
interplay selectively allows spikes to occur within the
narrow depolarization window while it prevents spiking
during the delayed long period of hyperpolarization
(Fig. 2 A). This leads to transient onset spike responses
in cortical neurons with relatively precise spike timing,
and also allows the neuron to behave as a coincidence
detector for synchronous inputs (Pouille and Scanziani,
2001; Wehr and Zador, 2003; Tan et al., 2004; Higley
and Contreras, 2006). This canonical excitatory-inhibitory
temporal relationship can be attributed to a feedforward
inhibitory circuit, with disynaptic inhibitory inputs pro-
vided most likely by fast-spike inhibitory neurons (Tan
et al., 2004; Gabernet et al., 2005; Wu et al., 2008;
Ma et al., 2010).

Intensity-dependent inhibitory delay. Intensity-tuned audi-
tory neurons are characterized by their nonmonotonic
responses to sound intensities (Phillips et al., 1995; Heil
and Irvine, 1998; Sutter and Loftus, 2003) and have
been proposed to play important roles in encoding
sound loudness and envelop transients (Heil and
Irvine, 1998; Polley et al., 2004). Because auditory nerve
responses all exhibit monotonic rate-level functions,
intensity tuning must be created in the central auditory
pathway, likely through specific spectral and temporal
interactions between excitation and inhibition (Suga
and Manabe, 1982; Faingold et al., 1991; Pollak and
Park, 1993; Calford and Semple, 1995; Ojima and
Murakami, 2002; Wang et al., 2002; Sutter and Loftus,
2003; Sivaramakrishnan et al., 2004). Recent iVCR re-
cordings from intensity-tuned cortical neurons indicate
that although excitatory input already exhibits intensity
tuning, cortical intensity tuning is greatly strengthened
by inhibitory input recruited in an imbalanced manner
(Wu etal., 2006; Tan et al., 2007). As intensity increases,
the amplitude of inhibition increases monotonically,
and the temporal delay of inhibition relative to excita-
tion is shortened. As a result, the suppression of excita-
tion by the inhibitory input is enhanced at intensities
above the preferred intensity, and intensity selectivity
of spike responses is sharpened. More interestingly,

Zhang et al. 313

920z Areniged 60 uo 1senb Aq pd-05901 L LOZ dBl/06168.L/1 L€/€/8¢E L/spd-ajonie/dbl/Bio sseidny//:dpy wouy pepeojumoq



neuron modeling work indicates that even if excitatory
input is not intensity tuned, intensity tuning can still be
generated by shortening the relative onset of inhibition
with intensity increments (Wu et al., 2006) (Fig. 2 B).
This result suggests that controlling the relative timing
between excitation and inhibition can be a good strat-
egy used by synaptic circuits to achieve a de novo con-
struction of intensity selectivity.

Inhibitory advance in layer 6 (L6). L6 of the Al has been
implicated in a major corticothalamic feedback loop. It
receives direct thalamocortical input and conversely
sends feedback projections predominantly to the first-
order thalamic nucleus (Ojima, 1994; Prieto and Winer,
1999; Rouiller and Welker, 2000; Winer et al., 2001,
2005; Kaur et al., 2005; Winer, 2005; Takayanagi and
Ojima, 2006; Lakatos et al., 2007; Llano and Sherman,
2008; Wallace and Palmer, 2008). This corticothalamic
feedback has been thought to mediate thalamic re-
sponses (Villa et al., 1991; Zhang and Suga, 1997; Yan
and Ehret, 2002). However, sensory stimuli do not drive
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spike responses in a large proportion of L6 excitatory
neurons (Tsumoto and Suda, 1980; Sirota et al., 2005;
Zhou et al., 2010), but suppress their spontaneous firing
within the expected tonal RF (Zhou etal., 2010). The sup-
pression of evoked spike responses results from a strong
inhibitory input preceding the coactivated excitatory
input (Zhou et al., 2010) (Fig. 2 C). Such a reversed
excitatory—inhibitory temporal relationship can be at-
tributed to a parallel feedforward circuit in L6, with ex-
citatory and inhibitory inputs both disynaptically relayed
from the thalamus. Because of earlier spiking of the first-
order L6 inhibitory neurons than the first-order excit-
atory neurons (Zhou et al., 2010), the second-order
excitatory neuron would receive inhibition before the ar-
rival of the disynaptic excitatory inputs. It is proposed that
the preceding inhibition may be relieved under specific
conditions, such as during the arrival of attention-related
inputs. Then, the corticothalamic feedback is allowed to
be activated to mediate the induction of sound-specific
plasticity in the auditory thalamus (Zhang and Suga, 2000;
Suga and Ma, 2003; Zhang and Yan, 2008).

Figure 2. Temporal shaping of auditory re-
sponses by cortical inhibition. (A) A brief
delay of inhibition narrows the time window
for membrane depolarization, resulting in
spikes with high temporal precision. (Left)
Relative timing of model tone-evoked ex-
citatory (red) and inhibitory (blue) inputs.
Dashed line indicates the onset. (Middle)
Derived membrane potential response result-
ing from excitation alone (top) or from the
interplay of excitation and inhibition (bot-
tom) using a simple neuron model. Dashed
line indicates the spike threshold. Vertical
lines mark the time window for spike gen-
eration. Vm, membrane potential response;
Vr, resting membrane potential. (Right) Derived

spike responses to tones in different trials.
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nism underlying intensity selectivity. (Left) Blue
curve 1 represents the inhibitory response to
tone of optimal intensity, whereas 2 repre-
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tone at higher intensity is weaker than that at
optimal intensity. (Right) A simulation result
showing the relationship between the peak
amplitude of membrane potential response
and the relative delay of inhibition. (C) Pre-
ceding inhibition silences spike output of
the cortical neuron. (Left) Similar excitatory
and inhibitory synaptic inputs as in A and B,
except that the onset of inhibition is 2 ms earlier
than that of excitation. (Middle) The derived
membrane potential response is lower than
the spike threshold. (Right) The expected
poststimulus spike—time histogram (PSTH)
in response to a tone. The spontaneous firing
is suppressed during tone stimulation.
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Spectral shaping of auditory feature selectivity by

cortical inhibition

In the auditory system, frequency or spectral informa-
tion is mainly coded spatially in a tonotopic map. There-
fore, the spatial distribution of presynaptic neurons largely
determines the spectral range of synaptic inputs to the
postsynaptic cell. Through specific spectral interactions
between excitation and inhibition, feature selectivity rep-
resented by auditory cortical neurons can be enhanced or
even created.

Frequency selectivity. Three models have been proposed
to explain the inhibitory sharpening of frequency selec-
tivity. First, in the balanced excitation and inhibition
model (Fig. 3 A), excitation and inhibition exhibit the
same tuning profiles (Fig. 3 A); thatis, they are cotuned
(Wehr and Zador, 2003; Zhang et al., 2003; Tan et al.,
2004; Oswald et al., 2006). In this model, inhibition

scales down the level of membrane depolarization re-
sponses and thus narrows the frequency range for spike
responses through an “iceberg” or thresholding effect
(Wehr and Zador, 2003; Tan et al., 2004). The cotuned
inhibition can be explained by a feedforward circuit
in which inhibitory neurons providing the inhibition
receive the same set of thalamic inputs as the excitatory
neuron under examination. Second, in the lateral in-
hibition model (Fig. 3 B), the spectral range of inhibitory
inputs is much broader than that of excitatory inputs,
resulting in suppressive sidebands flanking the excitatory
RF and the narrowing of frequency tuning of spike re-
sponses (Sugaand Manabe, 1982; Shamma, 1985; Shamma
and Symmes, 1985; Calford and Semple, 1995; Sutter
and Loftus, 2003; Oswald et al., 2006). This second model
is primarily based on extracellular recording results of two-
tone suppression experiments (Suga and Manabe, 1982;
Calford and Semple, 1995; Sutter and Loftus, 2003),
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Figure 3. Three models for the spectral shaping of auditory feature selectivity by cortical inhibition. (A) Balanced excitation and inhibi-
tion model. (Left) Cotuned frequency tuning curves for excitation (red) and inhibition (blue). CF, characteristic frequency. (Middle)
Tuning curves for membrane potential responses resulting from excitation alone (dashed gray curve) and from integrating excitation
and inhibition (solid black curve). Note that the tuning curve is scaled down without changes in shape. Red dashed line indicates the
level of spike threshold. Green dash line indicates the level of resting membrane potential. Red arrows mark the frequency range for
spike response. (Right) Proposed underlying circuit. The recorded cortical excitatory neuron (triangle cell) receives thalamic inputs
(excitatory) and inhibition from local inhibition neurons (round cell), which are innervated by the same set of thalamic inputs. Thus,
inhibition is disynaptically relayed. “Far” means thalamic input with represented frequency far away from the CF of the recorded neu-
ron. (B) Lateral inhibition model. Note that hyperpolarizing responses (Vm below the resting membrane potential) result in apparent
suppressive sidebands. In this case, the inhibitory neurons receive thalamic input with represented frequency far away from the CF of
the recorded neuron. (C) Approximately balanced excitation and inhibition model. Note that the inhibitory tuning curve has a more
flattened peak than the excitatory tuning curve. The cell is a high-CF cell, so that the excitatory tuning curve is skewed toward the high-
frequency side. The relative inhibition is stronger on the left side than the right side of the excitatory tuning curve. The arrow indicates
the preferred direction, that is, from high frequency to low frequency (downward FM sweeps). Upward sweeps would activate an earlier
strong inhibition, which would suppress later activated strong excitation. Compared with the model in A, the membrane potential tun-
ing is further sharpened. In the circuit, the cortical excitatory neurons connecting to the recorded cell have narrower frequency tuning
of spike response compared with the inhibitory neurons connecting to the same cell. As a result, inhibitory inputs are broader than
summed excitatory inputs.
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and can only be explained by a circuit in which inhibi-
tory neurons receive a broader range of thalamic inputs
than excitatory neurons. Third, detailed analysis of fre-
quency tunings of synaptic inputs at high resolutions
reveals that the spectral range of inhibition is in fact
slightly narrower than that of excitation, and the shapes
of excitatory and inhibitory tuning curves are different
(Wu et al., 2008; Sun et al., 2010). The inhibitory tun-
ing curve appears broader, especially within a putative
spiking frequency range around the CF (Fig. 3 C). This
current model unites the two previous models by dem-
onstrating that on a global scale, excitation and inhibi-
tion are approximately balanced, but on a finer scale,
excitation and inhibition can be significantly imbal-
anced. It also fits better with the properties of inhibitory
neurons. Recordings from layer 4 fast-spike inhibitory
neurons show that their spectral range of synaptic in-
puts (which is primarily determined by thalamocortical
inputs) is not different from nearby excitatory neurons,
but spike responses of fast-spike inhibitory neurons are
more broadly tuned than those of excitatory neurons
(Atencio and Schreiner, 2008; Wu et al., 2008). Because
layer 4 excitatory neurons receive a significant amount
of excitatory input from other cortical excitatory neu-
rons (Liu et al., 2007; Happel et al., 2010; Zhou et al.,
2010), this differential tuning between fast-spike inhibi-
tory neurons and excitatory neurons introduces a break
of excitatory-inhibitory balance; that is, inhibitory inputs
are more broadly tuned than summed excitatory inputs
(Fig. 3 C). Compared with the cotuned inhibition, the
more broadly tuned inhibition around the preferred
frequency has an advantage in that it can exert an equiv-
alent lateral inhibition effect and further narrow the
frequency range of spike responses (Wu et al., 2008).

Frequency-modulated (FM) direction selectivity. Neurons
selective for direction of FM sweeps are found in the
Al (Suga, 1965; Mendelson and Cynader, 1985; Zhang
et al., 2003). Mapping studies suggest that direction
selectivity is topographically ordered in parallel with fre-
quency representation. Low CF neurons prefer upward
sweeps, whereas high CF neurons prefer downward
sweeps (Heil et al., 1992; Zhang et al., 2003; Godey
et al., 2005). It is found that the spectral distribution
of excitatory synaptic input is asymmetric or skewed in
direction-selective neurons, and the skewness is strongly
correlated with direction selectivity (Zhang et al., 2003).
However, the skewed excitatory inputs by themselves
do not account for the generation of direction selectiv-
ity, as the integration of single-tone evoked excitatory
inputs sequentially to simulate FM sweep stimulation
results in an optimal direction for excitation opposite to
the cell’s preferred direction (Zhang et al., 2003). The
correct directional preference on the other hand can
be achieved by spectral and temporal interplays between
excitatory and inhibitory inputs. There appears to be a
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spectral offset between excitation and inhibition in
direction-selective neurons (Suga, 1965; Shamma et al.,
1993; Nelken and Versnel, 2000; Zhang et al., 2003;
Razak and Fuzessery, 2006; Ye et al., 2010), and relatively
stronger inhibition appears on one side of the excitatory
frequency tuning curve in a manner consistent with the
cell’s preferred direction (Zhang et al., 2003; Ye et al.,
2010). It has been thought that this spectral offset is im-
portant for the generation of direction selectivity. In fact,
the apparent offset can be attributed to the broader tun-
ing of inhibition than excitation and its less asymmetric
tuning shape (Fig. 3 C). When FM sweeps are applied in
the preferred direction, both strong excitation and in-
hibition are activated earlier, but the delayed nature of
inhibition allows spiking response to be generated. In
contrast, in the opposite direction, relatively strong in-
hibition is activated earlier, which effectively suppresses
the later arriving strong excitation and prevents spiking
response (Zhang et al., 2003). Thus, the detailed excit-
atory—inhibitory imbalance can contribute significantly to
direction selectivity in response to FM sweeps.

Variety of excitatory—inhibitory interplay

and functional diversity

Having been supported by several earlier iVCR studies
(Wehr and Zador, 2003; Zhang et al., 2003; Tan et al,,
2004; Oswald et al., 2006; Tan and Wehr, 2009), the con-
cept of balanced excitation and inhibition has received
broad attention. The balance is characterized by a rela-
tively constant ratio between amplitudes of excitation
and inhibition across different stimuli. In addition, a ste-
reotyped sequence of excitation followed by inhibition
is evoked by sensory input, with the time interval be-
tween them relatively constant across stimuli. Under bal-
anced excitation and inhibition, functional selectivity
is primarily determined by the property of excitatory
synaptic inputs, and inhibition only helps to sharpen the
selectivity. Considering that central auditory neurons
exhibit a wide variety of functional properties very dif-
ferent from auditory nerves (Schreiner et al., 2000;
de la Rocha et al., 2008), neural circuits with only bal-
anced excitation and inhibition seem too limited for ex-
plaining the functional diversity. Indeed, in the cortex,
even the balanced excitation and inhibition can only be
viewed as being approximate. Neural circuits with differ-
ent organization principles together with neuronal pop-
ulations with different response properties can result in
various patterns of excitatory—inhibitory interplay devi-
ating from the perfect balance, which would be essential
for creating diverse functional properties.

Future directions

The inhibitory mechanisms discussed so far are largely
consistent with the functional properties of fast-spike
inhibitory neurons and their involved circuits. Func-
tional properties of other types of inhibitory neurons in
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the auditory cortex are yet unknown. Although in a few
cases, in vivo whole cell recordings combined with post
hoc histology have helped to identify inhibitory neu-
rons in the visual cortex (Azouz et al., 1997; Hirsch
et al,, 2003), in general it is extremely difficult to en-
counter inhibitory neurons in blind recordings, espe-
cially those minor types of inhibitory neurons. The fast
growing transgenic mouse lines wherein genetic label-
ing of specific subtypes of inhibitory neurons has been
achieved greatly facilitate a targeted examination of a
desired inhibitory cell type. With technical innovations
on in vivo Ca®" imaging of neuronal responses (Sohya
et al., 2007; Bandyopadhyay et al., 2010; Kerlin et al.,
2010; Runyan et al., 2010; Zariwala et al., 2011) as well
as two-photon imaging-guided patch-clamp recording
(Margrie etal., 2003; Liu et al., 2009; Gentet etal., 2010;
Ma et al., 2010), some major breakthroughs will likely
be made in the next few years to greatly enhance our
understanding of the differential functional roles of in-
hibitory neuron subtypes (Ma et al., 2010) and their as-
sociated synaptic circuitry.

An important functional aspect of inhibition, its dy-
namic property, has not been extensively studied previ-
ously. The dynamic property concerns the temporal
profile (duration and decay time) and short-term plas-
ticity of inhibitory synaptic responses, as well as the firing
pattern of inhibitory neurons (transient or sustained).
Such information is important for understanding the
inhibitory shaping of responses under temporally com-
plex sounds, which are predominant in a natural acous-
tic environment. The current data on the duration of
inhibition remain somewhat controversial (with short
duration: Wehr and Zador, 2003, 2005; with relatively
long duration: Tan et al., 2004; Wu et al., 2008). For
example, the short duration of inhibition observed in
excitatory cells in a couple of studies (Wehr and Zador,
2003, 2005) seems inconsistent with the more sustained
spike responses elicited in inhibitory neurons by similar
tone stimulation (Wu et al., 2008). Further studies will
be needed for our understanding on the contribution
of the temporal profile of inhibition to the outstanding
phenomenon of two-tone feedforward masking (Tan
et al., 2004; Wehr and Zador, 2005).

In addition to comparing patterns of sound-evoked
excitation and inhibition, a straightforward strategy for
elucidating the inhibitory shaping of single cortical
neuron’s functional properties is to compare its responses
before and after eliminating inhibition in that cell.
With iVCR, it remains extremely difficult to change the
intrapipette solution to directly record the responses of
the same cell with and without intracellular blockers for
GABA receptors. However, essential understandings of
inhibitory mechanisms can be gained first by modeling
membrane potential responses with neuronal models.
By including or removing the inhibitory conductance,
these computational models can qualitatively reveal the

effects of inhibition (Wu et al., 2008; Liu et al., 2010).
Second, the dynamic-clamp technique (Sharp et al.,
1993) can be combined with in vivo whole cell recording
to inject experimentally determined synaptic conduc-
tances into the cell and monitor its membrane potential
response. Finally, the newly developed optogenetic tech-
nique (Lima et al., 2009; Zhang et al., 2010) will allow
light-controlled reversible inactivation of local inhibi-
tory neurons, while leaving the network activity largely
intact. Responses of single cells can be examined before
and after activation or inactivation. Collectively, these
experiments will be able to provide invaluable insights
into the inhibitory synaptic mechanisms underlying
auditory cortical functions.
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