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The integration of signals originating at different times
and/or locations defines the stimulus features extracted
and represented by a sensory system. As such, under-
standing this issue is central to understanding sensory
coding. Here, we focus on spatial integration by gan-
glion cells, the output cells of the retina. Responses of
both photoreceptors and ganglion cells to a variety of
light stimuli have been thoroughly described, and we
have abundant anatomical information about retinal
cell types and connectivity. For these reasons, the retina
provides an excellent opportunity to study sensory inte-
gration from both empirical and mechanistic perspec-
tives. Many of the issues and computational principles
that emerge are likely to apply to other sensory systems.

Recent work on retinal processing has seen dramatic
progress in two areas: (1) studies of the mechanisms
shaping light responses as they traverse the retina; and
(2) studies of the empirical properties of coding at the
level of the ganglion cell output signals. These different
approaches to studying retinal processing provide quite
different pictures of how the retina works: mechanistic
studies have emphasized nonlinear processing that
shapes signals as they traverse the circuit (Singer, 2007),
whereas empirical coding studies typically model spatial
and temporal integration in the retinal circuitry as a lin-
ear process (Field and Chichilnisky, 2007).

This distinction matters. Nonlinearities are at the core
of most interesting and/or important computations in
the retina and other neural circuits. Indeed, linear inte-
gration cannot explain several aspects of ganglion cell
responses—for example, the fidelity of ganglion cell re-
sponses to sparse input signals. Thus, ganglion cell re-
sponses in starlight, when photons arrive rarely at
individual rod photoreceptors, rely on a thresholding
nonlinearity between rods and rod bipolar cells that
selectively retains signals from the few rods absorbing
photons while rejecting noise from the other rods (Field
etal., 2005). This nonlinearity can improve the signal-to-
noise ratio of the retinal output 100-fold. To be effective,
it is critical that the nonlinearity occur before, rather
than after, integrating rod inputs. Similar considerations
apply to many other computations.
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Here, we discuss some of the successes and failures of
models for how retinal ganglion cells integrate signals
over space. We relate these models to mechanistic de-
scriptions of the operation of retinal circuitry and high-
light some of the issues required to bring these different
approaches together. Bridging this gap will require
functional models that are more tightly constrained by
the growing knowledge about retinal anatomy and physi-
ology. This will in turn help place signal-processing
mechanisms in a functional context. Several past stud-
ies have embraced the added complexity of such mod-
els and described their functional features (Demb, 2008;
Gollisch and Meister, 2010).

Essential features of retinal circuitry

Visual stimuli are encoded at the input to the retina by
the responses of the rod and cone photoreceptors. This
initial encoding consists of light intensity over space,
time, and, in the case of cones, wavelength. The photo-
receptor signals provide in many ways a camera-like rep-
resentation of the world. Encoding in the retinal output
is qualitatively different: responses of 15-20 different
types of retinal ganglion cells reflect distinct features of
the spatial and temporal pattern of photoreceptor activ-
ity (Field and Chichilnisky, 2007).

Feature selectivity in ganglion cells relies on both
convergence and divergence of signals as they traverse
the retina (Masland, 2001). Thus, cone signals diverge to
~10 anatomically defined types of bipolar cells in mam-
mals (Fig. 1 A). Most cone bipolar cells receive input
from 5-10 cones, and bipolar cells of different types
exhibit different biophysical properties (DeVries, 2000).
The parallel processing initiated in the bipolar cells ap-
pears to be largely maintained by the selective synaptic
contacts made by one or two bipolar cell types to a given
ganglion cell type. In total, most ganglion cells receive
excitatory input from tens to hundreds of bipolar cells
and hundreds of cones. A notable exception is the midget
circuitry in the primate fovea; in this circuit, a midget
ganglion cell receives input from a single cone via a
single midget bipolar cell.
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A second class of interneuron, amacrine cell, also plays
a key role in parallel processing. Amacrine cells receive
excitatory input from bipolar cells and provide inhib-
itory input to bipolar cells, ganglion cells, and other
amacrine cells. Most retinal neurons other than gan-
glion cells are not thought to generate action potentials,
although some types of amacrine and bipolar cells pro-
vide exceptions. Amacrine cells exhibit substantially
greater anatomical and physiological heterogeneity than
bipolar cells (Masland, 2001). We have an impoverished
understanding of their function.

Although we have a relatively clear picture of the ana-
tomical connections that enable ganglion cells to collect
input from different regions of space, we lack a concise
functional framework that accurately captures how sig-
nals in different locations in space are integrated to
control a ganglion cell’s spike output.

Successes and failures of linear and near-linear models

for spatial integration

Integration of photoreceptor signals by ganglion cells is
classically described in terms of a cell’s receptive field.
The utility of this description depends on whether spatial
integration of photoreceptor inputs can be described as
a linear or nonlinear process. Linear integration would
mean that the response produced by light in one region of
space does not depend on light inputs in other regions;
that is, the receptive field would generalize across dif-
ferent stimuli used to measure it. Nonlinear integration
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can cause inputs in different spatial regions to interact,
producing poor generalization of linear receptive field
properties measured using different stimuli.

Empirical models have long been used to capture the
receptive field properties of ganglion cells. Early work
emphasized a “difference-of-Gaussians” description in
which ganglion cell firing is controlled by the difference
between input signals in linear center and surround re-
gions (Fig. 1 B) (Kuffler, 1952; Barlow, 1953). A strictly
linear model requires that responses to stimuli in two
regions of space add when the stimuli are presented
together, and that the response to a stimulus and its in-
verse are opposite. These requirements are almost never
met; for example, stimuli that activate only the recep-
tive field surround often produce little or no response,
but the same stimuli are able to partially or fully cancel
responses generated by activation of the receptive field
center. Such nonlinear response properties could be a
result of nonlinearities in the retinal circuitry or of rec-
tifying nonlinearities in spike generation and the re-
quirement that firing rates are nonnegative. Inclusion
of a postintegration rectifying nonlinearity improves
the ability of difference-of-Gaussian models to capture
interactions between center and surround.

Linear-nonlinear (LN) models are direct descen-
dants of the difference of Gaussian models. In an LN
model, the input stimulus is passed through a spatio-
temporal linear filter L(x,t) followed by a static (time-
invariant) nonlinearity N (Fig. 1 C) (Chichilnisky, 2001).
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Schematic of retina and common receptive field models. (A) Schematic of the major cell classes in the retinal circuitry,

illustrating convergence (left) and divergence (right). Numbers of converging cones are much higher than depicted. (B) Difference-of-
Gaussians receptive field model. (C) LN model for ganglion cell responses. Stimuli are passed through a linear spatiotemporal filter, and
the filter output is passed through a time-independent nonlinear step. Spike responses are generated from a Poisson process. Extensions
of the model include a spike-dependent feedback term that provides for a history dependence in spike generation.
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The linear filter and static nonlinearity are usually esti-
mated from stimuli that are randomly modulated in
space and time; because all of the time dependence in
the model is captured by the linear filter, the model
components are uniquely determined by the data up to
one overall scale factor. Thus, L(x,t) provides the best
linear predictor of the cell’s response given the stimulus
and can be calculated independently of the nonlinearity.
N corrects this linear prediction for nonlinearities, for
example, those in spike generation, and is unique given
L(x,t). L(x,t) provides a measure of a cell’s spatial and
temporal tuning (space and time projections in Fig. 1 C).
Importantly, LN models retain the assumption that sig-
nals are integrated linearly in space followed by a single
postintegration nonlinearity (Fig. 1 C).

Fig. 2 shows the components of an LN model com-
puted from the responses of an OFF parasol ganglion
cell to a temporally (but not spatially) modulated light
input. Fig. 2 A shows the firing rate (bottom) measured
in response to multiple repeats of the same random
stimulus (top). The nonlinearity in the cell’s response is
clear: the firing rate can only be modulated upwards
because the cell has a near-zero maintained firing rate.

Fig. 2 Cshows the linear filter L(t) and nonlinearity N
measured from the spike response. The negative dip in
the linear filter indicates that the cell preferentially re-
sponds to decreases in light intensity, integrated over a
time of ~50 ms. The biphasic shape of the linear filter
indicates that the cell responds most strongly to changes
in light intensity rather than constant light. The non-
linearity compares the measured firing rate (y axis) with
the predicted rate given by the correlation of the stimu-
lus preceding a spike with the linear filter (x axis). The
firing rate is near zero if the preceding stimulus has a
time course similar to the linear filter but the opposite
polarity. High firing rates result from stimuli with a high
positive correlation with the linear filter. In other words,
the cell’s firing rate is strongly modulated for decreases
but not increases in light intensity.

The rectification indicated by the nonlinearity is fairly
typical of that measured in OFF ganglion cells for such
stimuli; ON cells often show less pronounced rectifica-
tion (Demb etal., 2001a; Chichilnisky and Kalmar, 2002;
Zaghloul et al., 2003). The LN model provides an em-
pirical characterization of the cell’s response, but the in-
terpretation of model components in terms of circuit
elements is ambiguous. In particular, the nonlinearity
could occur in spike generation and/or at upstream lo-
cations. Fig. 2 B (top) shows excitatory synaptic in-
puts to the same cell; these are also strongly rectified.
For simplicity, we convert the currents to conductances
(Fig. 2 B, bottom), that is, Gexc(t) = Lexc(t)/(V—Vexe),
where V. is the reversal potential and V is the voltage
at which the cell was held during measurement of the
currents in Fig. 2 B. Fig. 2 D shows the components of
an LN model for the excitatory conductance. In this

case, the linear filter is the best linear estimator of the
conductance given the stimulus, and the nonlinearity
compares that estimate with measured conductance. The
nonlinearity for excitatory inputs closely resembles that
computed for spike responses (Fig. 2 D, open circles),
suggesting that much of the nonlinear computation
occurs upstream of spike generation (Demb et al.,
1999, 2001a).

Excitatory inputs to a ganglion cell are provided by
converging inputs from many bipolar cells. Thus, non-
linearities in the excitatory inputs occur before the inte-
gration of signals across space that takes place in the
ganglion cell dendrites. In the case of Fig. 2, the stimu-
lus is uniform in space and the location of the non-
linearity has little bearing on the predictive power of the
model. It will affect, however, the ability to generalize to
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Figure 2. LN model for responses of an OFF parasol ganglion
cell. (A) Firing rate in response to multiple trials of the same ran-
dom stimulus (top). The mean light intensity produced ~4,000
absorbed photons per cone per second. (B) Excitatory synaptic
currents (top) and conductance (bottom) from the same cell in
response to the same light stimulus. The cell was voltage clamped
and held near the reversal potential for inhibitory input (approxi-
mately —60 mV). The conductance was obtained by dividing the
current by the —60-mV driving force. The conductance was offset
such that the mean conductance before the light stimulus was 0.
(C) LN model components for spike response. (D) LN model
components for excitatory synaptic conductance.
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new stimuli. We will return to this issue in the context of
stimuli with spatial structure below.

Difference-of-Gaussians and LN models have been suc-
cessful in several ways. They can separate ganglion cells
into functional types based on their spatial (Chichilnisky
and Kalmar, 2002), temporal (Segev et al., 2006), and
chromatic tuning (Chichilnisky and Baylor, 1999; Field
etal., 2009). LN models have also been used to quantify
steady-state adaptation by measuring how the linear filter
and nonlinearity change when the mean or contrast of
the light inputs is changed (Demb, 2008).

Several groups have created enhanced LN-style models
to account for various aspects of the spike response that
are not captured in the original model. Keat et al.
(2001) introduced a post-spike feedback term to make
the model output dependent on recent spike history
(e.g., Fig. 1 C). Such models can estimate the probabil-
ity of different stimulus trajectories given the spike re-
sponse of a cell; that is, they determine the stimulus
features that can be inferred from the spike response
and the reliability of such inferences (Paninski, 2004;
Pillow et al., 2005). These models have been extended
to account for correlated activity by including a spike-
dependent coupling term between nearby cells (Pillow
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et al., 2008). Even for these more complex models, the
likelihood criterion used to fit model parameters has a
single global maximum, and hence optimal parameters
can be identified using standard numerical approaches
(Paninski, 2004).

LN models including a feedback term have been es-
pecially useful in describing how adaptive mechanisms
dynamically shape firing patterns. Berry et al. (1999)
used an LN model with a contrast gain—control feedback
to account for a retinal ganglion cell’s ability to correct
for its own delay and respond to the leading edge of a
moving stimulus. Ostojic and Brunel (2011) recently
used several different models to capture the temporal
aspects of a firing pattern, finding that an adaptive LN
model in which the filter changed based on the recent
spike pattern did the best job at capturing the details of
a cell’s firing rate to a modulated stimulus.

LN models with and without post-spike feedback
are all elaborations on a common form: linear spatial
integration, followed by a nonlinear step, which in full
generality is both time and spike history dependent. Al-
though each model performs well for the tasks for which
it was designed, an increasing number of phenomena
in ganglion cell responses defy explanation in such a

Figure 3. Response properties of X and Y cells. (A) Re-
sponses of an X (left) and Y (right) cell to contrast modu-
lated gratings at several spatial positions. At two positions,
temporal modulations of the contrast of the grating pro-
duce little or no response in the X cell, as the light and
dark regions canceled. For the Y cell, the grating produced
responses at all spatial positions. This panel is adapted,
with permission, from Enroth-Cugell and Robson (1966).
(B) Response of a mouse ganglion cell with properties re-
sembling a'Y cell to temporal modulation of low and high spa-
tial frequency gratings. Temporal modulation of a single
spot produced a strong response at the temporal frequency
of modulation (top). Temporal modulation of a high spatial
frequency grating produced a temporal response at twice
the modulation frequency, that is, a frequency-doubled re-
sponse. The spatial extent of the ganglion cell dendrites is
compared with the gratings in the far left panels.
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framework (Gollisch and Meister, 2010), and no model
with a postspatial integration nonlinearity has success-
fully predicted the responses of ganglion cells to natu-
ral or naturalistic stimuli. We argue below that models
of this type are fundamentally limited because many of
the nonlinear processing steps in the retina occur be-
fore spatial integration.

Y cells and their brethren: a dramatic failure of

linear models

The idea that nonlinear spatial subunits exist within the
ganglion cell receptive field is more than 40 years old.
Recent work on the properties of synaptic transmission
in the retina is beginning to reveal a more mechanistic
understanding of this venerable functional abstraction.

Enroth-Cugell and Robson (1966) provided the first
clear demonstration of nonlinear spatial integration in
cat retinal ganglion cells (Fig. 3 A). They classified the
recorded cells as X cells, which integrated their spatial
inputs linearly, or Y cells, which integrated space non-
linearly. To test whether a cell was X or Y type, they pre-
sented a large sine-wave grating to the cell at several
different positions. If the cell integrates light and dark
inputs linearly in space (X type; Fig. 3 A, left), at some
position these inputs should cancel and the cell should
fail to respond to the grating. Such cancellation would
occur in the integration of signals over space and hence
would not depend on a final-stage nonlinearity. If the cell
instead integrates nonlinearly in space (Y cell; Fig. 3 A,
right), cancellation of the responses from dark and
light regions is never complete, and the cell responds to
the presentation of the grating at all positions. Many
cells in cat exhibited such a spatial nonlinearity. Y-type
cells have since been described in mouse (Stone and
Pinto, 1993), rabbit (Caldwell and Daw, 1978), guinea pig
(Demb etal., 1999), and monkey (de Monasterio, 1978;
Petrusca et al., 2007; Crook et al., 2008).

Because Y cells respond nonlinearly to small regions
of light or dark, they are sensitive to gratings of higher
spatial frequency than expected from the extent of
their linear receptive field (Fig. 3 B) (Enroth-Cugell and
Robson, 1966; Hochstein and Shapley, 1976). The func-
tional consequences of this high spatial frequency sensi-
tivity have not been explored in detail. By measuring
the responses of Y cells to gratings at different spatial
frequencies and contrasts, Victor and Shapley (1979)
established a model for nonlinear spatial integration of
subunits in a ganglion cell receptive field in which each
subunit had a nonlinear weight and a gain control.
Their model did not take a strong stance on the ana-
tomical substrate of the subunits, only pointing out the
possibility that they corresponded to bipolar cells.

Demb et al. (1999, 2001a) used a combination of
intracellular recordings and pharmacology to identify
the elements of the neural circuit responsible for Y-type
behavior in guinea pig ganglion cells. They found that

the nonlinear responses from the receptive field center
were driven by excitation from bipolar cells—likely the
same bipolar cells that provide linear input to the cen-
ter—and that nonlinear responses from the surround
were sensitive to block of Na" channels and hence likely
involved spiking amacrine cells. These studies estab-
lished a framework for connecting nonlinear ganglion
cell responses to the known elements of upstream cir-
cuitry. They also provide a glimpse at the complexity
of the nonlinear mechanisms shaping spatial integra-
tion in ganglion cells.

Nonlinear retinal processing

Nonlinear synaptic and cellular processes abound in the
retina, as in other neural circuits. Responsible mecha-
nisms include the voltage dependence of calcium
channels that control transmitter release, the nonlin-
ear dependence of transmitter release on intracellular
calcium concentration, history dependence of synap-
tic transmission via synaptic depression or facilitation,
and active conductances in retinal interneurons or gan-
glion cell dendrites. These nonlinear mechanisms are
spread across circuit elements that collect information
from differently sized regions of visual space and hence
can, in principle, influence processing on multiple spa-
tial scales.

We will discuss only a few of the best-characterized
examples of nonlinear computations in the retinal cir-
cuitry in the most physiologically realistic conditions.
Nonlinearities are often revealed by experiments that
push cells and circuits well out of their normal operating
range. To evaluate the importance of such nonlinear-
ities on processing of light responses, it is important
to view them in the context of the physiological operat-
ing range of cells and synapses.

Linear synaptic transmission requires that equal con-
trast light increments and decrements cause equal and
opposite postsynaptic responses. Such symmetry re-
quires a high sustained rate of neurotransmitter release
if a synapse is to transmit a wide range of signals. The
same issue, applied to spike generation and the require-
ment that a truly linear cell maintain a high spontaneous
firing rate, motivated the inclusion of a post-integration
nonlinearity in the LN model framework. To support
the encoding of both positive and negative contrasts,
photoreceptors and bipolar cells both use graded po-
tentials rather than spikes, and the output synapses of
both cell types have a special presynaptic structure, the
ribbon (Matthews and Fuchs, 2010).

The linearity of retinal ribbon synapses has been the
subject of several studies (Shapley, 2009). At the first
synapse in the retina, rods make contact with rod bipo-
lar cells, and cones make contact with cone bipolar cells
and horizontal cells. Sakai and Naka (1987) found that
a linear filter adequately described the voltage re-
sponses of catfish horizontal cells and bipolar cells to a
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randomly varying light input. A nearly linear relationship
between light intensity and voltage has also been ob-
served in salamander bipolar cells (Rieke, 2001; Baccus
and Meister, 2002; Thoreson et al., 2003). The linearity
of the rod synaptic output originates from a near-linear
dependence of the rate of exocytosis on calcium con-
centration in the physiological range of rod voltages
(Rieke and Schwartz, 1996; Thoreson et al., 2004); this
near-linear calcium dependence is produced by a highly
calcium-sensitive component of exocytosis (Thoreson
et al., 2004). The rod’s high calcium sensitivity and
linearity differ from the situation at most central synapses
and at bipolar ribbon synapses, where exocytosis requires
higher calcium concentrations and depends nonlin-
early on increases in calcium (Neher and Sakaba, 2008).

Processes downstream of transmitter release from the
photoreceptors can create nonlinearities in bipolar cell
light responses. Burkhardt and Fahey (1998) compared
the responses of salamander cones and bipolar cells to
contrast increments and decrements. Although cones
responded near-linearly for steps up to 100% contrast,
some bipolar cells exhibited clear nonlinearities for ~20%
contrast steps. Differences between this work and the
studies supporting linearity of transmission are likely
the result of differences in the cell types studied and the
larger and more rapid changes in contrast used by
Burkhardt and Fahey (1998). At low light levels, sig-
nal transfer from rods to rod bipolar cells in mouse
retina acts to (nonlinearly) threshold the rod responses
(van Rossum and Smith, 1998; Field and Rieke, 2002),
an operation that is critical to the sensitivity of photon
detection by ganglion cells. This nonlinearity originates
in the transduction cascade linking metabotropic gluta-
mate receptors to channels in the rod bipolar cell den-
drites (Sampath and Rieke, 2004).

Even if signals arrive at bipolar cells proportionate to
the light collected by the photoreceptors, nonlineari-
ties in the bipolar output could lead to nonlinear spatial
integration in the ganglion cell. Indeed, a ganglion
cell’s excitatory synaptic input is often both profoundly
rectified (see Fig. 2) (Zaghloul et al., 2003) and history
dependent because of rapid adaptational mechanisms
(Demb, 2008). For example, contrast adaptation (Demb,
2008) has been observed in the voltage responses of
bipolar cells, in spatial subunits of the retinal ganglion
cell receptive field, and in a ganglion cell’s excitatory
synaptic inputs. Further, the synapse between rod bipolar
cells and AIl amacrine cells depresses after single-pho-
ton events (Dunn and Rieke, 2008) and voltage steps
(Singer and Diamond, 2006). The effect of nonlineari-
ties in the output of bipolar cells could be mitigated by
similarly rectified inhibitory input from amacrine cells
(Werblin, 2010). Inhibitory feedback circuits provided
by some amacrine cells, however, enhance nonlinear
transfer by decreasing the tonic release rate from the
bipolar cell (Freed et al., 2003).
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Active dendritic conductances can also cause nonlin-
earities in signal processing. NMDA receptors used in
ganglion cell signaling are one example (Manookin
etal., 2010). The computations underlying directionally
selective responses provide additional examples (first de-
scribed by Barlow and Levick, 1965; Demb, 2007). First,
voltage-sensitive dendritic processing causes starburst
amacrine cells to respond more strongly to stimuli moving
from the soma toward the dendritic tips than vice versa
(Euler et al., 2002). Second, directionally selective gan-
glion cells sharpen the direction tuning that they inherit
from starburst cells by generating spikelets at multiple
locations within their dendrites (Oesch et al., 2005).

Synaptic inputs to many ganglion cell types exhibit
pronounced nonlinearities. Excitatory synaptic inputs
can have nonlinearities that are similar to those in a
cell’s spike output (Fig. 2), and the few inhibitory in-
puts that have been studied appear to be nonlinear as
well. Thus, much of the nonlinearity in a ganglion cell’s
spike outputis already present in its synaptic inputs (Demb
et al., 1999, 2001a) and hence occurs before spatial in-
tegration. In the case of excitatory inputs, this suggests
that spots of light positioned within the relatively small
receptive fields of the bipolar cells will interact differ-
ently that those that are spaced between bipolar cells,
and functional models based on linear integration of
inputs across space will fail to capture these interactions.
Light stimuli that preferentially stimulate particular
amacrine cells (like directional stimuli for the starburst
cells) are also likely to produce inhibition in a ganglion
cell that cannot be captured by a model with linear spa-
tial integration.

A framework for the functional characterization

of ganglion cell selectivity that includes nonlinear

spatial integration

We are only beginning to appreciate the functional con-
sequences of nonlinear spatial integration by retinal
ganglion cells. Early work by Lettvin et al. (1959) de-
scribed ganglion cell feature selectivity in terms of fea-
tures inspired by natural scenes, characterizing cells as
“dimming detectors, convexity detectors, and moving
edge detectors.” The focus of coding studies in the ret-
ina shifted with the adoption of LN models, but re-
cent studies have described ganglion cell selectivity for
features like the approach of a dark object (Miinch etal.,
2009), the reversal of direction of a moving object
(Schwartz et al., 2007), or the differential motion of
foreground and background (Olveczky et al., 2003;
Baccus et al., 2008). Gollisch and Meister (2008) pre-
sented a phase-shifted edge stimulus, like the one used
by Enroth-Cugell and Robson (1966), and found that a
model with linear spatial integration failed to capture
the distribution of first spike latencies they observed.
A model with rectifying spatial subunits (both ON and
OFF type) was able to fit their data. Similar models that
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include a nonlinear step before spatial integration have
been successful in accounting for the responses of gan-
glion cells to particular classes of stimuli (Gollisch and
Meister, 2010). Such models are typically not fit to the
data parametrically like LN models. In particular, the
nonlinear step is often modeled as a straight rectification
rather than an arbitrary function (Baccus et al., 2008;
Gollisch and Meister, 2008). This could limit the ability
of such models to generalize to arbitrary spatial stimuli.

What role does nonlinear spatial integration play in
the types of information relayed by different ganglion
cell types? We are far from understanding how visual in-
formation is segregated into the parallel pathways de-
fined by each ganglion cell type. Even for the Y cell, we
have only fragmentary clues about feature selectivity. As
noted above, nonlinear subunits provide the Y cell with
the ability to respond to much higher spatial frequen-
cies than would be predicted by the size of the receptive
field center (Fig. 3 B). Demb etal. (2001b) showed that
this leads to the Y cell’s ability to respond to “second-
order motion,” the movement of a high spatial frequency
contrast pattern with no change in mean luminance
across the ganglion cell receptive field. Nonlinear sub-
units might also enable the ganglion cell to signal the
location of small objects within the receptive field or to
distinguish between texture patterns with information
at small spatial scales, but these ideas have not been
tested experimentally.

Anatomical work continues to identify the cell types
of the retina and their connections, and physiology is
offering new insights into the ways signals are transmit-
ted through the circuit. These advances will allow the
next generation of functional models of ganglion cell
behavior to move away from linear spatial integration
as they confront the complexities of the nonlinearities
in the retinal circuit. There are both challenges and
opportunities associated with this new approach. Non-
linear spatial integration adds considerable complexity
as ganglion cell sensitivity can no longer be described
by a traditional receptive field. Instead, the nonlineari-
ties of individual circuit elements, like the bipolar cells,
must be measured and understood mechanistically so
that they in turn can be modeled and their impact on
responses to novel stimuli predicted. Although a linear
receptive field can be mapped with white noise stimuli,
mapping the locations and properties of subunits in the
nonlinear receptive field will require the synthesis of
new stimuli and analysis techniques. The general class
of models that includes a nonlinearity before spatial
integration can capture an enormous variety of spatial
transformations (Funahashi, 1989; Hornik et al., 1989),
and such models are likely to generalize across stimuli,
even natural scenes, better than linear models.
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