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C o m m e n t a r y

Four -helical segments at the intracellular entrance to 
the ion conduction pathway splaying open is the con-
ventional imagery of a K+ channel opening to allow K+ 
ions and co-traversing water molecules to hop through 
the channel’s pore (Fig. 1) (Armstrong, 2003; Swartz, 
2004). This view of K+ channel gating—already depicted 
in numerous textbooks—has been derived largely from 
K+ channel crystal structures published over the last dec
ade, most notably of the voltage-independent 2TM K+ 
channels KcsA (Doyle et al., 1998), MthK (Jiang et al., 
2002), and KirBac1.1/3.1 (Kuo et al., 2003, 2005), and 
the voltage-dependent 6TM K+ channels KvAP (Jiang  
et al., 2003) and Kv1.2 (Long et al., 2005, 2007).

All of these structures display in the outer third of 
their pore regions a structurally conserved K+ selectivity 
filter (Doyle et al., 1998), whose form is consistent with 
many previous functional measurements and presents  
a unified picture of K+ selectivity (Armstrong, 2003).  
Exquisite K+ selectivity contemporaneous with a high 
transport rate is achieved via the precise arrangement of 
oxygen atoms so as to optimally coordinate multiple de-
hydrated K+ ions as they pass single file through the se-
lectivity filter separated by intervening water molecules 
(Armstrong, 2003).

Have these structures also lead us to a unified theory 
of activation gating? At first it appeared so. Comparisons, 
for example, of the crystal structures of KcsA, a closed-
channel structure, and MthK, an open-channel struc-
ture, reinforced the notion, developed from Cd2+-bridging 
experiments with the Shaker K+ channel (Holmgren  
et al., 1998), that the main ion conduction gate of K+ 
channels (“activation gate”) is formed by the bundle cross-
ing of the inner portion of the four pore domain helices 
(Fig. 1 A). Indeed, in the KcsA structure, this region 
narrows to less than the dehydrated diameter of a K+ ion 
(2.66 Å), apparently forming an ion and water-tight 
seal, whereas in the MthK structure, the pore at the 
bundle crossing has a diameter of 12 Å (Jiang et al., 
2002), more than sufficient to allow hydrated K+ ions to 
readily pass. Thus, these types of comparisons, in con-
junction with experiments that demonstrated that in 
the closed Shaker channel the bundle crossing also 
forms an ion and water-tight seal (del Camino and  
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Yellen, 2001; Kitaguchi et al., 2004), lead to the follow-
ing standard view of K+ channel activation gating. The 
activation gate of the K+ channel is formed by the bundle 
crossing of the inner pore helices. The gate separates 
two polar milieus containing K+ ions and water molecules: 
the intracellular compartment and a large pore cavity 
lined by mostly nonpolar residues. Access to the pore cav-
ity from the intracellular compartment is possible only 
when the activation gate is open (Liu et al., 1997). The 
pore cavity is large enough to accommodate select ions 
or inhibitors, and when the channel closes, it can trap 
such molecules in the pore cavity, leading to measurable 
changes in ionic current kinetics (Armstrong, 1971).

Indeed, the notion that the helical bundle crossing 
forms the activation gate became so appealing that 
some considered the structural underpinnings of gat-
ing to be an open-and-shut case and speculated that 
perhaps other channel types similar in overall architec-
ture to K+ channels may work in the same way. This ap-
pealing generalization, however, has turned out not to 
be true. The cyclic nucleotide–gated (CNG) channel is 
a nonselective cation channel similar in overall struc-
ture to the Kv family of K+ channels. The CNG channel 
opens in response to the binding of cyclic nucleotides 
to the channel’s large intracellular domain (Kaupp and 
Seifert, 2002), but here it has been demonstrated that 
the bundle crossing formed by the channel’s four S6 
helices is leaky and does not prevent ion flux (Flynn 
and Zagotta, 2001). Indeed, amino acid residues pre-
sumed to be located extracellular to the bundle cross-
ing, and thus inside the pore cavity, can be modified 
equally well by small reagents whether the channel is 
open or closed (Flynn and Zagotta, 2003). The activa-
tion gate functionally coupled to agonist binding in the 
CNG channel, therefore, must exist elsewhere in the 
pore region; the available evidence suggests that the se-
lectivity filter contains the activation gate (Contreras 
and Holmgren, 2006; Contreras et al., 2008).

The apparent dichotomy between K+ channels and 
CNG channels concerning the location of the activation 
gate might reasonably lead to the following plausible 
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crossing of the BKCa channel easily from the intracellu-
lar side (Zhou et al., 2011). Thus, in the BKCa channel, 
structural rearrangements occur at or near the chan-
nel’s bundle crossing as the channel closes (Brelidze 
and Magleby, 2005; Li and Aldrich, 2006); however, they 
are not sufficient to prevent the access of small mole-
cules to the internal pore and most likely K+ ions as well. 
Where then is the activation gate of the BKCa channel?

An important clue to this question is provided by 
Chen and Aldrich in this issue of JGP. Their study iden-
tifies a single residue M314, halfway down S6, that ap-
pears to change conformation during the opening of 
the BKCa channel. Indeed, when M314 is mutated to an 
aspartate (M314D), the single added negative charge in 
each subunit creates a constitutively active channel that 
is open 80% of the time, even in the absence of Ca2+ 
and at far negative voltages. However, when a neutral 
asparagine is placed at this position, no such constitu-
tive activity is observed. From this result and the results 
from a series of other mutations made at position 314, 
Chen and Aldrich (2011) postulated that in the wild-
type channel, M314 moves during gating; its side chain 
is exposed to the watery polar pore when the channel is 
open and more buried within the nonpolar pore wall 
when the channel is closed. Thus, according to their 
idea, any perturbation that increases the hydrophilicity 
of the side chain at position 314 would be expected to 
favor the open state of the channel. To elegantly test 
this prediction, Chen and Aldrich (2011) placed a histi-
dine at position 314 and examined whether its proton-
ation at low pH, thus the insertion of a positive charge, 

notion: highly selective K+ channels, such as the Shaker 
channel, use the S6 bundle crossing as the activation 
gate, whereas less selective cation channels, such as the 
CNG channels, use the selectivity filter region as their 
activation gate. That is, perhaps the textbook illustra-
tion of the inner helices coming together to form an 
ion/water-tight seal still holds true for K+ channels but 
not necessarily for other channels.

Bearing on this issue, however, is the work done over 
the last few years on the large-conductance Ca2+- and 
voltage-gated K+ channel, also known as BKCa, maxiK, 
Slo1, and KCa1.1. This channel is activated by membrane 
depolarization and/or the binding of Ca2+ to its large 
intracellular domain (Cox et al., 1997; Rothberg and 
Magleby, 2000; Horrigan and Aldrich, 2002), and it is 
highly K+ selective and therefore, under the aforemen-
tioned hypothesis, expected to have an activation gate 
formed by its S6 bundle crossing. Contrary to this ex-
pectation, the pore domain of the BKCa channel appears 
to be quite distinct from that of Kv channels. Multiple 
studies indicate that the BKCa channel has a larger inter-
nal vestibule and, when open, a wider intracellular mouth 
than do Kv channels (Li and Aldrich, 2004; Brelidze 
and Magleby, 2005; Geng et al., 2011; Zhou et al., 
2011). And more telling, Wilkens and Aldrich (2006) 
have found that a large quarternary ammonium com-
pound, bbTBA, can pass through the BKCa channel’s 
bundle crossing and block the BKCa channel near the 
selectivity filter even when the channel is closed (but 
see also Tang et al., 2010). Similarly, cysteine-modifying 
reagents appear to be able to move through the bundle 

Figure 1.  (A) Probable closed (Protein Data Bank accession no. 1R3J) and open (PDB no. 3F5W) conformations of the 2TM channel 
KcsA. The four subunits are colored differently, and those amino acid residues likely to form the activation gate are shown using spheres. 
(B) Probable open conformation of the voltage-gated K+ channel Kv1.2/2.1 (PDB no. 2R9R). Only the pore segments of two of the four 
subunits are shown. The residues in the selectivity filter (top) and T402 in S6 postulated to be equivalent to M314 in Slo1 are illustrated 
using spheres, and the purple spheres are K+ ions. This figure was prepared using MacPyMol.
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activation is inhibited when K+ is replaced by thalium as 
the permeating ion (Piskorowski and Aldrich, 2006). 
Regardless of the precise mechanism, however, what is 
clear is that the molecular mechanism underlying BKCa 
channel activation is not an open-and-shut case, and it 
involves structural rearrangements in more parts of the 
pore than previously understood.

The authors thank Professor Clay Armstrong for discussion.
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