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I N T R O D U C T I O N

The mechanosensitive channel of small conductance 
(MscS) is a ubiquitous osmolyte release valve present in 
all phyla of walled cells, from bacteria to higher plants 
(Pivetti et al., 2003; Balleza and Gómez-Lagunas, 2009). 
In bacteria, MscS and three other mechanosensitive 
channels (MscM, MscK, and MscL) comprise a mem-
brane tension–driven osmolyte efflux system adjusting 
turgor in a wide range of osmotic downshifts. Among 
them, MscS mediates the bulk of osmolyte efflux open-
ing at moderate tensions (5–8 mN/m), which is above 
the threshold for MscM (Schumann et al., 2010) but 
considerably below nearly lytic tensions (10–14 mN/m) 
that open MscL (Sukharev et al., 1999; Moe and Blount, 
2005; Belyy et al., 2010b). Responding generally in non-
emergency situations, MscS exhibits intricate adaptive 
behavior. In patch clamp experiments, MscS readily re-
sponds to abrupt pulses of tension, but under slow ramps, 
only a fraction of channel population opens (Akitake 
et al., 2005, 2007). Analysis of responses to prolonged 
pressure steps revealed that in excised patches, MscS 
first undergoes reversible adaptation, and then enters a 
tension-insensitive inactivated state (Akitake et al., 2005, 
2007). Adaptation is a gradual shift of the activation 
curve midpoint toward higher tensions (by 10–20%) as-
cribed to mechanical stress redistribution in inside-out 
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patches, which is not observed in whole spheroplast 
mode (Belyy et al., 2010b). Adapted channels can be re-
activated by stronger tension. Inactivation, in contrast, 
renders channels completely tension insensitive; it is 
present in all recording modes and appears to be an in-
trinsic property of the channel. Our recent data showed 
that inactivation occurring in wild-type (WT) MscS with 
a relatively slow (30 s) kinetics provides substantial ad-
vantage to bacteria in terms of osmotic survival under 
different regimes of osmotic shock in vivo when com-
pared with noninactivating or fast inactivating mutants 
(Boer et al., 2011). This further suggested that MscS in-
activation observed in electrophysiology is not an arti-
fact of patch clamp recording, but rather a functional 
trait excluding unnecessary activity and leakage under 
persisting but not threatening tensions. Although previ-
ous data suggested that inactivation occurs at tensions 
above the activating threshold from the closed-adapted 
state (Akitake et al., 2005, 2007), it was unclear whether 
closed-state inactivation is the only mechanism or it 
can also occur from the open state as in many voltage-
gated channels (Aldrich and Stevens, 1983; Patlak, 
1991; Armstrong, 2006).

Most previous studies addressed the mechanism of 
tension-driven activation of MscS, in which the crystal 
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50 The spatial scale for MscS inactivation

short test pulses of saturating pressure (Fig. 3 A and legend). The 
current observed during the steps reflected adaptation, and test 
pulses monitored the noninactivated population of channels. 
Segments of traces reflecting different stimuli (step vs. pulse) 
were digitized and fitted in Mathcad 13 using analytical solutions 
of the standard set of differential equations (Houston, 2001) de-
scribing a three-state kinetic model (O→CA→I):
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where k1 and k2 are the rate constants for the sequential transi-
tions O→CA and CA→I, respectively. The discretization of the 
traces and isolation of the open (O), closed-adapted (CA), and in-
activated (I) populations are illustrated in Fig. 4 (A–C).

R E S U LT S

Activation of MscS antagonizes inactivation
Fig. 1 A shows a typical response to a trapezoidal stimu-
lus that we used to calibrate the pressure sensitivity of 
the MscS population in a particular patch, which in this 
case exhibits a midpoint of p0.5 = 153 mmHg. Two pro-
tocols are then used: (1) a prolonged (30-s) conditioning 
step, and then short saturating pulse testing for channel 
availability (Fig. 1 B); and (2) a short saturating pulse 
that opens the entire population, and then a condition-
ing step and a short test pulse again (Fig. 1 C). We stud-
ied the degree of inactivation at different amplitudes of 
the conditioning step, which were chosen to be slightly 
below p0.5. As indicated by the level of population cur-
rent to the saturating test pulse at the end of the first 
protocol (Fig. 1 B, arrow), MscS progressively inactivates. 
Responses of the same patch to the second protocol 
with the same amplitude of steps are shown in Fig. 1 C. 
In the first protocol, the conditioning step activates only a 
fraction of channels, whereas in the latter case, the first 
saturating pulse obligatorily opens the entire MscS popu-
lation. In both cases, the population gradually closes with 
a characteristic time that depends on the amplitude of the 
step. The second protocol forces the entire population 
through the opening cycle (O→C→O), yet the fraction of 
inactivated channels is equal in both protocols (Fig. 1 D), 
indicating that opening does not aid inactivation.

The data presented in Fig. 2 show that dwelling in the 
open state actually precludes inactivation. Each of the 
two pressure protocols includes a saturating step that 
keeps the population open, an intermediate step at 
which the channels are given a chance to close, and a  
final saturating test pulse probing for the remaining ac-
tive part of the population. In experiments presented in 
Fig. 2 A, the length of the saturating step varied, whereas 
the second sub-saturating step was kept constant (10 s). 
As shown by arrows, the responses to the test pulse at the 
end are the same with an accuracy of 15%, indicating that 
the degree of MscS inactivation is independent of the 

structures of WT (Steinbacher et al., 2007) or A106V 
MscS (Wang et al., 2008) were used to model the rest
ing and/or conductive states. Electron paramagnetic 
resonance–derived constraints (Vásquez et al., 2008a,b), 
or unitary conductance and thermodynamically estimated 
in-plane protein expansion (Akitake et al., 2007; Anishkin 
et al., 2008a,b), combined with computational techniques 
were used to envision the opening transition. The ten-
sion- and voltage-dependent mechanisms of inactiva-
tion (Koprowski and Kubalski, 1998; Vásquez and 
Perozo, 2004; Akitake et al., 2005), however, were not 
fully addressed in structural terms. Inactivation was linked 
to formation of the crystallographic kink at G113 in 
TM3 (Akitake et al., 2007) and strongly facilitated by 
mutations that hydrophilize the reconstructed hydro-
phobic interface between TM2 and the gate region on 
TM3 (Belyy et al., 2010a). The latter study suggested that 
inactivation may be caused by some displacement of 
TM1–TM2 pairs from the gate, although the spatial scale 
of this tension-driven transition has never been estimated. 
The tension dependence of the recovery process (reverse 
of inactivation) has not been characterized either.

Here, we study MscS inactivation with a special set of 
pressure protocols including preconditioning pressure 
steps and saturating test pulses and show that opening 
does not enhance, but rather excludes, inactivation. 
Analysis of “soft” and “stiff” mutants with different open-
ing thresholds illustrates that the opening and inactiva-
tion are two competing transition pathways from the 
same closed state. Tension dependencies of both inacti-
vation and recovery rates suggest the spatial scale of the 
inactivating transition, which guides the modeling of 
the inactivated state.

M AT E R I A L S  A N D  M E T H O D S

WT Escherichia coli MscS was expressed from the pB10b vector 
(Okada et al., 2002) in MJF465 (kefA, mscS, and mscL) E. coli 
cells (Levina et al., 1999) or PB113 E. coli strain, which is a recA 
variant of MJF429 (mscS and mscK) (Levina et al., 1999; Li et al., 
2002) carrying the chromosomal copy of mscL. Preparation of gi-
ant E. coli spheroplasts and patch-clamping procedures were con-
ducted as described previously (Blount et al., 1999; Akitake et al., 
2005). Population channel recordings were conducted at +30 mV 
(pipette) on excised inside-out patches in symmetrical buffers 
containing 200 mM KCl, 10 mM CaCl2, 40 mM MgCl2, and 10 mM 
HEPES, pH 7.4. The bath solution differed only in the addition of 
400 mM sucrose. Traces were recorded under programmed pres-
sure stimuli delivered from an HSPC-1 pressure clamp machine 
(ALA Scientific Instruments) using the Clampex 10.2 software 
(Molecular Devices). After seal formation and excision, each 
patch was tested with a saturating 1-s pressure ramp to determine 
the activation midpoint (p0.5). p0.5 was then used as a subsaturat-
ing pressure stimulus in step protocols and as a reference point 
for pressure normalization (Fig. 1).

Here, we further developed protocols that allowed us to sep-
arate the kinetically intertwined processes of adaptation and  
inactivation. In these protocols, the channel populations were sub-
jected to prolonged subsaturating pressure steps with interspersed 
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� Kamaraju et al. 51

above the threshold, and then the population was tested 
with a saturating pulse at the end. During the prolonged 
step, the rate of adaptive current decline decreases mo-
notonously as tension increases. The fraction of channels 
remaining active at the end of the step exhibits a nonmo-
notonous tension dependence with a minimum at the 
pressure corresponding to the activation midpoint on 1-s 
saturating ramp (Akitake et al., 2005; see Fig. S4 B in  
Belyy et al., 2010a). Pressures below p0.5 are not strong 
enough to elicit full MscS inactivation, whereas above 
p0.5, MscS undergoes very slow adaptive closure being 
trapped in the open state. Thus, initially tension facili-
tates inactivation, but once the population of open chan-
nels increases, the inactivated fraction declines (Akitake 
et al., 2005, 2007; Belyy et al., 2010a).

Tension dependencies for the rates and the spatial scale  
of inactivation
The above data suggests that only nonconductive (closed 
or closed-adapted) channels can inactivate. Previous study 
(Belyy et al., 2010b) has shown that adaptation of MscS 
and MscL in excised patches is a consequence of tension 
redistribution in the membrane, which is essentially the 

open period. In Fig. 2 B, the total duration of the stimu-
lus was kept constant, and the length of each step varied 
reciprocally. When the first step is short (0.1 s), the popu-
lation is allowed to close gradually under moderate pres-
sure for the entire 30-s duration of the second step, and 
the inactivation was profound (76%). Extending the 
length of the first saturating step from 0.1 to 20 s and re-
ducing the time of the second step from 30 to 10 s, re-
spectively, increased the number of active channels. The 
fraction of inactivated channels progressively decreased 
with the decrease of time spent at sub-saturating pressure 
when the channels had time to close. The inactivated 
fraction plotted as a function of sub-saturating step dura-
tion shows a nearly linear dependence (Fig. 2 C). Fig. 2 D 
shows the calibration ramp response for that specific 
patch. The experiment was repeated four times on dif-
ferent patches, and the error bars in Fig. 2 C represent 
the standard deviation. The protocol demonstrates that 
opening does not help inactivation, but rather locks 
MscS in a state from which it cannot inactivate.

The conclusion above is consistent with our previous 
results obtained with two-step protocols where the chan-
nels were first exposed to a prolonged conditioning step 

Figure 1.  Dependence of MscS inactivation on the preconditioning saturating pulse at different tensions. (A) Ramp responses of chan-
nel population in a patch characterized by the midpoint of 153 mmHg and saturating pressure of 180 mmHg. Responses to the step 
pulse protocol with the increasing amplitude of a 30-s step (B). (C) Responses of the same patch to pulse-step-pulse stimuli, where the 
first short pulse opens the entire MscS population, and the pulse at the end reveals the part of the population remaining active in both 
protocols (arrows). Inactivated fractions of channel population plotted as a function of normalized pressure during the 30-s step (D) 
are similar regardless of the presence of the first pulse. The data were collected on a single representative patch and were qualitatively 
reproduced on four separate patches. In D, pressures are normalized to the ramp response midpoint p0.5 (A).
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52 The spatial scale for MscS inactivation

from the analytical solutions of the standard system of dif-
ferential equations describing two sequential reactions 
(see Materials and methods). Fig. 3 B shows the trace-fit-
ting quality obtained at relatively low pressure featuring 
fast current decay and slow inactivation, and at intermedi-
ate pressure (C), at which the adaptation and inactivation 
rates become comparable. Fitting a series of such traces 
allowed us to extract the tension dependence of the inac-
tivation rate plotted in Fig. 3 E (filled circles). The inactiva-
tion rate becomes appreciable at tensions near 5 mN/m 
and increases with the slope corresponding to the area of 
6.1 ± 1.5 (n = 3) nm2. This area can be interpreted as the 
area from the bottom of the closed-state well to the top of 
the rate-limiting barrier separating the closed (C) and 
inactivated (I) states (AC→B).

To find the remaining part of the expansion on the 
other side of the barrier separating C and I states, we 
measured the recovery rate from inactivation at differ-
ent tensions. The protocol combined a long 60-s step 
driving the entire population into the inactivated state, 
followed by a drop to a desired subthreshold pressure 
with a series of test pulses monitoring the return of the 

adaptation of the stimulus. Thus, the adaptive current 
decline should be considered as closure. Under moderate 
supra-threshold stimuli, when most of the open chan-
nels undergo adaptive closure and finally inactivate, the 
entire process can be presented as a linear three-state 
scheme: O→CA→I. The pressure protocol we used here 
is a prolonged (30-s) pressure step with short saturating 
test pulses interspersed evenly from the beginning to 
the end (Fig. 3 A). The initial test pulse preconditions 
the entire population to the O state. The pressure- 
dependent rate of the following current relaxation, 
reflecting closure O→CA, can be directly obtained by 
fitting the time course of current decay (Kamaraju and 
Sukharev, 2008). In Fig. 3 (B and C), the remaining 
open fraction (O) is designated by open circles. The 
current spikes in response to saturating test pulses  
reveal the fraction of channels that remain active 
(noninactivated), both open and closed (O+CA). This 
combined fraction, complementary to the inactivated 
fraction (I = 1(O+CA)), is shown with diamonds for two 
different conditioning steps (Fig. 3, B and C). The inter-
mediate closed-adapted fraction (CA) can be calculated 

Figure 2.  The degree of MscS inactivation is independent of the open period but increases with the time spent in the closed-adapted 
state. (A) Current responses to a double-step protocol in which the first saturating step (105 mmHg) of varied length is followed by a 10-s 
subsaturating step (75 mmHg). The responses to the short test pulse at the end indicate the fraction of active channels (numbers by the 
arrows). (B) The 30-s stimulus includes saturating (160 mmHg) and subsaturating (125 mmHg) pressure steps of reciprocally varying 
duration. The percentage of inactivation averaged over four patches studied with this protocol is shown in C (bars represent SD). The 
test ramp experiment (D) indicated the midpoint of 125 mmHg for the patch examined in B.
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added together suggest that the total protein in-plane 
expansion of 8.5 ± 1.6 nm2 is associated with the pro-
cess of inactivation. This area is smaller than the area 
change associated with the opening transition (13–15 nm2; 
Akitake et al., 2005; Belyy et al., 2010b; Kamaraju et al., 
2010). The slight deviation from the monoexponential 
kinetics (Fig. 3 D) can be a result of noise in a popula-
tion of 200 channels. It can also be a consequence of 
non-uniformity of the population (Chiang et al., 2004) 
because individual channels may reside in a slightly dif-
ferent environment in the patch.

population. The latter part of it is shown in Fig. 3 D. 
The current values at the tips of the test pulse responses 
were plotted against time and fitted with monoexpo-
nential functions. The rates of MscS recovery were then 
plotted as a function of tension in semi-logarithmic 
scale (Fig. 3 E, squares). The slope of the decreasing re-
covery rate consistently indicated AB→I = 2.5 ± 0.1 nm2 
(n = 3). In the simplifying assumption of a single rate-
limiting barrier separating the closed and inactivated 
states (because both inactivation and recovery kinetics 
are close to monoexponential), the two area estimates 

Figure 3.  The dependencies of the rates of MscS inactivation and recovery on tension in excised patches. (A) The current traces and 
the stimulus protocols that involve 30-s steps to varied amplitude (from 25 to 150 mmHg in 25-mmHg increments) with interspersed 
short saturating (180-mmHg) pulses testing for the availability of channels. The numbers 1, 2, and 3 correspond to the pressure steps of 
100, 125, and 150 mmHg, respectively. The tips of current responses to test pulses are marked with different arrows. The activation mid-
point for this patch determined using 1-s ramp was 140 mmHg. (B) Fitting of MscS transition kinetics recorded at a 100-mmHg pressure 
step to the three-state model: O→CA→I. Normalization dictates that O + CA + I = 1. The circles designate the position of the continuous  
trace (A) representing open population (O), the diamonds represent noninactivated population (O + CA), and the intermediate closed-
adapted (CA) fraction (dashed line) is calculated by fitting the two other populations to the model (see Materials and methods).  
(C) A similar fit of the trace obtained at higher background tension (125 mmHg) showing slower adaptation but faster inactivation rate. 
(D) Membrane tension slows down MscS recovery from inactivation. MscS population was inactivated by a 60-s conditioning step (the 
last second is shown), and the degree of inactivation was tested by the short saturating test pulse at the end of the step. The pressure was 
then dropped to different levels, and four saturating test pulses were applied at different time points. The current responses, reflecting 
the recovered fraction of the population, were then fitted with monoexponential functions. (E) The rates of inactivation and recovery 
plotted against membrane tension. The slopes dlnk/d = A/kT gave estimations of AC→B = 4.6 nm2 and AI→B = 2.6 nm2; the protein 
area changes from the bottoms of the closed (C) or inactivated (I) well to the transition barrier (B). The values averaged over three 
independent experiments and their sum representing total protein expansion associated with the CA→I transition are given in Results.
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54 The spatial scale for MscS inactivation

midpoint, but also substantial inactivation just below 
the activation threshold (see trace 3 in Fig. 4 B). In 
other words, L111S MscS inactivates silently, bypassing 
the opening–closing cycle. WT MscS and the two mu-
tants were expressed in PB113 cells carrying native MscL 
used as an internal “gauge” to calibrate their activation 
midpoints (p0.5) as described previously (Akitake et al., 
2007; Belyy et al., 2010a). The A98S p0.5 was estimated to 
be 0.75 WT p0.5, and the L111S p0.5 was 1.72 WT p0.5. 
The top panel in Fig. 4 C shows the three activation 
curves, and the bottom panel presents the inactivation 
rate for WT MscS plotted on the same tension scale.  
Under the assumption that the A98S and L111S mutations 
affect primarily the threshold and midpoint for activa-
tion but not the process of inactivation, the layout of the 
curves suggests a simple interpretation of the data. The 
soft A98S mutant opens completely before the inactiva-
tion rate becomes appreciable, and the population be-
comes “locked” in the open state with no ability to 
inactivate. We found it practically impossible to even es-
timate the rate of inactivation for this mutant, as inacti-
vation was undetectable in the entire range of tensions. 
L111S, in contrast, becomes active at tensions where in-
activation rate reaches maximal measurable values, and 
even before that it quickly inactivates without opening. 
We have attempted determination of the inactivation 
rates for L111S, but the extremely high threshold for 
this mutant made the patches prohibitively unstable  
under saturating pulses.

The larger spatial scale of the C→O transition as com-
pared with C→I makes the open state more stable un-
der high tension where the channels are “trapped” with 
no tendency to inactivate. On the other hand, from Fig. 3 
(D and E) it is clear that tension also strongly stabilizes 
the inactivated state. Note that these estimations of area 
changes were made under the assumption that the ten-
sion midpoint for MscS 0.5 = 7.8 mN/cm, as recently 
measured in whole spheroplast experiments (Belyy  
et al., 2010b). If we use 0.5 = 5.5 mN/cm as previously 
measured for MscS in liposomes (Sukharev, 2002), the 
area estimates are slightly larger, AC→B = 8.6 ± 2.2 nm2 
and AC→B = 3.5 ± 0.2 nm2, totaling 12.1 nm2, which 
becomes comparable to the expansion area associated 
with opening.

The gain- and loss-of-function mutants exhibit opposite 
propensities toward inactivation
Previous data have indicated that 10-s steps of pressure 
at p0.5 (as determined on ramp test) typically cause full 
transient activation of 90% of MscS population, which 
adapts and simultaneously inactivates by 50% (Akitake 
et al., 2005; Belyy et al., 2010a). Fig. 4 A shows the re-
sponse of the soft (gain-of-function) A98S mutant to a 
series of 10-s pressure steps ending with a 0.5-s saturat-
ing test pulse. The test pulse–invoked currents invari-
ably show maximal activity indicative of no inactivation. 
The stiff (loss-of-function) L111S mutant shows com-
plete inactivation at pressures considerably below its 

Figure 4.  The comparison of activa-
tion and inactivation thresholds for 
WT MscS, soft A98S, and stiff L111S 
mutants. (A) A series of traces obtained 
in response to step pulse protocol 
shows that the soft A98S MscS mutant 
does not inactivate. (B) The stiff L111S 
mutant partially inactivates silently 
without opening, as illustrated by trace 3  
(arrows). (C) Positions of activation 
curves for A98S (0.5 = 5.8 mN/m), WT 
(0.5 = 7.8 mN/m), and L111S (0.5 = 
13.4 mN/m), and the tension depen-
dence of the inactivation rate of WT 
MscS (data from Fig. 3 E) on the ten-
sion scale.
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under asymmetrically distributed tension in the sur-
rounding membrane because of relaxation of the inner 
leaflet not attached to the pipette (Belyy et al., 2010b).

The estimated in-plane expansion associated with the 
C→I transition provides guidance for the modeling of 
the inactivated state. Our previous studies have shown 
that the two nonconductive states are likely character-
ized by different conformations of TM3 helices predicted 
to be bent either at G121 in the resting state or at G113 
(crystallographic kink) in the inactivated state (Akitake 
et al., 2007). In both conformations, the TM3 bundle is 
predicted to be relatively narrow, with a tightly closed 
dehydrated gate. The estimated 8.5-nm2 expansion sug-
gests that it is probably not the TM3s but rather the lipid-
facing TM1–TM2 pairs that change their orientation from 
a compact TM3-aligned position (Anishkin et al., 2008a; 

D I S C U S S I O N

The data presented above show that (a) WT MscS in
activates from the closed (resting) state, whereas opening 
prevents inactivation; (b) inactivation, as activation, is 
also driven by tension and is accompanied by 8.5-nm2 
in-plane protein expansion; and (c) it appears that gain- 
or loss-of-function mutations that alter the position of 
the activation curve influence inactivation indirectly, 
simply by shifting the activation and inactivation curves 
relative to one another, thus either abolishing inactivation 
or producing “silent” inactivation without activation.

The experiments presented in Figs. 1 and 2 A illus-
trate that full opening of the MscS population does not 
increase the fraction of inactivated channels at the end 
of the pressure protocol. With the increase of the dura-
tion of the saturating step and reciprocal shortening of the 
subsaturating step in the fixed-length protocol (Fig. 2 B), 
the degree of inactivation diminishes. Inactivation in-
creases when the channels are given a chance to close 
and spend more time at moderate tensions. Applying 
pressure step protocols with interspersed saturating test 
pulses delivered from a computer-driven pressure clamp 
machine critically helped us to characterize the pro-
cesses of adaptation, inactivation, and recovery. Fig. 3 
shows that the kinetically intertwined processes of adap-
tation and inactivation are separable and have opposite 
tension dependencies. Adaptation, previously called 
“desensitization” (Akitake et al., 2005), slows down with 
tension, whereas the inactivation rate increases. Thus, 
at higher conditioning tensions, when more channels 
tend to be open, fewer channels are recruited into the 
inactivation path, but the rate of inactivation increases. Re-
covery from inactivation, as illustrated in Fig. 3 (D and E), 
has an opposite tension dependence from the inactiva-
tion process, although with a lower slope. In the simpli-
fying assumptions that recovery is inactivation in reverse 
and the closed or adapted (C and CA) and inactivated 
(I) states are separated by a single rate-limiting barrier 
(B), the sum of AC→B and AB→I calculated from the 
slopes of respective tension dependencies predicts the 
total expansion of 8.5 nm2 accompanying the C→I 
transition. Therefore, both processes of opening and 
inactivation originate in the closed or closed-adapted 
states, with essentially coinciding thresholds (Akitake 
et al., 2005). However, larger expansion associated with 
opening (12–15 nm2) and correspondingly steeper de-
pendence on tension sets a higher rate and probability 
for opening at higher tensions that permits a transient 
response. The schemes illustrating possible transitions 
between main functional states in WT MscS are pre-
sented in Fig. 5, with the explanation of the sequence of 
events in the legend. The major feature is the presence 
of the adapted closed state (CA) in excised patches, 
from where inactivation occurs. The CA state may be a 
result of some pre-expansion of the channel complex 

Figure 5.  The possible branching pathways connecting main 
functional states visited by MscS in excised inside-out patches.  
(A) The channel undergoes a direct C→O transition, adaptive clo-
sure (O→CA) because of midpoint shift, from where the channels 
inactivate in a tension-dependent manner. Upon tension release, 
the channels obligatorily go to the CA state first and then recover 
completely. (B) Under tension, especially gradually imposed, 
channels first adapt (C→CA) and then open (CA→O). Channels 
remaining in the CA state (not open) gradually escape to the  
I state. Further adaptive shift of activation curve will add to the 
CA population from the O state (O→CA). Because the recovery 
rate is strongly tension dependent and channels refuse to recover 
unless tension is very low, it is conceivable that there is more pref-
erential return to the C state as opposed to the CA state. Note that 
the CA state may not be just a pre-stressed state of the channel by 
tension, but rather a state of the surrounding membrane with a 
distorted tension profile (Belyy et al., 2010b). The positions of the  
state wells on the expansion coordinate are shown by letters  
(C, CA, O, and I), and the approximate positions of rate-limiting 
barriers are designated by asterisks. The area change for the open-
ing transition is taken from Belyy et al. (2010b).
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prevents inactivation from the open state ensures that 
MscS will not shut as long as tension is close to saturat-
ing and the channel will fulfill its protective role. The 
requirement of closing before inactivation implies that 
tension must drop to a level below or near the thresh-
old, from where the channel can be safely disengaged. 
Return of the cell to a normal or hyperosmotic medium 
would release tension completely and permit fast recov-
ery to the resting “ready-to-fire” state.
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