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C o m m e n t a r y

Readers of the current issue will find something unfa-
miliar, perhaps tantalizing, perhaps unsettling. I am re-
ferring to the articles by Cha et al. (see “Ionic mechanisms 
and Ca2+ dynamics...” and “Time-dependent changes in 
membrane excitability...”). The first of these articles is 
less exotic; it presents computer simulations of a model 
for bursting electrical activity in pancreatic  cells. The 
second uses bifurcation diagrams to analyze the behavior 
of the model. I will argue that this is relevant far beyond 
 cells—the leading edge of a wedge driving the methods 
of dynamical systems theory into the heart of biology.

Mathematical modeling of cell electrical activity has  
a long history in physiology, going back to the work of 
Hodgkin and Huxley (Hodgkin and Huxley, 1952; Chay 
and Keizer, 1983) for action potential generation and 
propagation in squid giant axon. The model of Cha et al. 
(2011a,b) is based on the Hodgkin and Huxley formal-
ism, but augmented with mechanisms for maintaining 
ionic balance (pumps and exchangers for Ca2+, Na+, and 
K+, and the endoplasmic reticulum). In addition, a nod is 
given in the direction of metabolism, as  cells are first 
and foremost metabolic sensors and use ATP-dependent 
K+ (K(ATP)) channels, to transduce the rate of glucose 
metabolism into intensity of electrical activity.

Cha et al. (2011a,b) follow the path blazed by Chay 
and Keizer (1983). Their model was based on the sim-
ple idea, first proposed by Atwater et al. (1980), that 
bursting results from slow modulation of spiking by cal-
cium. That is, during the active spiking phase of the 
burst, calcium builds up and turns on calcium-activated  
K+ (K(Ca)) channels until membrane potential falls below 
the threshold level and spiking terminates. During the 
ensuing silent phase, calcium would be pumped out of 
the cell, lowering the spike threshold and allowing the 
next active phase to begin. Rinzel (1985) formalized 
this mathematically, recognizing that the key element of 
Chay–Keizer was a fast spiking system modulated by slow 
negative feedback. This led to a profusion of models, 
different biophysically but essentially equivalent mathe-
matically, with alternate proposals for the source of the 
negative feedback. These included inactivation of the 
L-type Ca2+ channel (Chay, 1990), indirect activation of 
K(ATP) channels by Ca2+ via its effects on ATP consump-
tion or production (Keizer and Magnus, 1989), and ac-
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tivation of electrogenic Na–K exchange (Fridlyand et al., 
2003). The model of Cha et al. (2011a,b) is most similar 
to that of Fridlyand and colleagues, including all of the 
above mechanisms as well as some others, paying close 
attention to balancing the ion fluxes and including a 
prominent role for the Na+/K+ exchanger.

Time-based simulations of models are well recognized 
as useful. They provide a quantitative test of the hypoth-
esis posed by the model, showing whether the hypothe-
sized mechanisms can in fact work together quantitatively 
to produce the target behavior. They also allow pertur-
bations to be tested that may not be possible in the ex-
perimental system. One limitation, however, is that each 
simulation tests only one set of parameter values. With an 
analytic solution (a formula for the solution as a func-
tion of time), one would know everything there is to know 
as parameters vary, but this is not possible for complex, 
nonlinear models like those for  cells.

One solution to this problem is to construct a bifurca-
tion diagram, which is a plot of the solutions versus 
parameters. This may seem no better than time integra-
tions, as such solutions also have to be obtained by a nu-
merical computation. However, the diagram, in part, is 
a plot just of the steady states, which is a much easier 
math problem, requiring only the solution of the system 
of nonlinear algebraic equations obtained by setting 
the right-hand sides of the differential equations to 0 and 
not the time-dependent solution of the differential equa-
tions themselves.

An example of such a bifurcation diagram is Fig. 1 in 
Cha et al. (2011b), computed using the popular public 
domain program XPPAUT (Ermentrout, 2002). The fig-
ure shows the behaviors as the parameter for glucose con-
centration are varied, namely that as glucose is raised, 
the system goes from silent to bursting to continuous 
spiking, with membrane potential and cytosolic calcium, 
and, implicitly, insulin secretion increasing. Even more 
important than convenience and efficiency, the diagram 
shows solutions that are unstable, which cannot be 
achieved by solving the differential equations in time 
because the system moves away from those solutions, 
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14 Dynamical systems theory in physiology

friction” that injects energy into the system in proportion 
to the speed of the pendulum, then the solutions oscil-
late with ever increasing amplitude. In this case, we would 
say that the solution 0 is unstable. (One may wonder 
where negative friction comes from; we will return to 
that below.) At the border between these stable and un-
stable parameter regimes, b = 0,  would also be 0, and 
the solution would be a pure sinusoidal oscillation. In a 
nonlinear system, something similar can happen, and it 
is called a Hopf bifurcation (HB). Programs like XPPAUT 
detect this by linearizing the system and calculating con-
stants of the linearized system, called eigenvalues, from 
which  and  can be obtained. When  changes sign, 
an oscillation of the full system is born that is initially  
sinusoidal but distorts because of nonlinear effects as the 
parameter is moved away from the bifurcation and can 
become highly asymmetrical, like a neuronal or -cell 
action potential.

There is one critical difference between the oscilla-
tions of the nonlinear system and those of the pendu-
lum. A pendulum has no fixed amplitude; the amplitude 
depends on the initial position and velocity of the pen-
dulum. The solid and dashed traces in Fig. 1 for b = 0 
have smaller and larger initial velocity, respectively. The 
amplitude can also be changed by briefly tapping the 
bob (not depicted). In the nonlinear system, if the oscil-
lation is perturbed, say, by a brief injected current in the 
case of the  cell, then the oscillation will either return 
to its original amplitude or run away to some other be-
havior. Thus, nonlinear oscillations can also be charac-
terized as stable or unstable and are usually referred to 
as “limit cycles” because the system is either attracted to 
or repelled by them in the limit as time goes to infinity. 
The linear oscillation, in contrast, is neutrally stable; 
like a marble on a flat surface, it does not revert to its 
old position if it is moved.

Going back to Fig. 1 in Cha et al. (2011b), we find stable 
oscillations for high glucose concentrations that become 
unstable through a more complex bifurcation, called 
a torus bifurcation, as glucose is reduced <18.84 mM.  
(Note that XPPAUT has calculated the unstable oscil-
lations as well as the stable ones, which again cannot 
be done by integrating the differential equations in 
time.) A complex sequence of other bifurcations that 
are not shown ensues that culminates in the bursting 

not toward them. The standard example for illustrating 
this is a marble on a surface with hills and valleys. The 
marble will roll away from the hills (the unstable solu-
tions) into the valleys (the stable solutions).

Unstable solutions are also physically unrealizable by 
the cells, so why are they of interest? The reason is that 
oscillations, the behavior of  cells that we really want to 
understand, are born out of steady states that become 
unstable. The change of stability is called a bifurcation, 
which is why such diagrams are called bifurcation diagrams 
and not just state diagrams. In other words, the diagram 
is not merely a list of the states the system can be in but 
shows how they arise from an underlying dynamic pro-
cess. Indeed, Fig. 1 in Cha et al. (2011b) contains more 
than the steady states; it also displays the maximum and 
minimum values attained during some of the oscilla-
tions undergone by the system and the bifurcations that 
lead to them.

The idea of oscillations arising as a parameter 
changes can be understood with the aid of another 
simple mechanical example, a pendulum, which can be 
represented in a simplified form by the linear equation

	 d
dt

b
d
dt

2

2 0
θ θ

θ+ + = , 	  (1)

where  represents the angle of the pendulum from a 
vertical line through the pivot, and b represents friction 
(valid only for small deflections from the vertical). This 
equation has only one steady state,  = 0, and solutions 
take the form

	 θ λ ω= A t texp( )sin( ), 	  (2)

or a similar equation with cosines, or both. (If one sub-
stitutes expression 2 into Eq. 1, one can solve for  and 
, but we don’t need to do this because we are only in-
terested in how the behavior changes qualitatively as  
b varies.) If b < 0, as would be normal for friction, then  < 0, 
and the solutions are decaying oscillations with an ex-
ponential envelope (Fig. 1). These go to 0 as time goes 
to infinity, so 0 is a stable solution; if the system starts at 
0 it stays there, and if it is moved off 0 it returns, like the 
marble rolling into the valley. If, on the other hand,  
b > 0, which would correspond to some kind of “negative 

Figure 1.  Linear oscillations. Sinusoi-
dal solutions of (1) for a pendulum 
with friction (b < 0), negative friction 
(b > 0), and no friction (b = 0). In the 
last case, amplitude is constant but de-
pends on the initial velocity of the pen-
dulum. The dashed blue curve is started 
at the same position but with twice the 
velocity as the solid black curve.
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This mechanism lies at the heart of both the fast spikes 
and the slow alternation between spiking and silence in 
the -cell model. Indeed, the same concept applies to a 
wide variety of biological oscillations, including neuronal 
and cardiac action potentials, circadian rhythms, calcium 
oscillations driven by release from the endoplasmic retic-
ulum, oscillating chemical reactions, the eukaryotic cell 
cycle, and many more (Keener and Sneyd, 1998; Fall 
et al., 2002).

Biophysical intuition is adequate to understand action 
potentials; inward (Na+ or Ca2+) current builds up auto-
catalytically (i.e., provides positive feedback), and the 
rise in Vm activates outward current (K+) and/or inacti-
vates inward current (i.e., provides negative feedback). It 
is much harder to intuit whether one gets one spike or a 
train, as this depends on a subtle quantitative balance 
between the depolarizing and hyperpolarizing currents. 
As already is the case for an action potential, the negative 
feedback must develop more slowly than the positive 
feedback or the two would cancel out, but how much 
slower can make the difference between a single spike 
and repetitive spiking.

Fig. 2 shows four different oscillation patterns that 
can be obtained from a simplified version of the Chay-
Keizer model (Tsaneva-Atanasova et al., 2010) by varying 
a few parameters. The model consists of equations for 
membrane potential (Vm), activation of the delayed rec-
tifier K+ channel, and free cytosolic calcium (Ca). In each 
panel, the upper subpanel shows the bifurcation diagram 
of the fast subsystem, and the lower subpanel shows the 
Vm as a function of time. In addition, the Vm–Ca trajectory 
is overlaid on the bifurcation diagram to show that the 
analysis done with cytosolic calcium fixed and viewed as 
a parameter predicts the time evolution. Moreover, once 
one is familiar with such diagrams, it is often easy to 
sketch out the solution using just the geometric informa-
tion they contain, without needing to solve the equations 
numerically. In Fig. 2 A, the spikes have been elimi-
nated by speeding up the delayed rectifier K+ channels, 
leaving only a square wave–like oscillation. Once we un-
derstand how this comes about, the other three panels 
follow suit.

The Z-shaped curve represents the steady-state values 
of Vm for each value of Ca. Generally, Vm decreases as Ca 
increases because of the activation of K(Ca) channels. 
However, for an intermediate range of Ca values, Vm has 
three steady states, upper and lower states that are sta-
ble and an intermediate state that is unstable, indicated 
by dashing. Bistability, like oscillations, is ubiquitous in 
biology. An interesting application is the genetic engi-
neering of a toggle switch (Gardner et al., 2000).

In the  cell, bistability results from the balance of in-
ward Ca2+ and outward K+ currents. As Ca decreases 
from the right, Vm rises gently until the voltage thresh-
old of the L-type Ca2+ channels is reached, which in-
creases Ca2+ entry, which raises Vm further, which opens 

oscillations shown in Fig. 2 of the simulation paper  
(Cha et al., 2011a). That figure shows that the scenario 
outlined by the bifurcation diagram is realized in simu-
lations. At 20 mM glucose the system undergoes contin-
uous spiking; at 16, 12, and 8 mM glucose it bursts; and 
at 6 mM glucose it is quiescent.

Thus, like a Shakespeare play in which the battle 
scenes take place offstage, the interesting behaviors of 
the -cell model are only hinted at, but those hints are 
enough for those in the know. In simpler systems the 
bursting solutions and the bifurcations that lead to them 
can be calculated with XPPAUT if one has sufficient de-
termination (see Tsaneva-Atanasova et al., 2010). The 
mathematics of this process, which includes intervals of 
chaos, is not yet completely understood. Nonetheless, we 
should pause to admire the achievement; a nontime-
dependent calculation of steady states, both equilibria 
and oscillations, has predicted where to find particular 
behaviors in the full, time-dependent system. This is the 
hallmark of a successful theory—it is able to capture the 
key features of a system with a compressed description, 
much as Newton’s unitary central, square-law force was 
able to account for Kepler’s multiple empirical laws.

We have seen so far that bifurcation diagrams can pro-
vide useful summaries of a complex system, but Rinzel’s 
profound innovation (Rinzel, 1985) was to introduce a 
different kind of diagram that led to insights into how 
the bursts are generated and modulated, not just where 
they occur. He formalized the biophysical idea of slow 
negative feedback by decomposing the system of equa-
tions into a set of (at least two) fast equations to repre-
sent the dynamics of the voltage-dependent Ca2+ and  
K+ channels, and a slow equation (cytosolic calcium) to 
turn the spiking on and off. Because the two subsystems 
operate on well-separated timescales, they can each be ana
lyzed semi-independently. From the point of view of the 
slow variables, the fast variables can be viewed as in quasi–
steady state, and from the point of view of the fast vari-
ables, the slow variable can be viewed as a constant, that 
is, a parameter. Thus, the program was to construct a 
bifurcation diagram of the fast subsystem with the slow 
variable as a parameter. The general idea of subdividing 
systems by timescales is ubiquitous and highly successful 
in applied mathematics, but Rinzel was the first to apply 
it to bursting. The decomposition simplifies the analysis 
tremendously by reducing the whole burst trajectory to 
a sequence of lower dimensional problems. The same 
strategy was implemented by Cha et al. (2011b) in Figs. 2, 
4, and 5, but with a much larger number of fast variables 
and multiple slow variables.

This changes some aspects and introduces new chal-
lenges, but the essentials are already present in the sim-
plest case. In fact, we can get most of the way to our goal if 
we simplify further by eliminating the spikes (see Fig. 2 A). 
This will allow us to concentrate on how one fast and 
one slow variable can produce an oscillation via an HB. 
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Once the upper branch of the Z-curve is reached, Vm is 
once again in equilibrium, but at a higher value of Ca. 
On this branch, Ca2+ influx exceeds efflux because the 
Ca2+ channels are wide open. This pulls the system to the 
right, with Ca increasing and Vm gently decreasing 
quasi-statically. The denouement is clear. When the sys-
tem passes the right knee (upper LP), the system again 
finds itself with a single equilibrium, in this case, the 
lower one. Once on the lower branch, the cycle repeats. 
The reader should trace out the time course in the lower 
subpanel to confirm that every feature corresponds to 
the events described above in the bifurcation diagram 
in which time is only present implicitly.

Another shorthand way to describe the oscillation  
cycle is in terms of thresholds of the fast subsystem, which 
are generated by the physically unrealizable middle 
states. These points separate the upper and lower states, 
not only geometrically but dynamically. If Vm lies below 
one of these states (again thinking of Ca as fixed), it is 
repelled downward to the lower steady state. If Vm lies 
above the middle steady state, it is repelled upward. We 
can thus think of the lower LP as the place where the 
threshold falls to reach the rising voltage because of 
slowly decreasing activation of the K(Ca) channels, 
and once Vm crosses this threshold, it jumps up rapidly. 
The same happens in reverse at the end of the plateau, 
when the falling voltage meets the rising threshold at the 
upper LP and a rapid repolarization ensues. A valuable 

more Ca2+ channels. This positive feedback loop, which 
creates the bulge to the right, is the bioelectrical ana-
logue of negative friction. As Vm increases further, voltage-
dependent K+ channels open, which eventually balances 
the Ca2+ current and dominates it as the driving force  
of K+ efflux increases and the driving force for Ca2+ de-
creases. Vm continues to rise slightly, but Ca decreases, 
along the upper branch of the Z-curve. Note that the 
Z-shape and bistability are not guaranteed by the mere 
presence of Ca2+ and K+ currents but depend on the pa-
rameter values. For example, if the activation curve of 
the Ca2+ channels is shifted too far to the right, then 
they will activate at voltages where the K+ channels are 
already active and lead to a monotonic Ca–V relation. 
Given bistability, however, the stage is set for the oscilla-
tion depicted in the lower panel.

The diagram was calculated on the assumption that 
Ca is fixed, but in reality, it varies slowly, and Vm adjusts 
quasi-statically according to the Ca–V relation. Suppose 
the system starts on the lower branch, with high Ca and 
low Vm. In this condition, outward pumping of Ca2+ will 
(again assuming properly chosen parameters, as discussed 
below) exceed influx through channels and Ca will de-
crease. Once the left knee of the Z-curve, marked by 
limit point (LP), is reached, however, the lower branch 
comes to an end. If the system passes even infinitesimally 
to the left of LP, the fast dynamics of Vm are unleashed, 
and the only available equilibrium is the upper one. 

Figure 2.  Bifurcation diagrams and time 
simulations of bursting. Each panel is 
made with a simplified Chay–Keizer model 
(Tsaneva-Atanasova et al., 2010). Bifurca-
tion diagrams with overlaid burst trajecto-
ries (blue) in upper subpanel. Solid lines, 
stable solutions; dashed lines, unstable 
equilibria; dotted line, unstable oscilla-
tions. (A) Pure square wave without spikes. 
(B)  cell–like square-wave bursting.  
(C) Pituitary-like bursting. (D) Bursting 
without bistability requires a second slow 
variable, as in this caricature of bursting in 
the R15 neuron of Aplysia.
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tive that the active phase ends when the spike minima 
intersect the rising threshold. In addition to explain
ing the bursting time course shown below the diagram, it 
accounts for the fact that at high glucose, the system 
undergoes continuous spiking, as we already noted in 
Fig. 2 of Cha et al. (2011a). Now, getting stuck in the 
plateau means a state of permanent oscillation with Ca 
high but nearly constant.

Note that in Cha et al. there are S-curves instead of a 
Z-curve in some of their bifurcation diagrams because 
the parameter represents inhibition of an inward current 
rather than activation of an outward current (for exam-
ple, conductance of the Ca2+ channel in Fig. 2 in Cha et al., 
2011b). The dynamics are nonetheless identical, another 
example of the power of mathematical abstraction.

In Fig. 2 (A and B), the existence of oscillations is tied 
to bistability between the upper and lower states, whether 
the upper state is an equilibrium or an oscillation. This 
implies immediately that it should be possible to shift 
the system between the active and silent phases with brief 
electrical perturbations. In fact, this was shown by Cook 
et al. (1981) for  cells by injecting positive current in 
the silent phase or negative current in the active phase 
or by applying pulses of KCl.

This has been cited as evidence that -cell oscillations 
are ionic in origin, rather than metabolic. However, we 
will see from Fig. 2 C that this is not necessarily the case. 
The same model is used, but the activation curve of the 
Ca2+ channels has been shifted to the left, resulting in a 
somewhat different bifurcation diagram. Again, we have 
a Z-curve, but now the HB of the fast subsystem is shifted 
to the right, so that it occurs between the knees. This 
happens because higher Ca and more K(Ca) channel ac-
tivation are needed to overcome the enhanced inward 
current. More important, however, is that the oscilla-
tions that emerge from the HB are unstable, indicated 
by dotting. This means that the spikes in the time course 
below are not stable oscillations but only transients. If 
Ca were fixed at any value, Vm would come to rest, not 
oscillate. Nonetheless, if Ca increases during the active 
phase faster than Vm reaches equilibrium, small but dis-
tinct spikes appear. (The increased speed of Ca is revealed 
by the wide spacing of the spikes compared with that 
in Fig. 2 B.)

Models like this turn out to represent well the oscilla-
tions seen in pituitary somatotrophs, lactotrophs, and 
corticotrophs, which are endocrine cousins of the  cell 
(Tabak et al., 2007; Stern et al., 2008) that burst but 
have smaller spikes and shorter plateaus than  cells. In 
some cases, the spikes can continue well to the right of 
the HB, when paradoxically there is neither a stable steady 
state nor a stable oscillation. This can happen because 
the repulsion from the unstable steady state is slow com-
pared with the rate of rise of Ca. (Think of how Road 
Runner hangs in the air until he realizes that he has run 
off a cliff.) In this condition, it is very difficult to reset 

innovation in Fig. 4 of Cha et al. (2011b) is to overlay 
the thresholds coming together on the time course, which 
may be easier to understand than the Vm–Ca plane and 
is also applicable when there are many slow variables.

The mere existence of the Z-curve is not a guarantee 
of oscillations. For example, if the Ca2+ pump is too weak 
to push Ca down to the level of the LP, the system gets 
stuck on the lower branch, and if the pump is strong 
enough to overwhelm the entry of Ca2+ in the high volt-
age state, the system gets stuck on the upper branch. It 
is also necessary for Ca to be much slower than Vm. See 
Rinzel and Ermentrout (1998) for a nice demonstration 
that in a system with fast activation and slow inhibition, os-
cillations are assured when certain geometric conditions 
are satisfied and the slow variable is sufficiently slow.

These are also threshold phenomena, but with a dif-
ference—it represents a threshold of the full system, 
with Ca as a dynamic variable, not of the fast subsystem 
alone. In their original model, Chay and Keizer (1983) 
in fact proposed that this was the way that increasing 
glucose brought the  cells above threshold for bursting, 
namely by increasing the activity of the plasma mem-
brane Ca2+ ATPase. Later, when the K(ATP) channel 
was discovered, it was suggested that the threshold was 
instead set by a sufficient degree of closure of K(ATP) 
by the increased ATP/ADP ratio. Rinzel et al. (1986) 
showed that both hypotheses could be framed in terms 
of the geometry of the Z-curve and whether the full sys-
tem got stuck on the bottom branch or could escape. 
With either mechanism, bursting is born via an HB of 
the full system. This shows the power of mathematical 
abstraction to reveal the underlying unity of disparate 
mechanisms. The model of Cha et al. is much more 
complex than Chay–Keizer, but it too crosses the burst 
threshold via an HB, indicated by the HB point of their 
Fig. 1 (Cha et al., 2011b). The fast–slow bifurcation dia-
grams of Cha et al. (2011b) differ in some details from 
Fig. 2 B, but the main features are the same, showing 
the power of simplified models, even wrong ones, to get 
at the heart of the matter.

“Wait a minute,” you say. “I haven’t seen any bursting 
yet, just a square wave.” This can be profitably viewed as a 
degenerate burst without any spikes, as we turn to Fig. 2 B, 
in which spikes have been restored by slowing down 
the voltage-dependent K+ channels. We again have a 
Z-curve of steady states, and the overlaid trajectory ex-
hibits spikes that surround the upper steady state. The 
new element is that the upper steady state is unstable. 
Looking to the left, we see that this instability is again 
the result of an HB but, in this case, of the fast subsystem 
alone. The HB gives rise to an oscillation, which is the 
fast spiking oscillation.

The circulation of the system follows the same pattern 
as in Fig. 2 A, but with spikes adorning the plateau. The 
end of the active phase of the burst is more complicated 
with spikes and beyond our scope, but Fig. 2 B is sugges-
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bursters could be anticipated if one considered all the 
bifurcations that can lead to or abolish oscillations, 
many of which have now turned up in modeling studies. 
Indeed, the pattern shown in Fig. 2 C was predicted be-
fore it was instantiated by a model. Deeper mathemati-
cal analysis shows further that all of these bifurcations 
can emerge from a single fundamental bifurcation that 
spins off multiple configurations of subsidiary bifurca-
tions as several parameters are varied (Bertram et al., 
1995; Golubitsky et al., 2001). Although it can be very 
difficult to establish definitively that a particular model 
or proposed bifurcation scenario is implicated in a 
given biological phenomenon, we can be confident that 
as cells, tissues, and organisms randomly explore pa-
rameter space, they will encounter these bifurcations 
and make use of them. With advances like this, mathe-
matical biology leans in the direction of realizing its as-
pirations to achieve the kind of theoretical unification 
found in more mature traditions like physics.

We have seen that exploiting multiple timescales is a 
powerful tool for dissecting the behavior of complex 
systems by subdividing the variables. Multiple timescales 
also have biological significance; the semi-independence 
of the subsystems makes them modular, which is benefi-
cial from an evolutionary point of view because it allows 
innovation without destroying well-tested subcompo-
nents (Tyson et al., 2003).

Why are fast–slow oscillations ubiquitous in biology? 
We can think of this as homeostasis of a higher order. 
Biology is replete with negative feedback. Almost every 
reaction is inhibited directly or indirectly by its product, 
which prevents concentrations from running out of nar-
row bounds. However, if the feedback is slow and some 
source of positive feedback is available, the system can 
undergo transients before returning to rest, and under 
the right conditions, this can result in repeated oscilla-
tions. When these oscillations are useful, they can be 
fixed by evolution.

None of the ideas presented here are new. They are 
old hat to mathematical biologists although little known 
to nonmathematical biologists. Physiology, especially 
electrophysiology, has had a long symbiotic relationship 
with dynamic modeling because of the early develop-
ment of techniques for monitoring time-dependent be-
havior with high time resolution. There was not much 
of a field of calcium modeling before the invention of 
imaging techniques, which revealed a wealth of dynamic 
phenomena such as oscillations and waves. When ex-
perimentalists turned to theorists for help in understand-
ing these phenomena, a large repertoire of models was 
ready-to-hand to help out that was further enriched by 
new examples and by the challenge of integrating the 
calcium and electrical subsystems in cells.

As biology forges ahead and live cell–imaging tech-
niques reveal the temporal complexity of more and more 
cell-signaling mechanisms, dynamical systems theory will 

the system from the silent phase to the active phase 
(Stern et al., 2008). Thus, we have a case in which burst-
ing is ionic but not resettable. (It is also possible to have 
metabolic oscillations that are resettable by electrical 
perturbations [Goel and Sherman, 2009], but these are 
the much slower -cell oscillations, with a period of  
5 min, not treated by Cha et al., 2011a,b.) Note that 
the prediction of the nonresettability of pituitary-type 
bursters would not be at all apparent from the biophys-
ics or even from a time-based simulation. (This predic-
tion remains to be tested.)

As a final example, consider Fig. 2 D. Here, the activa-
tion of the delayed rectifier has been slowed down, re-
sulting in large amplitude spikes. As a consequence, the 
spiking solutions of the fast subsystem fall below thresh-
old at the left knee of the Z-curve. This means that there 
is no longer bistability—the system can either spike con-
tinuously or be silent, but it cannot alternate between 
the two, at least not by the mechanism of Fig. 2 (A–C).

It is possible to convert a diagram like the one in Fig. 2 C 
to one like Fig. 2 D by blocking large-conductance volt-
age- and calcium-dependent K+ (BK) channels. This ef-
fectively makes the summed K+ current through delayed 
rectifier and BK channels slower by reducing or elimi-
nating the faster component. Van Goor et al. (2001) 
showed that this could account for the paradoxical 
shortening of plateaus by blocking BK channels in pitu-
itary somatrophs and also suggested that pituitary go-
nadotrophs do not show plateau bursting because they 
lack the BK channels found in other pituitary cells.

If a second slow variable is added, however, it is possi-
ble to get another kind of bursting. In fact, this is the 
mechanism proposed by Rinzel and Lee (1987) for the 
bursting in the R15 neuron of the sea snail Aplysia. The 
fact that there is no bistability means that these bursts 
would not be resettable, either upward or downward, by 
brief perturbations, and the fact that there are two slow 
variables, one providing positive feedback and one pro-
viding negative feedback to the fast subsystem, means that 
the slow variables can oscillate autonomously, even if the 
spikes are blocked. Thus, the analysis of Rinzel and Lee 
(1987) accounted for two key experimental observations.

The above examples show some of the successes of  
bifurcation theory and dynamical systems approaches 
more generally in solving biological puzzles. They pro-
vide insights that are not possible from a biophysical or 
simulation approach. Beyond that, Fig. 2 hints at a deeper 
level of theory than the study of particular bursting sys-
tems. All of the examples we have considered arise from 
a common substrate with modest changes in parameters. 
With the first few particular examples in hand, Rinzel 
(1987) showed that they could be classified based on the 
bifurcations that mediated the initiation of the active 
phase and the termination of the active phase rather 
than the channels or other mechanisms involved. 
Izhikevich (2010) showed that many more types of 
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be essential. Luckily, there are many accessible sources 
aimed at bringing this theory within the grasp of ex-
perimentalists (Keener and Sneyd, 1998; Rinzel and  
Ermentrout, 1998; Fall et al., 2002; Tyson et al., 2003; 
Izhikevich, 2010) and many theorists with the deep 
grounding in biology needed to lend a hand. Even if your 
own work has yet to be touched by these developments, 
be on the lookout: they are coming to a biological system 
near you.
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