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Readers of the current issue will find something unfa-
miliar, perhaps tantalizing, perhaps unsettling. I am re-
ferring to the articles by Chaetal. (see “lonic mechanisms
and Ca*" dynamics...” and “Time-dependent changes in
membrane excitability...”). The first of these articles is
less exotic; it presents computer simulations of a model
for bursting electrical activity in pancreatic 8 cells. The
second uses bifurcation diagrams to analyze the behavior
of the model. I will argue that this is relevant far beyond
B cells—the leading edge of a wedge driving the methods
of dynamical systems theory into the heart of biology.

Mathematical modeling of cell electrical activity has
a long history in physiology, going back to the work of
Hodgkin and Huxley (Hodgkin and Huxley, 1952; Chay
and Keizer, 1983) for action potential generation and
propagation in squid giant axon. The model of Cha et al.
(2011a,b) is based on the Hodgkin and Huxley formal-
ism, but augmented with mechanisms for maintaining
ionic balance (pumps and exchangers for Ca*", Na*, and
K', and the endoplasmic reticulum). In addition, a nod is
given in the direction of metabolism, as 3 cells are first
and foremost metabolic sensors and use ATP-dependent
K" (K(ATP)) channels, to transduce the rate of glucose
metabolism into intensity of electrical activity.

Cha et al. (2011a,b) follow the path blazed by Chay
and Keizer (1983). Their model was based on the sim-
ple idea, first proposed by Atwater et al. (1980), that
bursting results from slow modulation of spiking by cal-
cium. That is, during the active spiking phase of the
burst, calcium builds up and turns on calcium-activated
K" (K(Ca)) channels until membrane potential falls below
the threshold level and spiking terminates. During the
ensuing silent phase, calcium would be pumped out of
the cell, lowering the spike threshold and allowing the
next active phase to begin. Rinzel (1985) formalized
this mathematically, recognizing that the key element of
Chay-Keizer was a fast spiking system modulated by slow
negative feedback. This led to a profusion of models,
different biophysically but essentially equivalent mathe-
matically, with alternate proposals for the source of the
negative feedback. These included inactivation of the
L-type Ca*" channel (Chay, 1990), indirect activation of
K(ATP) channels by Ca** via its effects on ATP consump-
tion or production (Keizer and Magnus, 1989), and ac-
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tivation of electrogenic Na—K exchange (Fridlyand et al.,
2003). The model of Cha et al. (2011a,b) is most similar
to that of Fridlyand and colleagues, including all of the
above mechanisms as well as some others, paying close
attention to balancing the ion fluxes and including a
prominent role for the Na'/K" exchanger.

Time-based simulations of models are well recognized
as useful. They provide a quantitative test of the hypoth-
esis posed by the model, showing whether the hypothe-
sized mechanisms canin factwork together quantitatively
to produce the target behavior. They also allow pertur-
bations to be tested that may not be possible in the ex-
perimental system. One limitation, however, is that each
simulation tests only one set of parameter values. With an
analytic solution (a formula for the solution as a func-
tion of time), one would know everything there is to know
as parameters vary, but this is not possible for complex,
nonlinear models like those for B cells.

One solution to this problem is to construct a bifurca-
tion diagram, which is a plot of the solutions versus
parameters. This may seem no better than time integra-
tions, as such solutions also have to be obtained by a nu-
merical computation. However, the diagram, in part, is
a plot just of the steady states, which is a much easier
math problem, requiring only the solution of the system
of nonlinear algebraic equations obtained by setting
the right-hand sides of the differential equations to 0 and
not the time-dependent solution of the differential equa-
tions themselves.

An example of such a bifurcation diagram is Fig. 1 in
Cha et al. (2011b), computed using the popular public
domain program XPPAUT (Ermentrout, 2002). The fig-
ure shows the behaviors as the parameter for glucose con-
centration are varied, namely that as glucose is raised,
the system goes from silent to bursting to continuous
spiking, with membrane potential and cytosolic calcium,
and, implicitly, insulin secretion increasing. Even more
important than convenience and efficiency, the diagram
shows solutions that are unstable, which cannot be
achieved by solving the differential equations in time
because the system moves away from those solutions,
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not toward them. The standard example for illustrating
this is a marble on a surface with hills and valleys. The
marble will roll away from the hills (the unstable solu-
tions) into the valleys (the stable solutions).

Unstable solutions are also physically unrealizable by
the cells, so why are they of interest? The reason is that
oscillations, the behavior of B cells that we really want to
understand, are born out of steady states that become
unstable. The change of stability is called a bifurcation,
which is why such diagrams are called bifurcation diagrams
and not just state diagrams. In other words, the diagram
is not merely a list of the states the system can be in but
shows how they arise from an underlying dynamic pro-
cess. Indeed, Fig. 1 in Cha et al. (2011b) contains more
than the steady states; it also displays the maximum and
minimum values attained during some of the oscilla-
tions undergone by the system and the bifurcations that
lead to them.

The idea of oscillations arising as a parameter
changes can be understood with the aid of another
simple mechanical example, a pendulum, which can be
represented in a simplified form by the linear equation

2
d—26+bd—e+9:0, @)
o dt

where 0 represents the angle of the pendulum from a
vertical line through the pivot, and b represents friction
(valid only for small deflections from the vertical). This
equation has only one steady state, 6 = 0, and solutions
take the form

0 = Aexp(Mt)sin(mt), (2)

or a similar equation with cosines, or both. (If one sub-
stitutes expression 2 into Eq. 1, one can solve for A and
o, but we don’t need to do this because we are only in-
terested in how the behavior changes qualitatively as
bvaries.) If b< 0, as would be normal for friction, then \ <0,
and the solutions are decaying oscillations with an ex-
ponential envelope (Fig. 1). These go to 0 as time goes
to infinity, so 0 is a stable solution; if the system starts at
0 it stays there, and if it is moved off 0 it returns, like the
marble rolling into the valley. If, on the other hand,
b> 0, which would correspond to some kind of “negative

b<0 b>0
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friction” that injects energy into the system in proportion
to the speed of the pendulum, then the solutions oscil-
late with ever increasing amplitude. In this case, we would
say that the solution 0 is unstable. (One may wonder
where negative friction comes from; we will return to
that below.) At the border between these stable and un-
stable parameter regimes, b = 0, A would also be 0, and
the solution would be a pure sinusoidal oscillation. In a
nonlinear system, something similar can happen, and it
is called a Hopf bifurcation (HB). Programs like XPPAUT
detect this by linearizing the system and calculating con-
stants of the linearized system, called eigenvalues, from
which A and w can be obtained. When A changes sign,
an oscillation of the full system is born that is initially
sinusoidal but distorts because of nonlinear effects as the
parameter is moved away from the bifurcation and can
become highly asymmetrical, like a neuronal or B-cell
action potential.

There is one critical difference between the oscilla-
tions of the nonlinear system and those of the pendu-
lum. A pendulum has no fixed amplitude; the amplitude
depends on the initial position and velocity of the pen-
dulum. The solid and dashed traces in Fig. 1 for =0
have smaller and larger initial velocity, respectively. The
amplitude can also be changed by briefly tapping the
bob (not depicted). In the nonlinear system, if the oscil-
lation is perturbed, say, by a brief injected current in the
case of the B cell, then the oscillation will either return
to its original amplitude or run away to some other be-
havior. Thus, nonlinear oscillations can also be charac-
terized as stable or unstable and are usually referred to
as “limit cycles” because the system is either attracted to
or repelled by them in the limit as time goes to infinity.
The linear oscillation, in contrast, is neutrally stable;
like a marble on a flat surface, it does not revert to its
old position if it is moved.

Going back to Fig. 1 in Cha etal. (2011b), we find stable
oscillations for high glucose concentrations that become
unstable through a more complex bifurcation, called
a torus bifurcation, as glucose is reduced <18.84 mM.
(Note that XPPAUT has calculated the unstable oscil-
lations as well as the stable ones, which again cannot
be done by integrating the differential equations in
time.) A complex sequence of other bifurcations that
are not shown ensues that culminates in the bursting

I Figure 1. Linear oscillations. Sinusoi-
dal solutions of (1) for a pendulum
with friction (b < 0), negative friction
(b > 0), and no friction (b =0). In the
last case, amplitude is constant but de-
pends on the initial velocity of the pen-
J dulum. The dashed blue curve is started
| at the same position but with twice the
velocity as the solid black curve.
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oscillations shown in Fig. 2 of the simulation paper
(Cha et al., 2011a). That figure shows that the scenario
outlined by the bifurcation diagram is realized in simu-
lations. At 20 mM glucose the system undergoes contin-
uous spiking; at 16, 12, and 8 mM glucose it bursts; and
at 6 mM glucose it is quiescent.

Thus, like a Shakespeare play in which the battle
scenes take place offstage, the interesting behaviors of
the B-cell model are only hinted at, but those hints are
enough for those in the know. In simpler systems the
bursting solutions and the bifurcations thatlead to them
can be calculated with XPPAUT if one has sufficient de-
termination (see Tsaneva-Atanasova et al., 2010). The
mathematics of this process, which includes intervals of
chaos, is not yet completely understood. Nonetheless, we
should pause to admire the achievement; a nontime-
dependent calculation of steady states, both equilibria
and oscillations, has predicted where to find particular
behaviors in the full, time-dependent system. This is the
hallmark of a successful theory—it is able to capture the
key features of a system with a compressed description,
much as Newton’s unitary central, square-law force was
able to account for Kepler’s multiple empirical laws.

We have seen so far that bifurcation diagrams can pro-
vide useful summaries of a complex system, but Rinzel’s
profound innovation (Rinzel, 1985) was to introduce a
different kind of diagram that led to insights into how
the bursts are generated and modulated, not just where
they occur. He formalized the biophysical idea of slow
negative feedback by decomposing the system of equa-
tions into a set of (at least two) fast equations to repre-
sent the dynamics of the voltage-dependent Ca** and
K" channels, and a slow equation (cytosolic calcium) to
turn the spiking on and off. Because the two subsystems
operate on well-separated timescales, they can each be ana-
lyzed semi-independently. From the point of view of the
slow variables, the fast variables can be viewed as in quasi—
steady state, and from the point of view of the fast vari-
ables, the slow variable can be viewed as a constant, that
is, a parameter. Thus, the program was to construct a
bifurcation diagram of the fast subsystem with the slow
variable as a parameter. The general idea of subdividing
systems by timescales is ubiquitous and highly successful
in applied mathematics, but Rinzel was the first to apply
it to bursting. The decomposition simplifies the analysis
tremendously by reducing the whole burst trajectory to
a sequence of lower dimensional problems. The same
strategy was implemented by Cha et al. (2011b) in Figs. 2,
4, and 5, but with a much larger number of fast variables
and multiple slow variables.

This changes some aspects and introduces new chal-
lenges, but the essentials are already present in the sim-
plest case. In fact, we can get most of the way to our goal if
we simplify further by eliminating the spikes (see Fig. 2 A).
This will allow us to concentrate on how one fast and
one slow variable can produce an oscillation via an HB.

This mechanism lies at the heart of both the fast spikes
and the slow alternation between spiking and silence in
the B-cell model. Indeed, the same concept applies to a
wide variety of biological oscillations, including neuronal
and cardiac action potentials, circadian rhythms, calcium
oscillations driven by release from the endoplasmic retic-
ulum, oscillating chemical reactions, the eukaryotic cell
cycle, and many more (Keener and Sneyd, 1998; Fall
et al.,, 2002).

Biophysical intuition is adequate to understand action
potentials; inward (Na* or Ca®*) current builds up auto-
catalytically (i.e., provides positive feedback), and the
rise in V), activates outward current (K") and/or inacti-
vates inward current (i.e., provides negative feedback). It
is much harder to intuit whether one gets one spike or a
train, as this depends on a subtle quantitative balance
between the depolarizing and hyperpolarizing currents.
As already is the case for an action potential, the negative
feedback must develop more slowly than the positive
feedback or the two would cancel out, but how much
slower can make the difference between a single spike
and repetitive spiking.

Fig. 2 shows four different oscillation patterns that
can be obtained from a simplified version of the Chay-
Keizer model (Tsaneva-Atanasova et al., 2010) by varying
a few parameters. The model consists of equations for
membrane potential (V,,), activation of the delayed rec-
tifier K' channel, and free cytosolic calcium (Ca). In each
panel, the upper subpanel shows the bifurcation diagram
of the fast subsystem, and the lower subpanel shows the
V,, as a function of time. In addition, the V,,—Ca trajectory
is overlaid on the bifurcation diagram to show that the
analysis done with cytosolic calcium fixed and viewed as
a parameter predicts the time evolution. Moreover, once
one is familiar with such diagrams, it is often easy to
sketch out the solution using just the geometric informa-
tion they contain, without needing to solve the equations
numerically. In Fig. 2 A, the spikes have been elimi-
nated by speeding up the delayed rectifier K channels,
leaving only a square wave-like oscillation. Once we un-
derstand how this comes about, the other three panels
follow suit.

The Z-shaped curve represents the steady-state values
of V,,, for each value of Ca. Generally, V,, decreases as Ca
increases because of the activation of K(Ca) channels.
However, for an intermediate range of Ca values, V,, has
three steady states, upper and lower states that are sta-
ble and an intermediate state that is unstable, indicated
by dashing. Bistability, like oscillations, is ubiquitous in
biology. An interesting application is the genetic engi-
neering of a toggle switch (Gardner et al., 2000).

In the  cell, bistability results from the balance of in-
ward Ca* and outward K' currents. As Ca decreases
from the right, V,, rises gently until the voltage thresh-
old of the L-type Ca* channels is reached, which in-
creases Ca®* entry, which raises V,, further, which opens
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more Ca®" channels. This positive feedback loop, which
creates the bulge to the right, is the bioelectrical ana-
logue of negative friction. As V,, increases further, voltage-
dependent K" channels open, which eventually balances
the Ca®* current and dominates it as the driving force
of K' efflux increases and the driving force for Ca* de-
creases. V,, continues to rise slightly, but Ca decreases,
along the upper branch of the Z-curve. Note that the
Z-shape and bistability are not guaranteed by the mere
presence of Ca®* and K* currents but depend on the pa-
rameter values. For example, if the activation curve of
the Ca* channels is shifted too far to the right, then
they will activate at voltages where the K' channels are
already active and lead to a monotonic Ca-V relation.
Given bistability, however, the stage is set for the oscilla-
tion depicted in the lower panel.

The diagram was calculated on the assumption that
Ca is fixed, but in reality, it varies slowly, and V,, adjusts
quasi-statically according to the Ca—V relation. Suppose
the system starts on the lower branch, with high Ca and
low V,,. In this condition, outward pumping of Ca* will
(again assuming properly chosen parameters, as discussed
below) exceed influx through channels and Ca will de-
crease. Once the left knee of the Z-curve, marked by
limit point (LP), is reached, however, the lower branch
comes to an end. If the system passes even infinitesimally
to the left of LP, the fast dynamics of V,,, are unleashed,
and the only available equilibrium is the upper one.

Once the upper branch of the Z-curve is reached, V,, is
once again in equilibrium, but at a higher value of Ca.
On this branch, Ca* influx exceeds efflux because the
Ca* channels are wide open. This pulls the system to the
right, with Ca increasing and V,, gently decreasing
quasi-statically. The denouement is clear. When the sys-
tem passes the right knee (upper LP), the system again
finds itself with a single equilibrium, in this case, the
lower one. Once on the lower branch, the cycle repeats.
The reader should trace out the time course in the lower
subpanel to confirm that every feature corresponds to
the events described above in the bifurcation diagram
in which time is only present implicitly.

Another shorthand way to describe the oscillation
cycle is in terms of thresholds of the fast subsystem, which
are generated by the physically unrealizable middle
states. These points separate the upper and lower states,
not only geometrically but dynamically. If V,, lies below
one of these states (again thinking of Ca as fixed), it is
repelled downward to the lower steady state. If V,, lies
above the middle steady state, it is repelled upward. We
can thus think of the lower LP as the place where the
threshold falls to reach the rising voltage because of
slowly decreasing activation of the K(Ca) channels,
and once V,, crosses this threshold, it jumps up rapidly.
The same happens in reverse at the end of the plateau,
when the falling voltage meets the rising threshold at the
upper LP and a rapid repolarization ensues. A valuable

Figure 2. Bifurcation diagrams and time
simulations of bursting. Each panel is
made with a simplified Chay-Keizer model
(Tsaneva-Atanasova et al., 2010). Bifurca-
tion diagrams with overlaid burst trajecto-

ries (blue) in upper subpanel. Solid lines,
stable solutions; dashed lines, unstable
equilibria; dotted line, unstable oscilla-
tions. (A) Pure square wave without spikes.
(B) B cell-like square-wave bursting.
(C) Pituitary-like bursting. (D) Bursting
without bistability requires a second slow
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variable, as in this caricature of bursting in
the R15 neuron of Aplysia.
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innovation in Fig. 4 of Cha et al. (2011b) is to overlay
the thresholds coming together on the time course, which
may be easier to understand than the V,—Ca plane and
is also applicable when there are many slow variables.

The mere existence of the Z-curve is not a guarantee
of oscillations. For example, if the Ca®* pump is too weak
to push Ca down to the level of the LP, the system gets
stuck on the lower branch, and if the pump is strong
enough to overwhelm the entry of Ca* in the high volt-
age state, the system gets stuck on the upper branch. It
is also necessary for Ca to be much slower than V,,. See
Rinzel and Ermentrout (1998) for a nice demonstration
that in a system with fast activation and slow inhibition, os-
cillations are assured when certain geometric conditions
are satisfied and the slow variable is sufficiently slow.

These are also threshold phenomena, but with a dif-
ference—it represents a threshold of the full system,
with Ca as a dynamic variable, not of the fast subsystem
alone. In their original model, Chay and Keizer (1983)
in fact proposed that this was the way that increasing
glucose brought the B cells above threshold for bursting,
namely by increasing the activity of the plasma mem-
brane Ca?* ATPase. Later, when the K(ATP) channel
was discovered, it was suggested that the threshold was
instead set by a sufficient degree of closure of K(ATP)
by the increased ATP/ADP ratio. Rinzel et al. (1986)
showed that both hypotheses could be framed in terms
of the geometry of the Z-curve and whether the full sys-
tem got stuck on the bottom branch or could escape.
With either mechanism, bursting is born via an HB of
the full system. This shows the power of mathematical
abstraction to reveal the underlying unity of disparate
mechanisms. The model of Cha et al. is much more
complex than Chay-Keizer, but it too crosses the burst
threshold via an HB, indicated by the HB point of their
Fig. 1 (Cha etal., 2011b). The fast-slow bifurcation dia-
grams of Cha et al. (2011b) differ in some details from
Fig. 2 B, but the main features are the same, showing
the power of simplified models, even wrong ones, to get
at the heart of the matter.

“Wait a minute,” you say. “I haven’t seen any bursting
yet, just a square wave.” This can be profitably viewed as a
degenerate burst without any spikes, as we turn to Fig. 2 B,
in which spikes have been restored by slowing down
the voltage-dependent K" channels. We again have a
Z-curve of steady states, and the overlaid trajectory ex-
hibits spikes that surround the upper steady state. The
new element is that the upper steady state is unstable.
Looking to the left, we see that this instability is again
the result of an HB but, in this case, of the fast subsystem
alone. The HB gives rise to an oscillation, which is the
fast spiking oscillation.

The circulation of the system follows the same pattern
as in Fig. 2 A, but with spikes adorning the plateau. The
end of the active phase of the burst is more complicated
with spikes and beyond our scope, but Fig. 2 B is sugges-

tive that the active phase ends when the spike minima
intersect the rising threshold. In addition to explain-
ing the bursting time course shown below the diagram, it
accounts for the fact that at high glucose, the system
undergoes continuous spiking, as we already noted in
Fig. 2 of Cha et al. (2011a). Now, getting stuck in the
plateau means a state of permanent oscillation with Ca
high but nearly constant.

Note that in Cha et al. there are S-curves instead of a
Z-curve in some of their bifurcation diagrams because
the parameter represents inhibition of an inward current
rather than activation of an outward current (for exam-
ple, conductance of the Ca** channel in Fig. 2in Cha etal.,
2011b). The dynamics are nonetheless identical, another
example of the power of mathematical abstraction.

In Fig. 2 (A and B), the existence of oscillations is tied
to bistability between the upper and lower states, whether
the upper state is an equilibrium or an oscillation. This
implies immediately that it should be possible to shift
the system between the active and silent phases with brief
electrical perturbations. In fact, this was shown by Cook
et al. (1981) for B cells by injecting positive current in
the silent phase or negative current in the active phase
or by applying pulses of KCI.

This has been cited as evidence that B-cell oscillations
are ionic in origin, rather than metabolic. However, we
will see from Fig. 2 C that this is not necessarily the case.
The same model is used, but the activation curve of the
Ca® channels has been shifted to the left, resulting in a
somewhat different bifurcation diagram. Again, we have
aZ-curve, but now the HB of the fast subsystem is shifted
to the right, so that it occurs between the knees. This
happens because higher Ca and more K(Ca) channel ac-
tivation are needed to overcome the enhanced inward
current. More important, however, is that the oscilla-
tions that emerge from the HB are unstable, indicated
by dotting. This means that the spikes in the time course
below are not stable oscillations but only transients. If
Ca were fixed at any value, V,, would come to rest, not
oscillate. Nonetheless, if Ca increases during the active
phase faster than V,, reaches equilibrium, small but dis-
tinct spikes appear. (The increased speed of Ca is revealed
by the wide spacing of the spikes compared with that
in Fig. 2 B.)

Models like this turn out to represent well the oscilla-
tions seen in pituitary somatotrophs, lactotrophs, and
corticotrophs, which are endocrine cousins of the  cell
(Tabak et al., 2007; Stern et al., 2008) that burst but
have smaller spikes and shorter plateaus than 3 cells. In
some cases, the spikes can continue well to the right of
the HB, when paradoxically there is neither a stable steady
state nor a stable oscillation. This can happen because
the repulsion from the unstable steady state is slow com-
pared with the rate of rise of Ca. (Think of how Road
Runner hangs in the air until he realizes that he has run
off a cliff.) In this condition, it is very difficult to reset

Sherman 17

920z Arenigad g0 uo 3senb Aq 4pd'89901 | L0z dbl/gzsseLL/EL/1/8E L HPd-Blone/dB/BI0 sseidnu//:dny woy papeojumog



the system from the silent phase to the active phase
(Stern et al., 2008). Thus, we have a case in which burst-
ing is ionic but not resettable. (Itis also possible to have
metabolic oscillations that are resettable by electrical
perturbations [Goel and Sherman, 2009], but these are
the much slower B-cell oscillations, with a period of
~5 min, not treated by Cha et al., 2011a,b.) Note that
the prediction of the nonresettability of pituitary-type
bursters would not be at all apparent from the biophys-
ics or even from a time-based simulation. (This predic-
tion remains to be tested.)

As a final example, consider Fig. 2 D. Here, the activa-
tion of the delayed rectifier has been slowed down, re-
sulting in large amplitude spikes. As a consequence, the
spiking solutions of the fast subsystem fall below thresh-
old at the left knee of the Z-curve. This means that there
is no longer bistability—the system can either spike con-
tinuously or be silent, but it cannot alternate between
the two, at least not by the mechanism of Fig. 2 (A-C).

Itis possible to convert a diagram like the one in Fig. 2 C
to one like Fig. 2 D by blocking large-conductance volt-
age- and calcium-dependent K (BK) channels. This ef-
fectively makes the summed K' current through delayed
rectifier and BK channels slower by reducing or elimi-
nating the faster component. Van Goor et al. (2001)
showed that this could account for the paradoxical
shortening of plateaus by blocking BK channels in pitu-
itary somatrophs and also suggested that pituitary go-
nadotrophs do not show plateau bursting because they
lack the BK channels found in other pituitary cells.

If a second slow variable is added, however, it is possi-
ble to get another kind of bursting. In fact, this is the
mechanism proposed by Rinzel and Lee (1987) for the
bursting in the R15 neuron of the sea snail Aplysia. The
fact that there is no bistability means that these bursts
would not be resettable, either upward or downward, by
brief perturbations, and the fact that there are two slow
variables, one providing positive feedback and one pro-
viding negative feedback to the fast subsystem, means that
the slow variables can oscillate autonomously, even if the
spikes are blocked. Thus, the analysis of Rinzel and Lee
(1987) accounted for two key experimental observations.

The above examples show some of the successes of
bifurcation theory and dynamical systems approaches
more generally in solving biological puzzles. They pro-
vide insights that are not possible from a biophysical or
simulation approach. Beyond that, Fig. 2 hints ata deeper
level of theory than the study of particular bursting sys-
tems. All of the examples we have considered arise from
a common substrate with modest changes in parameters.
With the first few particular examples in hand, Rinzel
(1987) showed that they could be classified based on the
bifurcations that mediated the initiation of the active
phase and the termination of the active phase rather
than the channels or other mechanisms involved.
Izhikevich (2010) showed that many more types of
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bursters could be anticipated if one considered all the
bifurcations that can lead to or abolish oscillations,
many of which have now turned up in modeling studies.
Indeed, the pattern shown in Fig. 2 C was predicted be-
fore it was instantiated by a model. Deeper mathemati-
cal analysis shows further that all of these bifurcations
can emerge from a single fundamental bifurcation that
spins off multiple configurations of subsidiary bifurca-
tions as several parameters are varied (Bertram et al,,
1995; Golubitsky et al., 2001). Although it can be very
difficult to establish definitively that a particular model
or proposed bifurcation scenario is implicated in a
given biological phenomenon, we can be confident that
as cells, tissues, and organisms randomly explore pa-
rameter space, they will encounter these bifurcations
and make use of them. With advances like this, mathe-
matical biology leans in the direction of realizing its as-
pirations to achieve the kind of theoretical unification
found in more mature traditions like physics.

We have seen that exploiting multiple timescales is a
powerful tool for dissecting the behavior of complex
systems by subdividing the variables. Multiple timescales
also have biological significance; the semi-independence
of the subsystems makes them modular, which is benefi-
cial from an evolutionary point of view because it allows
innovation without destroying well-tested subcompo-
nents (Tyson etal., 2003).

Why are fast-slow oscillations ubiquitous in biology?
We can think of this as homeostasis of a higher order.
Biology is replete with negative feedback. Almost every
reaction is inhibited directly or indirectly by its product,
which prevents concentrations from running out of nar-
row bounds. However, if the feedback is slow and some
source of positive feedback is available, the system can
undergo transients before returning to rest, and under
the right conditions, this can result in repeated oscilla-
tions. When these oscillations are useful, they can be
fixed by evolution.

None of the ideas presented here are new. They are
old hat to mathematical biologists although little known
to nonmathematical biologists. Physiology, especially
electrophysiology, has had a long symbiotic relationship
with dynamic modeling because of the early develop-
ment of techniques for monitoring time-dependent be-
havior with high time resolution. There was not much
of a field of calcium modeling before the invention of
imaging techniques, which revealed a wealth of dynamic
phenomena such as oscillations and waves. When ex-
perimentalists turned to theorists for help in understand-
ing these phenomena, a large repertoire of models was
ready-to-hand to help out that was further enriched by
new examples and by the challenge of integrating the
calcium and electrical subsystems in cells.

As biology forges ahead and live cell-imaging tech-
niques reveal the temporal complexity of more and more
cell-signaling mechanisms, dynamical systems theory will

920z Arenigad g0 uo 3senb Aq 4pd'89901 | L0z dbl/gzsseLL/EL/1/8E L HPd-Blone/dB/BI0 sseidnu//:dny woy papeojumog



be essential. Luckily, there are many accessible sources
aimed at bringing this theory within the grasp of ex-
perimentalists (Keener and Sneyd, 1998; Rinzel and
Ermentrout, 1998; Fall et al., 2002; Tyson et al., 2003;
Izhikevich, 2010) and many theorists with the deep
grounding in biology needed to lend a hand. Even if your
own work has yet to be touched by these developments,
be on the lookout: they are coming to a biological system
near you.

This work was supported by the Intramural Research program of
the National Institutes of Health (National Institute of Diabetes
and Digestive and Kidney Diseases).
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