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channel protein vs. cholesterol–bulk lipid bilayer) primar -
ily determining cholesterol regulation of BK channel 
activity. Thus, we reconstituted BK �A subunits (cbv1; 
AY330293) (Jaggar et al., 2005; Liu, J., P. Liu, J. Crowley, 
M. Asuncion-Chin, and A. Dopico. 2005. Cloning and 
Functional Characterization of BKCa Channel-forming 
(rslo cbv) Subunit. Society for Neuroscience. Abstr. 
960.13.) into a two-species (i.e., binary) phospholipid 
bilayer: 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoeth-
anolamine (POPE)/1-palmitoyl-2-oleoyl-sn-glycero-3-
phospho-� -serine sodium salt (POPS) 3:1 (wt/wt), 
dissolved in decane as described elsewhere (Bukiya  
et al., 2008b). This simple system minimized any possi-
ble contribution of cytosolic signaling, cholesterol cell 
metabolism, complex membrane cytoarchitecture, and 
heterogeneous lipid domains to steroid action, thereby 
drastically reducing the number of possible elements 
involved in cholesterol recognition. On the other hand, 
the binary bilayer chosen reproduces faithfully the cho-
lesterol regulation of native BK channel function ob -
served in native cell membranes (Chang et al., 1995; 
Bukiya et al., 2008b).

The cholesterol molecule contains three clearly dis-
tinct regions: (1) a rather rigid, steroid tetra-ring system 
with a double bond between C5 and C6; (2) a small po-
lar hydroxyl group at C3, which provides the molecule 
with a bit of amphiphilic character; and (3) a hydropho -
bic iso-octyl lateral chain attached to C17 (Fig. 1 A and 
Table I). This side chain is a signi�cant contributor to 
the overall hydrophobicity of the molecule and plays a 
crucial role in cholesterol insertion and partitioning 
into both natural membranes and arti�cial phospho -
lipid bilayers, with the cholesterol hydrophobic regions 
(steroid ring system and lateral chain) reaching the hy-
drophobic core of the bilayer (Worcester and Franks, 
1976; Bittman, 1997). Our data demonstrate that BK 
channel inhibition by cholesterol and related analogues 
strictly depends on the �B con�guration of the sterol C3 
hydroxyl and is facilitated by the hydrophobic nature of 
the side chain, while having rather lax structural re-
quirements on the A/B ring fusion within the hydro -
phobic steroid ring system. These requirements are 
consistent with a cholesterol target site within a hydro-
phobic environment.

Cholesterol and analogues have been widely used to 
discriminate between direct sterol–ion channel protein 
interaction versus perturbation of bulk bilayer lipid 
properties in cholesterol modi�cation of ion channel 
function (Gimpl et al., 1997; Addona et al., 2003;  
Romanenko et al., 2002, 2004). Moreover, predictions 
from SAR studies have often been veri�ed by structural 
data (By�eld et al., 2006; Epshtein et al., 2009). Our 
SAR data from a wide variety of cholesterol-related 
monohydroxysterols do not support an exclusive or pri-
mary role of perturbation of bulk bilayer lipid in choles -
terol inhibition of BK channels. In addition, our study 

Inhibition of BK channel function by cholesterol has 
been reported both in native cell membranes (Bolotina 
et al., 1989; Lin et al., 2006) and after channel protein 
reconstitution into arti�cial lipid bilayers (Crowley et al., 
2003; Bukiya et al., 2008b). However, inhibition of BK 
currents in response to cholesterol exposure is not uni-
versal (King et al., 2006). Lack of cholesterol-induced 
inhibition of BK current may re�ect the contribution of 
a variety of factors, including changes in channel ex-
pression and/or cell membrane sorting to the overall 
cholesterol effect on macroscopic current, as well as in-
appropriate access of cholesterol from a bath-perfusing 
solution to the vicinity of the BK channel. The vast ma-
jority of studies, however, concur that an elevation in 
membrane/lipid bilayer cholesterol content leads to a 
signi�cant reduction in BK channel steady-state activity 
(Po) and, thus, current (Bolotina et al., 1989; Chang  
et al., 1995; Crowley et al., 2003; Lam et al., 2004; Lin  
et al., 2006). Cholesterol-induced reduction in BK cur-
rent may have drastic consequences for neuronal excit-
ability, neurotransmitter release, smooth muscle tone 
regulation, and other processes that are heavily depen-
dent on BK channel activity.

In most tissues, BK channels are heterooligomers that 
result from the association of channel-forming �A (en-
coded by Slo1 or KCNMA1) subunits with tissue-speci�c 
accessory �B subunits (encoded by KCNMB1-4) (Orio  
et al., 2002; Lu et al., 2006). Many physiologically rele-
vant steroids, including estrogens, androgens, glucocor-
ticoids, mineralocorticosteroids, and bile acids increase 
BK channel activity. Notably, this effect depends on the 
presence of, or at least is heavily regulated by, distinct 
accessory BK �B subunits (Valverde et al., 1999; Dick and 
Sanders, 2001; King et al., 2006; Bukiya et al., 2007). 
Moreover, a structure–activity relationship (SAR) study 
unveiled the speci�c structural requirements in the bile 
acid molecule for steroid activation of �B1 subunit– 
containing BK channels, and an actual docking site in 
the BK �B1 subunit for bile acids has been proposed  
(Bukiya et al., 2008a). In contrast, cholesterol inhibi-
tion of BK channels does not depend on the presence 
of BK accessory �B1 subunits (Bukiya et al., 2008b), and 
the structural determinants in the cholesterol molecule 
that lead to BK channel inhibition remain unknown. 
Furthermore, it has been consistently interpreted that 
cholesterol reduction of BK channel activity is primarily 
determined by changes in the physical properties of the 
bulk lipid bilayer upon cholesterol insertion in the bi -
layer (Bolotina et al., 1989; Chang et al., 1995; Crowley 
et al., 2003; Morris and Juranka, 2007).

Here, we tested the ability of cholesterol and related 
monohydroxysterols to inhibit BK channels and per-
formed computational dynamics to pinpoint the struc -
tural requirements for monohydroxysterols to reduce 
BK Po. This approach also led us to obtain critical  
insight into the type of interaction (cholesterol–ion 
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For a proper comparison with data previously obtained by us 
(Crowley et al., 2003, 2005; Bukiya et al., 2008b; Vaithianathan  
et al., 2009) and others (Bolotina et al., 1989; Chang et al., 1995; 
Yuan et al., 2007), all studies were conducted at room tempera-
ture (20–25°C).

Chemicals
Cholesterol, epicholesterol, coprostanol, epicoprostanol, choles-
tanol, epicholestanol, and cholesterol trisnorcholenic acid were 
purchased from Steraloids. IUPAC nomenclature for these ste-
roids is presented in Table I. POPE and POPS were purchased 
from Avanti Polar Lipids, Inc. Ent-cholesterol was synthesized as 
described elsewhere (Belani and Rychnovsky, 2008). All other 
chemicals were purchased from Sigma-Aldrich.

Computational modeling
Three-dimensional structures of cholesterol and epicholesterol 
were modeled using MOE software (Chemical Computing Group). 
Models were optimized with the MMFF94 force �eld (Halgren, 
1996) to a root mean square gradient of 0.1 kcal · mol�� 1 · Å�� 1. The 
list of stable conformations and their corresponding energies was 
obtained using the stochastic conformational search routine in 
MOE, with the dielectric constant set at 3. This value is character-
istic of the lipid bilayer hydrophobic core (Shibata et al., 2003).

Data analysis
As an index of channel steady-state activity, we used the product 
of the channel open probability (Po) and the maximum num -
ber of functional channels present in the bilayer (N). NPo  
was obtained from all-points amplitude histograms (Dopico  
et al., 1996; Liu et al., 2008). N was determined by exposing the 
intracellular side of the BK channel to a solution containing  
100 µM of free Ca2+ at the end of the recording period. This 
treatment raised Po to �0.9, namely, close to its theoretical maxi-
mum ( Fig. S1 A).

Dwell-time histograms were constructed from idealized re-
cords by using the half-threshold criterion for event detection. 
Original records were obtained from 30 min of gap-free data ac-
quisition in bilayers where N = 1. Single-channel currents were 
low-pass �ltered at 10 kHz and sampled at 50 kHz. Open- and 
closed-time distributions were plotted as log-linear histograms 
with 13 bins/decade. A Levenberg-Marquardt search algorithm 
with the sum of squared error minimization routine built in 
Clamp�t 9.2 (MDS Analytical Technologies) was used to �t log 
variant of exponential probability function to distributions of 
open and closed intervals. An F table (P < 0.05) was used to de-
termine the minimum number of exponential components to 
appropriately �t dwell-time histogram data. The number of 
components in the exponential �t to the open- (closed-) time 
distribution provided a minimum estimate of the number of 
open (closed) states in which the channel population sojourned 
(Colquhoun and Hawkes, 1983).

Data plotting and statistical analysis were conducted using Ori-
gin 7.0 (OriginLab) and InStat 3.0 (GraphPad Software, Inc.). 
Data were analyzed with one-way ANOVA followed by Dunnett’s 
test, and statistical signi�cance was set at P < 0.05. Data are ex-
pressed as mean ± SEM; n = number of bilayers.

Online supplemental material
Fig. S1 shows basic functional characteristics of cbv1 channels re-
constituted into control versus cholesterol-containing bilayers. 
Fig. S2 documents the lack of signi�cant variations in BK Po from 
two control bilayers within 30 min of continuous recording. Fig. S3 
depicts direct comparisons of channel inhibition evoked by re-
spective monohydroxysterol isomers. Fig. S4 displays dwell-time 
distributions of cbv1 channels incorporated into control and epi -
coprostanol-containing bilayers. Table S1 shows dwell-time constants 

documents that cholesterol inhibition of BK channels 
strictly depends on the optical isomery of the sterol:  
in contrast to natural cholesterol, its enantiomer ( ent-
cholesterol) is totally ineffective in blunting BK channel 
activity. Because cholesterol and ent-cholesterol affect 
membrane physical properties similarly, their differen-
tial effects on protein activity are widely recognized as 
an indicator of a direct cholesterol–protein interac -
tion mediating cholesterol action (Crowder et al., 2001; 
Alakoskela et al., 2008). Thus, our study strongly sug-
gests that cholesterol inhibition of BK channels is medi-
ated primarily by selective recognition of this steroid by 
a protein surface. Given the simple composition of our 
channel reconstitution system and the �A-subunit homo-
meric phenotype of the BK current under study, we  
hypothesize that the cholesterol–protein recognition 
interface is provided by the BK channel–forming  
�A subunit itself.

M AT E R I A L S  A N D  M E T H O D S

Bilayer experiments
BK channel–forming (cbv1) subunit cDNA was cloned from rat 
cerebral artery myocytes (AY330293; Jaggar et al., 2005; Liu, J., P. 
Liu, J. Crowley, M. Asuncion-Chin, and A. Dopico. 2005. Cloning 
and Functional Characterization of BKCa Channel-forming (rslo 
cbv) Subunit. Society for Neuroscience. Abstr. 960.13.). HEK293 
cells transiently transfected with cbv1 using Lipofectamin 2000 
(Invitrogen) were grown to con�uence, pelleted, and resuspended 
on ice in 10 ml of buffer solution (in mM): 30 KCl, 2 MgCl 2, 
10 HEPES, and 5 EGTA, pH 7.2. A membrane preparation was 
obtained using a sucrose gradient, as described previously (Crowley 
et al., 2003), and aliquots were stored at �� 80°C.

Cbv1 channels were incorporated by adding 10–15 µl of mem-
brane preparation onto bilayers cast of POPE and POPS, 3:1 
(wt/wt). Cholesterol or any of its monohydroxysterol analogues  
(Fig. 1 A and Table I) were dissolved in chloroform and then in-
troduced into the lipid mixture at a �nal concentration of 20% 
(wt/wt), which corresponds to �33 mol% monohydroxysterol. 
The lipid mixture was dried under N 2 gas and resuspended at  
25 mg per ml of decane.

Vertical 80–120-pF bilayers were formed by painting the lipid mix 
across a 200-µm diameter hole in a deldrin cup (Warner Instru-
ments). Vesicle fusion was promoted by osmosis, with the cis cham-
ber (to which the membrane preparation was added) being 
hyperosmotic to the trans chamber solution. Recording solutions 
consisted of (in mM): 300 KCl, 10 HEPES, 1.47 HEDTA, and 1.05 
CaCl2 (free Ca2+  10 µM), pH 7.2 (cis chamber); 30 KCl, 10 HEPES, 
and 0.1 HEDTA, pH 7.2 (trans chamber). Nominal free Ca2+ in 
solution was calculated using the MaxChelator Sliders program 
(C. Patton, Stanford University, Stanford, CA) and validated experi-
mentally, as described elsewhere (Dopico, 2003). The trans chamber 
was held at ground while the cis chamber was held at potentials rela-
tive to ground. Only channels with their intracellular Ca 2+ sensors ori-
ented toward the cis chamber were considered for experimentation.

Ion currents were obtained during 3 min of continuous record -
ing at 0 mV by using an ampli�er (BC-525D; Warner Instruments), 
low-pass �ltered at 1 kHz with the four-pole Bessel �lter built in 
the ampli�er, and sampled at 5 kHz with Digidata 1322A/pCLAMP 
8 (MDS Analytical Technologies). However, for dwell-time analy-
sis, gap-free recordings were acquired for up to 30 min, low-pass 
�ltered at 10 kHz, and sampled at 50 kHz.
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ity of the lateral chain (Fig. 1 A and Table I).  As positive 
control, BK channel–forming cbv1 subunits were incor-
porated into POPE/POPS (3:1 wt/wt, dissolved in dec-
ane) bilayers containing 20% (wt/wt) cholesterol (molar 
fraction = 0.33). This molar fraction is within the cho -
lesterol content range found in the plasma membranes 
of most tissues (30–50 mol%; Gennis, 1989) and also 
corresponds to the IC90 for cholesterol inhibition of 
cbv1 (Bukiya et al., 2008b) and human brain BK channel–
forming (hslo1) subunits (Crowley et al., 2003) recon-
stituted into the same bilayer type.

In both the presence and absence of cholesterol, cbv1 
channel incorporation into the POPE/POPS bilayer 
rendered unitary current events that displayed all basic 
features of BK channel openings: (a) a large unitary 
conductance (see ion current records in Figs. 2 A, S1 A, 
and S2, and unitary current–voltage plots in Fig. S1 C); 

(mean ± SEM) from control and inhibitory sterol-containing bilay -
ers. The online supplemental material is available at http://www  
.jgp.org/cgi/content/full/jgp.201010519/DC1.

R E S U LT S

We �rst set out to determine whether a hydrophobic 
side chain attached to the steroid ring at C17 (Fig. 1 A 
and Table I) is necessary for cholesterol to inhibit BK 
channels. Thus, we reconstituted cholesterol-sensitive 
(Bukiya et al., 2008b) BK channel–forming (cbv1) sub-
units into binary phospholipid bilayers containing cho -
lesterol trisnorcholenic acid and compared channel 
activity to those in cholesterol-containing and control 
(sterol-free) bilayers. Cholesterol trisnorcholenic acid 
contains a carboxyl group at the end of its side chain 
(C24), which signi�cantly diminishes the hydrophobic -

Figure 1.  Molecular structures of choles-
terol and analogues. (A) Structures of cho-
lesterol and cholesterol trisnorcholenic acid 
are shown in full. Only the steroid nucleus 
around the A/B fusion is shown for the re -
maining compounds to emphasize differences 
in the planar orientation of the C3 hydroxyls 
and geometry of the A/B ring fusion. The 
free carboxyl group (pKa = 5.5) at the end of 
the side chain in cholesterol trisnorcholenic 
acid is shown in its ionized form, which likely 
predominates under our experimental condi -
tions (pH 7.2). (B) The structure of choles -
terol enantiomer ( ent-cholesterol) is shown in 
full to emphasize that this molecule is a mir-
ror image of cholesterol. For all compounds, 
trivial names are provided. For IUPAC no-
menclature, please refer to Table I.
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