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I N T R O D U C T I O N

At the turn of the 20th century, Frank and Starling dis-
covered that cardiac pump function is enhanced as ven-
tricular filling is increased (i.e., the Frank-Starling law 
of the heart; see Katz, 2002 and references therein). 
The “law” forms the fundamental principle of the heart 
in cardiovascular physiology, defining the relation be-
tween the diastolic and systolic performances of cardiac 
chambers. It is widely accepted that the length depen-
dence of Ca2+-based myofibrillar activation (i.e., expressed 
as “Ca2+ sensitivity of force”) largely underlies the law 
(e.g., Allen and Kurihara, 1982; Allen and Kentish, 
1985; Kentish et al., 1986); however, the molecular mech-
anism of this seemingly simple phenomenon still re-
mains elusive and warrants an in-depth investigation.

The cross-bridge formation is a stochastic process  
in the striated muscle sarcomere (e.g., Huxley, 1957). 
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Therefore, it has been proposed that the binding of myo-
sin to actin is enhanced upon the reduction in the distance 
between the thick and thin filaments (i.e., interfilament 
lattice spacing), resulting in an increase in active force 
production and, apparently, Ca2+ sensitivity of force 
(Ishiwata and Oosawa, 1974; McDonald and Moss, 1995; 
Fuchs and Wang, 1996; Fukuda et al., 2000). Indeed, 
studies with synchrotron x ray revealed that passive 
force due to extension of the giant elastic protein titin 
(also known as connectin) modulates the lattice spac-
ing within the physiological sarcomere length (SL) 
range in cardiac muscle (Cazorla et al., 2001; Fukuda  
et al., 2003, 2005). Konhilas et al. (2002b), however, 
challenged this proposal, demonstrating that the lattice 
spacing and Ca2+ sensitivity of force are not well corre-
lated. Therefore, factors other than the titin-based lattice 
spacing modulation are likely at play in the regulation 
of length-dependent activation.

As has been reported, multiple cooperative processes 
are involved in active force generation in striated muscle 
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filament cooperative activation. We varied the level  
of thin filament cooperative activation in skinned por-
cine left ventricular muscle (PLV) directly by Tn ex-
change or indirectly by the application of MgADP or Pi, 
or the combination of both. Our analysis revealed that 
the magnitude of length-dependent activation is in-
versely related to the rate of rise of active force, high-
lighting a pivotal role of thin filament cooperative 
activation in the regulation of the Frank-Starling rela-
tion. Furthermore, our mathematical model analyses 
revealed the relationship between the characteristics of 
thin filament activation and length-dependent activa-
tion, and led us to conclude that length-dependent acti-
vation is under the strong control of thin filament 
cooperative activation.

M AT E R I A L S  A N D  M E T H O D S

All experiments performed in this study conform to the Guide for 
the Care and Use of Laboratory Animals (1996. National Acad-
emy of Sciences, Washington D.C.). For expanded materials and 
methods, please see the supplemental material.

Preparation of skinned muscle
Skinned muscles were prepared according to the method in our 
recent studies (Terui et al., 2008; Matsuba et al., 2009). In brief,  
porcine hearts (from 1.0-yr-old animals) were obtained from  
a local slaughterhouse. Muscle strips (1–2 mm in diameter and  
10 mm in length) were dissected from the papillary muscle of 
the left ventricle in Ca2+-free Tyrode’s solution (see Fukuda  
et al., 2001a for composition) containing 30 mM 2,3-butanedione 
monoxime (BDM).

Muscle mechanics
Isometric force was measured according to the method in our re-
cent studies (Terui et al., 2008; Udaka et al., 2008; Matsuba et al., 
2009). In brief, PLVs were skinned in relaxing solution (5 mM 
MgATP, 40 mM BES, 1 mM Mg2+, 10 mM EGTA, 1 mM dithiothrei-
tol, 15 mM phosphocreatine, 15 U/ml creatine phosphokinase 
(CPK), and 180 mM ionic strength [adjusted by K-propionate], 
pH 7.0), containing 1% (wt/vol) Triton X-100 and 10 mM BDM 
overnight at 3°C (Fukuda et al., 2003, 2005). Muscles were 
stored for up to 3 wk at 20°C in relaxing solution containing 
50% (vol/vol) glycerol. All solutions contained protease inhibi-
tors (0.5 mM PMSF, 0.04 mM leupeptin, and 0.01 mM E64).

Small thin preparations (100 µm in diameter and 2 mm in 
length) were dissected from the porcine ventricular strips for 
force measurement. SL was measured by laser diffraction during 
relaxation, and active and passive forces were measured at 15°C 
(pCa adjusted by Ca2+/EGTA based on a computer program by 
Fabiato, 1988). MgADP (up to 10 mM) or Pi (up to 20 mM) was 
added to the individual activating solutions in accordance with 
our previous studies (Fukuda et al., 2000, 2001a), while maintain-
ing ionic strength at 180 mM. When MgADP was present, 0.1 mM 
P1,P5-di(adenosine-5)pentaphosphate was added to both activat-
ing and relaxing solutions, with no CPK to maintain the ADP/
ATP ratio (Fukuda et al., 1998, 2000). We also used pimobendan 
(provided by Nippon Boehringer Ingelheim) to increase the af-
finity of TnC for Ca2+ (Fukuda et al., 2000). Pimobendan was ini-
tially dissolved in DMSO and diluted with the individual solutions 
(Fukuda et al., 2000). The final concentration of DMSO was 1%, 
having no effect on active or passive force, as observed in our pre-
vious study (Fukuda et al., 2000).

(e.g., Brandt et al., 1982, 1987, 1990; Moss et al., 1985); 
i.e., cooperative binding of Ca2+ to troponin (Tn) C 
(TnC), cooperative binding of myosin to the thin fila-
ments, and synergistic interactions between myosin 
binding to actin and Ca2+ binding to TnC (e.g., Bremel 
et al., 1973; Güth and Potter, 1987; Hoar et al., 1987; 
Zot and Potter, 1989; Swartz and Moss, 1992). Likewise, 
it is widely accepted that the formation of strongly 
bound cross-bridges enhances cooperative recruitment 
of neighboring myosin to the thin filaments. Bremel 
and Weber (1972) were the first to demonstrate in solu-
tion that an increase in the fraction of rigor cross-
bridges (rigor myosin subfragment 1) cooperatively 
activates myosin ATPase, as with the increased Ca2+ con-
centration, indicating that Ca2+ and strongly bound cross- 
bridges synergistically regulate the “on–off” equilibrium 
of the thin filament state. Later, the group of Moss  
provided evidence in skinned muscle fibers that acto-
myosin interaction is indeed promoted in the pres-
ence of the strong-binding cross-bridge analogue N- 
ethylmaleimide myosin subfragment 1 (NEM-S1) via 
activation of the thin filaments, as manifested by the  
increased rate of contraction (Swartz and Moss, 1992, 
2001; Fitzsimons et al., 2001a,b) and the increased Ca2+ 
sensitivity of force (Fitzsimons and Moss, 1998; Fitzsimons 
et al., 2001a,b). Similarly, we previously reported that 
the application of MgADP, i.e., the ensuing formation 
of the actomyosin–ADP complex, cooperatively enhances 
cross-bridge recruitment and that of inorganic phos-
phate (Pi) does the opposite in skinned fibers of car-
diac and skeletal muscles (Shimizu et al., 1992; Fukuda 
et al., 1998, 2000, 2001a).

Earlier studies have suggested that the thin filament–
based on–off switching mechanism is involved in the 
regulation of length-dependent activation in cardiac 
muscle. Indeed, Fitzsimons and Moss (1998) reported 
that length-dependent activation is attenuated in the 
presence of NEM-S1. Fukuda et al. (2000) confirmed 
this notion by providing evidence that the length de-
pendence becomes smaller in the presence of MgADP 
(hence the actomyosin–ADP complex). It has also been 
reported that direct modulation of thin filament regula-
tory proteins, e.g., Tn isoform changes (Arteaga et al., 
2000; Terui et al., 2008) or TnI point mutation (Tachampa 
et al., 2007), markedly affects length-dependent activa-
tion. Therefore, it is likely that length-dependent activa-
tion depends on the state of the thin filaments, either 
modulated directly by regulatory protein isoform switch-
ing or indirectly by strongly bound cross-bridges. How-
ever, it is still unknown how Ca2+-dependent on–off 
switching of the thin filament state and interfilament 
lattice spacing coordinate to regulate myocardial length-
dependent activation.

Accordingly, this study was undertaken to systemati-
cally uncover the molecular basis of length-dependent 
activation in cardiac muscle, focusing on the role of thin 
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In our model, the overlap length between the thick and thin 
filaments at a SL of L is given by:

	 1
2 0( ),L L−

	  (1)

where L0 (3.8 µm) is the maximal SL at no filament overlap. Thick 
and thin filament length was assumed to be 1.6 and 1.1 µm, re-
spectively (Sosa et al., 1994). In this study, the overlap length was 
set to be constant (0.75 µm), independent of SL because in the 
SL range between 1.9 and 2.3 µm (where the experiments were 
performed), the number of myosin heads in the overlap region 
reportedly remains constant based on the thick filament geome-
try (Sosa et al., 1994).

Next, we assumed that the lattice spacing, d, decreases upon 
the increase in SL under the constant lattice volume, V, as has 
been observed in x-ray diffraction studies (Cazorla et al., 2001; 
Fukuda et al., 2003, 2005), according to the following equation:

	 V d L= ⋅2 . 	  (2)

Based on the value of d10 (i.e., the d10 lattice spacing) of 43 nm 
at SL 2.0 µm (see Fukuda et al., 2003 for the d10 value of sarco-
meres expressing both N2B and N2BA titins at similar levels, as in 
PLV; Terui et al., 2008), the lattice spacing is estimated to be 28.7 nm, 
and thereby the lattice volume, V, was set to be 0.0016 µm3.

Next, we described the position-dependent probability of acto-
myosin interaction by the Gaussian distribution (Ishiwata and  
Oosawa, 1974):

	 P q q
A

A( ) exp( / ),= −1
2

2 2

πσ
σ 	  (3)

where q is a lateral coordinate perpendicular to the filament long 
axis, and A is the width of the Gaussian distribution (variance, 
A

2/2). To take into account the Ca2+-dependent change of the 
actomyosin interaction, the degree of A was changed in accor-
dance with the Ca2+ concentration based on the Hill equation 
(see Ishiwata and Oosawa, 1974 and Figs. S1 and S2):

	 σ σA max n pCa pCapCa
H actin actin

( ) ,
_ _( )=

+ − − 
1

1 10 50
	  (4)

where max is the maximal width of the Gaussian distribution  
(21 nm), determining the maximal interaction probability at the 
saturating Ca2+ concentration (pCa 4.5). The parameter nH_actin 
represents the cooperativity of thin filament activation in the 
model calculation, and pCa50_actin represents the sensitivity of the 
thin filaments to Ca2+.

Here, we considered that the actomyosin interaction takes 
place over the region where the lateral coordinate, q, exceeds a 
certain distance, da, because myosin heads are located apart 
from the thick filament backbone up to a distance a (24 nm). The 
cumulative interaction probability with respect to the unit overlap 
length, I, is therefore given by:

	 I P q dq
d a

=
−

∞

∫ ( ) . 	  (5)

Finally, the active isometric force at a given SL and pCa is  
expressed as the product of overlap length and interaction 
probability:

		   (6)

F F L L
pCa

q pCa dq
A

A
d a

= ⋅ − ⋅ ⋅ −
−

∞

∫0 0
2 21

2
1 1

( )
( )

exp( / ( )) ,
π σ

σ
 

The muscle preparation was first immersed in relaxing solu-
tion, and SL was set at 1.9 µm. Active and passive forces were 
measured at 1.9 µm and then at 2.3 µm, as described in our pre-
vious studies (rundown <10% for active and passive forces;  
Fukuda et al., 2003, 2005; Terui et al., 2008). Active force data 
were fitted to the Hill equation (Fukuda et al., 2000), and the 
difference between the values of the midpoint of the force–pCa 
curve (i.e., pCa50) at SL 1.9 and 2.3 µm was used as an index of 
the SL dependence of Ca2+ sensitivity of force (expressed as 
pCa50). The steepness of the force–pCa curve was expressed as 
the Hill coefficient (nH).

The rate of rise of active force was assessed according to the 
method in our previous work (Fukuda et al., 2001b), using the 
preparations used for the steady-state isometric force measure-
ment. In brief, SL was set at 1.9 µm in relaxing solution. The 
preparation was then immersed in low EGTA (0.5 mM) relaxing 
solution for 1 min and transferred to the control activating solu-
tion (5 mM MgATP, 40 mM BES, 1 mM Mg2+, 10 mM EGTA, 1 mM 
dithiothreitol, 15 mM phosphocreatine, 15 U/ml CPK, and 180 mM 
ionic strength (adjusted by K-propionate), pH 7.0, pCa 4.5), with-
out MgADP or Pi, followed by relaxation. The procedure was then 
repeated in the presence of MgADP or Pi (or after Tn reconstitu-
tion), and the time to half-maximal activation was compared with 
that obtained in the preceding contraction in the same prepara-
tion, hence minimizing the effect of diffusion that is dependent 
on the muscle thickness. The ratio of the time to half-maximal ac-
tivation, defined as t1/2, was used as an index of cooperativity of 
cross-bridge recruitment.

In some experiments, the velocity of isometric force development 
was obtained at half-maximal activation in the presence of 
MgADP (up to 10 mM) or Pi (up to 20 mM), and the value was 
compared with that in the preceding contraction in the same 
preparation with no MgADP or Pi (pCa 4.5 and SL, 1.9 µm). The 
ratio of the velocity of isometric force development was defined 
as V1/2.

Tn exchange
The fast skeletal Tn complex (sTn) was extracted from rabbit  
fast skeletal muscle, and Tn exchange (2 mg/ml for 1 h) was  
performed on PLV, according to our previously published proce-
dure (see Terui et al., 2008; Matsuba et al., 2009). As detailed in 
these previous reports, our protocol allowed for only a small in-
crease (10%) in the band intensity of each Tn subunit upon 
sTn reconstitution.

Control experiments showed that the treatment of PLV with 
the Tn complex (6 mg/ml for 1 h under the same condition) 
from the porcine ventricle does not alter the steady-state active 
force or t1/2 at various Ca2+ concentrations (see Matsuba et al., 
2009; not depicted). Also, due to a relatively greater magnitude of 
rundown in steady-state active force (i.e., 30%; not depicted), 
we did not conduct mechanical experiments in the present study 
using PLV that had been incorporated with the cardiac Tn com-
plex after sTn reconstitution.

Model analysis
The model calculates the active isometric force at a given SL and 
at a given Ca2+ concentration, based on the SL-dependent change 
in the lattice spacing and the Ca2+-based on–off switching of the 
thin filament state. The on–off state was defined according to the 
lateral fluctuation of the thin filaments in the myofilament lattice 
(Ishiwata and Fujime, 1972; Umazume and Fujime, 1975; Yoshino 
et al., 1978; Yanagida et al., 1984; see Fig. S1); however, the lateral 
fluctuation does not necessarily represent the physical thermal 
fluctuation of the thin filaments, but rather, it mathematically 
portrays the equilibrium of the thin filament state between “off” 
and “on,” depending on the Ca2+ concentration (Solaro and  
Rarick, 1998).
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various Ca2+ concentrations (converted from force–pCa curves) 
and the simulation by our model. Fig. S6 shows the model simula-
tion showing the effect of an increase in the average length of my-
osin heads on Ca2+ sensitivity of force and length-dependent 
activation. The online supplemental material is available at http://
www.jgp.org/cgi/content/full/jgp.201010502/DC1.

R E S U LT S

Effect of MgADP or Pi on the rate of rise of active force
First, we investigated the effect of various concentrations 
of MgADP or Pi on the rate of rise of active force under the 
control condition without sTn reconstitution. We found 
that MgADP significantly decreased t1/2 at low concentra-
tions (1 and 3 mM) but increased it at a high concentra-
tion (10 mM) (Fig. 1 A), and Pi exerted apparently similar 
effects at low (1, 3, and 5 mM) and high (10 and 20 mM) 
concentrations (Fig. 1 B). The accelerating effect of 
MgADP was maximal at 3 mM, whereas the decelerating 
effect of Pi reached a quasi-plateau at 10 mM. Therefore, 
based on the previous studies indicating that the rate  
of contraction is modulated by a change in the fraction of 
strongly bound cross-bridges via alteration of the on–off 

where F0 (45 and 36, for control and sTn-reconstituted PLV, re-
spectively) is the fitting parameter to quantitatively simulate the 
experimental results.

Statistics
Significant differences were assigned using the paired or unpaired 
Student’s t test as appropriate. Data are expressed as mean ± SEM, 
with n representing the number of muscles. Linear regression 
analyses were performed in accordance with the method de-
scribed in previous studies (Fukuda et al., 2001b; Terui et al., 
2008). Statistical significance was assumed to be P < 0.05. NS  
indicates P > 0.05.

Online supplemental material
The supplemental material provides an expanded description of 
our model analysis. In addition, Fig. S1 shows a schematic illustra-
tion of our model used to simulate the present experimental data. 
Fig. S2 provides characteristics of our model, showing how Ca2+ 
sensitivity of force is changed in response to a change in thin fila-
ment cooperative activation. Fig. S3 shows the relation of Ca2+ 
binding to the thin filaments or thin filament cooperative activa-
tion versus length-dependent activation in our model. Fig. S4 
shows the experimentally observed effect of MgADP on the rate 
of active force redevelopment, ktr (overall cross-bridge cycling 
rate; see Discussion), at varying activation levels. Fig. S5 shows the 
experimentally obtained relation between SL and active force at 

Figure 1.  Effect of MgADP or Pi on the rate of 
rise of active force. pCa 4.5; SL, 1.9 µm. (A) Effect 
of MgADP. (Left) Typical chart tracings showing 
active force responses in the absence and pres-
ence of 3 and 10 mM MgADP (in the same prepa-
ration). (Right) Graph summarizing the effects of 
various concentrations of MgADP on t1/2. *, P < 
0.05 compared with 0 mM MgADP. Active force 
compared with 0 mM MgADP (in percent) was 
99.87 ± 3.74, 97.37 ± 5.57, 93.21 ± 5.44, and 90.07 ± 
3.27, with 1, 3, 5, and 10 mM MgADP, respectively. 
n = 5. (B) Effect of Pi. (Left) Typical chart tracings 
showing active force responses in the absence and 
presence of 3 and 20 mM Pi (in the same prepa-
ration). (Right) Graph summarizing the effects 
of various concentrations of Pi on t1/2. *, P < 0.05 
compared with 0 mM Pi. Active force compared 
with 0 mM MgADP (in percent) was 79.16 ± 2.07, 
57.62 ± 3.55, 44.06 ± 2.96, 35.02 ± 3.73, and 28.62 ± 
3.31, with 1, 3, 5, 10, and 20 mM Pi, respectively. 
n = 5. In both A and B, arrowheads and double 
arrowheads indicate the points at which solution 
was switched from low EGTA (0.5 mM) relax-
ation to contraction and from contraction to high 
EGTA (10 mM) relaxation, respectively. The time 
to half-maximal activation (50%) was measured as 
indicated by  and , and the relative value, i.e., 
/, was obtained for each preparation and de-
fined as t1/2. Note that t1/2 is 1.0 in the absence 
of MgADP or Pi, indicating reproducibility of the 
rate of rise of active force. (C) Relation between 
t1/2 and V1/2 obtained in the presence of varying 
concentrations of MgADP (left, 0–10 mM) and Pi 
(right, 0–20 mM). A significant linear relationship 
existed for both MgADP (R = 0.68; P < 0.0005) 
and Pi (R = 0.70; P < 0.0001). Data taken from bar 
graphs in A and B.
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equilibrium of the thin filament state (Swartz and Moss, 
1992, 2001; Fitzsimons et al., 2001a,b), we regarded 3 mM 
MgADP as the amount to enhance thin filament coopera-
tive activation and 20 mM Pi to reduce it and used them in 
the following experiments.

Fig. 1 C shows the relationship between t1/2 and V1/2. 
We found that a significant linear relationship with a 
similar slope value existed between the parameters in the 
presence of varying concentrations of MgADP (Fig. 1 C, 
left; slope 1.07) or Pi (right, slope 1.24), indicating that 
t1/2 reflects the rate of rise of active force.

Effect of MgADP or Pi on length-dependent activation 
with and without sTn reconstitution
Next, we investigated how the SL-dependent increase in 
Ca2+ sensitivity of force responds to alteration of thin fil-
ament cooperative activation. In this series of experiments, 
we performed sTn reconstitution to directly enhance thin 
filament cooperative activation, as demonstrated in our 
previous study (Terui et al., 2008), with and without 
MgADP or Pi.

We found that 3 mM MgADP or sTn reconstitution 
similarly shifted the force–pCa curve leftward, to a greater 
magnitude at SL 1.9 µm than at 2.3 µm, and conse-
quently decreased pCa50 (Fig. 2, A and B). Ca2+ sensi-
tivity of force was synergistically increased by MgADP in 
sTn-reconstituted PLV, accompanied by a marked atten-
uation of length-dependent activation (Fig. 2 B). As shown 
in Fig. 2 C, the rate of rise of active force was increased 
by MgADP or sTn reconstitution by a similar magni-
tude. Similar to the finding on Ca2+ sensitivity of force, 
the rate of rise of active force was increased by MgADP 
in sTn-reconstituted PLV (Fig. 2 C).

We then tested the effect of Pi on length-dependent ac-
tivation. Without sTn reconstitution, 20 mM Pi shifted the 
force–pCa curve rightward to a greater magnitude at SL 
1.9 µm than at 2.3 µm, and consequently increased pCa50 
(Fig. 3 A). Pi increased pCa50 also in sTn-reconstituted 
PLV (Fig. 3 B). In contrast to MgADP, Pi retarded the rate 
of rise of active force in both control and sTn-reconsti-
tuted PLV (Fig. 3 C). The values of pCa50, nH, and maximal 
force at SL 1.9 and 2.3 µm under various conditions are 
summarized in Table I.

Fig. 4 summarizes the relationship between t1/2, pCa50 
and pCa50 obtained with MgADP or Pi in control and 
sTn-reconstituted PLV. We found that pCa50 and pCa50 
were linearly correlated with each other (Fig. 4 A), and 
that pCa50 and pCa50 were a linear function of t1/2 (Fig. 4, 
B and C). As reported previously (Dobesh et al., 2002), 
however, no significant correlation was found between 
nH and pCa50 or pCa50 (Fig. 5).

Effect of pimobendan on length-dependent activation  
with and without sTn reconstitution
The observed relationship of Ca2+ sensitivity of force 
and length-dependent activation may be a consequence 

Figure 2.  Effects of MgADP on Ca2+ sensitivity of force and t1/2 
with and without sTn reconstitution. (A) Effect of 3 mM MgADP 
on force–pCa curves (top) and passive force (bottom) in control 
PLV. Solid lines, MgADP; dashed lines, +MgADP. (Inset) Com-
parison of pCa50 in the absence and presence of MgADP. “C” in-
dicates control without MgADP. *, P < 0.05. (B) Same as in A, but 
thin filaments were reconstituted with sTn. Solid lines, MgADP; 
dashed lines, +MgADP. (Inset) Comparison of pCa50 in the ab-
sence and presence of MgADP. “sTn” indicates sTn-reconstituted 
PLV without MgADP. *, P < 0.05. (C) Comparison of t1/2 in con-
trol and sTn-reconstituted muscles in the absence and presence 
of 3 mM MgADP. *, P < 0.05 compared with control; #, P < 0.05 
compared with sTn. n = 6–7.
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474 Thin filament activation and Frank-Starling law

in SL from 1.9 to 2.3 µm (refer to Materials and methods) 
increased maximal Ca2+-activated force and shifted the 
force–pCa curve leftward, resulting in pCa50 of 0.24 
pCa units. As shown in Fig. S2, an increase in nH_actin  

Figure 3.  Effects of Pi on Ca2+ sensitivity of force and t1/2 with 
and without sTn reconstitution. (A) Effect of 20 mM Pi on force–
pCa curves (top) and passive force (bottom) in control PLV. Solid 
lines, Pi; dashed lines, +Pi. (Inset) Comparison of pCa50 in the 
absence and presence of Pi. *, P < 0.05. (B) Same as in A, but thin 
filaments were reconstituted with sTn. Solid lines, Pi; dashed 
lines, +Pi. (Inset) Comparison of pCa50 in the absence and pres-
ence of Pi. “sTn” indicates sTn-reconstituted PLV without Pi.  
*, P < 0.05. (C) Comparison of t1/2 in control and sTn-reconstituted 
muscles in the absence and presence of 20 mM Pi. *, P < 0.05 
compared with control; #, P < 0.05 compared with sTn; +, P < 0.05 
compared with Pi. n = 6–7. Note that in A–C, data without Pi are 
the same as in Fig. 2.

associated with the leftward shift of the force–pCa curve 
(Hanft et al., 2008). We therefore tested the effect of 
pimobendan on length-dependent activation, with passive 
force carefully controlled (which was not performed in 
our previous study on rat ventricular trabeculae; Fukuda 
et al., 2000), because the compound has been reported 
to specifically increase the affinity for Ca2+ of the low- 
affinity site of TnC (see Hagemeijer, 1993 and refer-
ences therein).

Pimobendan (2 × 104 M) shifted the force–pCa curve 
leftward to a magnitude similar to that by MgADP or 
sTn reconstitution at SL 1.9 µm (i.e., 0.2 pCa units; see 
Fig. 2), with no effect on passive force (Fig. 6 A). However, 
unlike MgADP or sTn reconstitution, pimobendan ex-
erted no effect on pCa50 (see Fukuda et al., 2000). The 
Ca2+-sensitizing effect of pimobendan was markedly di-
minished after sTn reconstitution, with no significant 
increase in Ca2+ sensitivity of force at either SL (Fig. 6 B). 
Likewise, pimobendan did not affect the rate of rise of  
active force in control or sTn-reconstituted PLV (Fig. 6 C).

The values of pCa50, nH, and maximal force ob-
tained with and without pimobendan are summarized 
in Table II.

Simulation of length-dependent activation
Finally, we analyzed the experimental findings based on  
a mathematical model (Ishiwata and Oosawa, 1974;  
Shimamoto et al., 2007; refer to Materials and methods 
and supplemental material for details). In this model,  
active isometric force is given by the interaction probabil-
ity between the thick and thin filaments, and the probabil-
ity depends on two factors: (1) Ca2+ concentration and  
(2) interfilament lattice spacing (Fig. S1). The equilibrium  
of the thin filament state between “off” and “on” (see Solaro 
and Rarick, 1998 and references therein) was assumed to 
change with the Ca2+ concentration based on the Hill 
equation, and expressed as lateral fluctuation in the myo-
filament lattice (Figs. S1 and S2). We performed experi-
ments within the SL range (i.e., 1.9–2.3 µm); the overlap 
length between the thick and thin filaments is considered 
not to change significantly (see Moss and Fitzsimons, 2002 
and references therein), but the lattice spacing does, due 
to titin extension, as revealed by previous studies with mus-
cles expressing both N2B and N2BA titins (Fukuda et al., 
2003), as in PLV (Terui et al., 2008).

Fig. 7 A shows the force–pCa curves simulated by our 
model for the experimental data with and without sTn 
reconstitution in PLV. The model parameters are nH_actin 
and pCa50_actin, representing the characteristics of thin 
filament on–off switching in response to Ca2+. Based on 
Eq. 6, we simulated the force–pCa curves of PLV with 
and without sTn reconstitution, and thereby the pCa50 
and pCa50 values were calculated (for optimization of 
fitting, see supplemental material).

Under the control condition without sTn reconstitu-
tion, a reduction in the lattice spacing due to an increase 
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revealed that thin filament cooperative activation, but 
not the affinity for Ca2+, determines the magnitude of 
length-dependent activation, coupled with lattice spac-
ing modulation. Here, we discuss the present findings, 
focusing on the role of thin filament cooperative activa-
tion in the regulation of length-dependent activation in 
cardiac muscle.

As is well established, strongly bound cross-bridges co-
operatively activate the thin filaments (e.g., Bremel and 
Weber, 1972), resulting in the promotion of actomyosin 
interaction (refer to Introduction). Previous studies 
showing that NEM-S1 increases the speed of contrac-
tion in skinned fibers (Swartz and Moss, 1992, 2001; 
Fitzsimons et al., 2001a,b) support the notion that 
strongly bound cross-bridges accelerate the recruitment 
of neighboring myosin to the thin filaments via enhanced 
thin filament cooperative activation. In the present study, 
MgADP decreased t1/2 at low concentrations (1 and 3 mM) 
but increased it at a high concentration (10 mM),  
and Pi exerted apparently similar effects at low (1, 3,  
and 5 mM) and high (10 and 20 mM) concentrations 
(Fig. 1; see Kentish, 1986). However, the underlying 
molecular mechanisms for the modulation of t1/2, i.e., 
the rate of rise of active force, should differ for MgADP 
and Pi. At low MgADP concentrations (e.g., 3 mM used 
in the present study), the actomyosin–ADP complex 
may exhibit its promoting effect on actomyosin interac-
tion by enhancing thin filament cooperative activation, 
but at high MgADP concentrations, the presence of large 
fractions of the complex may cause deceleration of con-
traction due to its slow cycling rate, as demonstrated 

decreased pCa50 and concomitantly shifted the mid-
point of the force–pCa curve rightward. On the other 
hand, an increase in pCa50_actin linearly shifted the force–
pCa curve leftward. To reproduce the experimental 
data after sTn reconstitution, we increased both nH_actin 
and pCa50_actin; as a result, the attenuation of length- 
dependent activation was well simulated, accompanied 
by appropriate pCa50 values for both SLs (as in Fig. 7 A; 
compare Figs. 2 and 3, and Terui et al., 2008).

Finally, we systematically investigated how varying the 
values of nH_actin and pCa50_actin affects length-dependent 
activation by constructing a 3-D graph consisting of  
nH_actin, pCa50_actin, and pCa50 (Fig. 7 B). We found that 
pCa50 was strongly influenced by nH_actin; however, the 
contribution of pCa50_actin to pCa50 was minimal through-
out the range we examined (see also Fig. S3). We plot-
ted the pairs of the values of nH_actin and pCa50_actin that 
fulfill the linear relationship between pCa50 and pCa50 
(i.e., red points in Fig. 7 B), which was experimentally 
obtained in Fig. 4 A.

D I S C U S S I O N

We demonstrated in this study that the Frank-Starling 
relation is strongly influenced by thin filament coopera-
tive activation. The SL-dependent increase in Ca2+ sensi-
tivity of force was inversely related to the rate of rise of 
active force, suggesting that length-dependent activa-
tion is tuned via on–off switching of the thin filament 
state in cardiac muscle. Further, our model analysis 

Ta b l e  I

Summary of the values of passive force, maximal active force, pCa50, and nH in PLV under various conditions

SL Passive force Maximal force pCa50 pCa50 nH

µm mN/mm2 mN/mm2

Without sTn reconstitution

Control 1.9 0 57.25 ± 2.29 5.56 ± 0.01 3.86 ± 0.13

2.3 9.40 ± 0.50 73.79 ± 3.72 5.80 ± 0.01 0.24 ± 0.01 3.17 ± 0.24

+ADP 1.9 0 67.19 ± 1.39a (78.41 ± 2.97) 5.82 ± 0.01b 3.44 ± 0.10b

2.3 8.10 ± 0.67 75.61 ± 2.64 5.93 ± 0.01b 0.10 ± 0.01b 3.06 ± 0.16

+Pi 1.9 0 21.66 ± 1.39a,b (44.58 ± 5.53) 5.29 ± 0.03b 3.74 ± 0.31

2.3 9.84 ± 0.95 38.53 ± 2.48b 5.60 ± 0.03b 0.31 ± 0.02b 4.18 ± 0.33b

With sTn reconstitution

Control 1.9 0 51.83 ± 1.84 5.79 ± 0.01b 3.20 ± 0.18b

2.3 10.23 ± 0.82 58.76 ± 3.14b 5.93 ± 0.02b 0.14 ± 0.02b 3.00 ± 0.08

+ADP 1.9 0 44.75 ± 5.61 (48.07 ± 4.49) 5.94 ± 0.02b,c 3.38 ± 0.18

2.3 8.16 ± 0.49 49.90 ± 4.76b 6.01 ± 0.02b,c 0.07 ± 0.01b,c 3.52 ± 0.19c

+Pi 1.9 0 22.36 ± 1.19a,b,c (57.17 ± 2.70) 5.50 ± 0.04c 2.39 ± 0.29b,c

2.3 9.49 ± 0.13 44.96 ± 2.32b 5.74 ± 0.04c 0.24 ± 0.02c 2.93 ± 0.30

Data are for Figs. 2 and 3. Maximal force was obtained by activating muscle at pCa 4.5 before construction of the force–pCa curve at each SL (passive force 
was measured just before activation at pCa 4.5). Numbers in parentheses indicate maximal force values obtained before ADP or Pi application. Maximal 
force obtained before sTn reconstitution at SL 1.9 µm: 54.36 ± 2.80, 48.65 ± 3.66, and 61.35 ± 2.08 mN/mm2 for the control, ADP-, and Pi-treated group, 
respectively (P > 0.05 compared with the value after sTn reconstitution).
aP < 0.05 compared with the prior value.
bP < 0.05 compared with the corresponding values in control group without sTn reconstitution.
cP < 0.05 compared with the corresponding values in control group with sTn reconstitution.
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476 Thin filament activation and Frank-Starling law

in a decrease in the rate of rise of active force. Therefore, 
although the alteration of t1/2 includes processes other 
than thin filament cooperative activation, the present 
findings allow us to consider that it at least in part re-
flects a change in thin filament cooperative activation.

MgADP at 3 mM increased the rate of rise of active 
force and, concomitantly, left-shifted the force–pCa 
curve (Figs. 1 and 2). The magnitude of the change was 
similar to that observed upon sTn reconstitution (i.e., 
direct modulation of regulatory proteins to enhance 
thin filament cooperative activation; see Terui et al., 
2008) for both t1/2 and Ca2+ sensitivity of force (Fig. 2). 
These findings suggest that, albeit modulated via differ-
ent pathways, i.e., either indirectly or directly, thin fila-
ment cooperative activation is enhanced by a similar 
magnitude with 3 mM MgADP and sTn reconstitution. 
Interestingly, 3 mM MgADP increased both Ca2+ sensi-
tivity of force and the rate of rise of active force in sTn-
reconstituted PLV, accompanied by a marked depression 
of length-dependent activation (Fig. 2). These additive 
effects of MgADP suggest that thin filament cooperative 
activation can be synergistically modulated via strong-
binding cross-bridge formation and regulatory protein 
isoform switching. In contrast, 20 mM Pi exerted effects 
opposite to those of 3 mM MgADP, with and without sTn 
reconstitution, by decreasing Ca2+ sensitivity of force and 
slowing the rate of rise of active force (Fig. 3). Therefore, 

previously in experiments measuring the shortening of 
the velocity at zero load (e.g., Cooke and Pate, 1985; 
Metzger, 1996), despite the highly activated state of the 
thin filaments. On the other hand, the binding of Pi to 
the actomyosin complex is reportedly enhanced upon 
the increase in the strain of the complex (Webb et al., 
1986; Metzger, 1996). Therefore, at low concentrations, 
Pi may preferentially bind to the slowly cycling actomyo-
sin–ADP complex, resulting in an increase in the rate of 
rise of active force, as demonstrated previously in ex-
periments measuring kinetics following flash photolysis 
(Lu et al., 1993; Araujo and Walker, 1996), the shorten-
ing of the velocity at zero load (Metzger, 1996) and the 
rate of force redevelopment (ktr) (Tesi et al., 2000). 
However, at high concentrations (e.g., 20 mM used in 
the present study), Pi may decrease the fraction of the 
actomyosin–ADP complex to a level where neighboring 
myosin cannot be effectively recruited to actin, resulting 

Figure 4.  Linear regression analyses between t1/2, pCa50, and 
pCa50. The following relationships are shown: pCa50 versus 
pCa50 (A, R = 0.98; P < 0.0005), t1/2 versus pCa50 (B, R = 0.96; 
P < 0.005), and t1/2 versus pCa50 (C, R = 0.97; P < 0.001). Plots 
were constructed using the data in Figs. 2 and 3 (pCa50 obtained 
at SL 1.9 µm).

Figure 5.  Relation between the nH of the force–pCa curve (i.e., nH 
[force]) and pCa50 obtained experimentally under various con-
ditions. (A) Plot of nH (force) versus pCa50. (B) Plot of nH (force) 
versus pCa50. No significant correlation was found between the pa-
rameters in either graph (see Dobesh et al., 2002). For both A and B,  
the nH values used were from the force–pCa curve at SL 1.9 µm  
in Figs. 2 and 3 (see Table I). NS, not significant.
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the observed effect of 20 mM Pi on length-dependent 
activation likely results from the reduced thin filament 
cooperative activation. Furthermore, pimobendan did 
not affect length-dependent activation, indicating that 
Ca2+ binding to TnC is not the parameter determining 
the magnitude of this phenomenon. Therefore, given the 
close relationship between t1/2 (or pCa50) and pCa50 
(Fig. 4), we consider that thin filament cooperative acti-
vation plays a pivotal role in setting the magnitude of 
length-dependent activation.

It has been reported in various experimental settings 
that a positive feedback mechanism exists between Ca2+ 
binding to TnC and cross-bridge formation in the sarco-
mere (Allen and Kurihara, 1982; Güth and Potter, 1987; 
Hoar et al., 1987; Hofmann and Fuchs, 1988; Zot and 
Potter, 1989). Therefore, the linear relationship of t1/2 
versus pCa50 observed in the present study (Fig. 4) likely 
reflects the positive feedback effect on Ca2+ binding to 
TnC via cross-bridge formation due to enhanced thin 
filament cooperative activation.

One may point out that ktr, i.e., the sum of the appar-
ent rate of cross-bridge attachment (fapp) and detachment 
(gapp) (Brenner, 1988; Swartz and Moss, 1992; Fitzsimons 
et al., 2001a,b, and references therein; Terui et al., 
2008), more suitably represents thin filament coopera-
tive activation in muscle mechanics than t1/2. Indeed, ktr 
is reportedly increased upon enhanced thin filament 
cooperative activation, when modulated directly (e.g., sTn 
reconstitution; Terui et al., 2008) or indirectly (NEM-S1 
application; Swartz and Moss, 1992; Fitzsimons et al., 
2001a,b). In the present study, 3 mM MgADP decreased 
ktr at both maximal and submaximal activations (Fig. S4), 
in agreement with the result of previous studies with 
rabbit skeletal muscle (Lu et al., 1993; Tesi et al., 2000). 
MgADP is known to inhibit the release of ADP from the 
actomyosin complex at the end of the cross-bridge cycle 
(see Fukuda et al., 1998, 2000, and references therein). 
Therefore, the inhibitory effect of MgADP on gapp may 
overshadow its accelerating effect on cross-bridge for-
mation (fapp), resulting in a decrease in ktr. However, the 
observed increase in the rate of rise of active force, re-
gardless of the Tn isoform, suggests that MgADP at low 
concentrations (such as 3 mM in the present experi-
mental setting; see Figs. 1 and 2) accelerates fapp via en-
hancement of thin filament cooperative activation.

Pimobendan did not significantly increase Ca2+ sensi-
tivity of force after sTn reconstitution in PLV (Fig. 6). It 
has, however, been reported that pimobendan increases 
Ca2+ sensitivity of force in amphibian skeletal muscles 
(Piazzesi et al., 1987; Wakisaka et al., 2000). The absence 
of Ca2+ sensitization observed in the present study may 
indicate the compound’s specificity regarding the site 
of action; namely, in mammals, the binding affinity of 
pimobendan for (fast) skeletal TnC may be lower than 
that for cardiac TnC, producing a minimal effect on 
(fast) skeletal muscle. It should also be pointed out that 

Figure 6.  Effects of pimobendan on Ca2+ sensitivity of force and 
t1/2 with and without sTn reconstitution. (A) Effect of 2 × 104 M 
pimobendan (Pimo) on force–pCa curves (top) and passive force 
(bottom) at SL 1.9 and 2.3 µm in control PLV. DMSO 1% was 
included in all solutions. Solid and dashed lines indicate in the 
absence and presence of pimobendan, respectively. (Inset) Com-
parison of pCa50 in the absence and presence of pimobendan.  
V, vehicle without pimobendan. (B) Same as in A, but thin filaments 
were reconstituted with sTn. Solid and dashed lines indicate in 
the absence and presence of pimobendan, respectively. (Inset) 
Comparison of pCa50 in the absence and presence of pimoben-
dan. (C) Comparison of t1/2 in control and sTn-reconstituted 
muscles in the absence and presence of 2 × 104 M pimobendan. 
*, P < 0.05 compared with vehicle. n = 6–7.
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and references therein). The present model calculation 
provides a mechanistic insight into this interpreta
tion. Namely, the SL elongation (i.e., lattice reduction)  
–induced increase in the probability of cross-bridge for-
mation becomes less pronounced upon the increase in 
thin filament cooperative activation. This is because the 
acceleration of Ca2+-dependent widening of the Gauss-
ian distribution, of which the magnitude depends on 
nH_actin (see Eq. 6 and Fig. S1), diminishes the lattice 
spacing–dependent change of the actomyosin interac-
tion (determined by da). On the other hand, pCa50_actin 
had little effect on the lattice spacing dependence; i.e., 
length-dependent activation. Indeed, the attenuation 
of length-dependent activation upon sTn reconstitution 
was quantitatively simulated by our model (Fig. 7 A) by 
increasing nH_actin with appropriate pCa50 values for both 
short and long SLs as a result of an increase in pCa50_actin. 
In addition, our model could quantitatively simulate 
the relationship of SL versus active force at various Ca2+ 
concentrations, converted from the force–pCa curves 
obtained under the control condition in Figs. 2 and 3 
(i.e., shallower at high Ca2+ concentrations; Kentish et al., 
1986; Fukuda et al., 2001b; see Fig. S5), emphasizing 
the adequacy of our model to analyze the molecular 
mechanism of length-dependent activation.

However, it is important to discuss limitations of the 
present study. First, we noted a mismatch between the 
experimental data and the simulated curves; namely, an 
increase in nH_actin increased the steepness of the force–
pCa curve at both SLs (compare Fig. 7 A), whereas the 
nH of the force–pCa curve was not increased upon sTn re-
constitution or MgADP application at either SL (Table I).  
We consider that this mismatch reflects the limitation  
of the experiments with skinned myocardial fibers. For 
example, internal sarcomere shortening that presumably 
occurs during isometric contraction (Fukuda et al., 2001b) 

the rate of rise of active force was unaltered by pimo-
bendan (Fig. 6), confirming our view that the increase 
in the rate of rise of active force by MgADP or sTn re-
constitution results not from the increase in the affinity 
of TnC for Ca2+, but from enhanced thin filament coop-
erative activation.

Dobesh et al. (2002) reported that the nH of the 
force–pCa curve is not correlated with pCa50, leading 
them to conclude that thin filament cooperative activa-
tion plays no significant role in determining the magni-
tude of length-dependent activation. Consistent with this 
finding, we observed no significant correlation between 
the nH of the force–pCa curve and pCa50 (Fig. 5). 
However, it is unclear to what extent the steady-state nH 
reflects thin filament cooperative activation. For instance, 
NEM-S1 or MgADP has been used to enhance thin fila-
ment cooperative activation; however, both NEM-S1 
(Swartz and Moss, 1992, 2001; Fitzsimons and Moss, 
1998; Fitzsimons et al., 2001a,b) and MgADP (at high 
concentrations: Fukuda et al., 1998, 2000) reportedly 
decrease the nH of the force–pCa curve, resulting pre-
sumably from enhanced recruitment of neighboring 
cross-bridges, especially at low Ca2+ concentrations (see 
Fukuda et al., 1998 for ADP contraction occurring in 
the absence of Ca2+). Therefore, in the present study, 
we regarded the rate of rise of active force as an index 
of thin filament cooperative activation (as in, e.g., 
Swartz and Moss, 1992, 2001; Fitzsimons et al., 2001a,b), 
rather than the nH of the force–pCa curve.

Earlier, we discussed that at high activation states (i.e., 
high Ca2+ concentrations, MgADP application, or sTn re-
constitution), cross-bridge recruitment upon SL elonga-
tion becomes less pronounced due to a decrease in the 
fraction of recruitable cross-bridges (that can potentially 
generate active force), resulting in the attenuation of 
length-dependent activation (see Fukuda et al., 2009 

Ta b l e  I I

Summary of the values of passive force, maximal active force, pCa50, and nH in PLV with and without pimobendan

SL Passive force Maximal force pCa50 pCa50 nH

m mN/mm2 mN/mm2

Without sTn reconstitution

Vehicle 1.9 0 55.58 ± 3.97 5.55 ± 0.01 3.72 ± 0.14

2.3 8.90 ± 0.52 76.68 ± 2.94 5.77 ± 0.01 0.22 ± 0.01 3.21 ± 0.04

+Pimobendan 1.9 0 44.98 ± 3.76 5.77 ± 0.03a 2.87 ± 0.13a

2.3 8.74 ± 1.04 61.81 ± 5.92 5.97 ± 0.02a 0.20 ± 0.02 2.53 ± 0.25a

With sTn reconstitution

Vehicle 1.9 0 53.68 ± 3.47 5.80 ± 0.01a 3.29 ± 0.07a

2.3 8.88 ± 0.36 59.96 ± 3.15a 5.93 ± 0.01a 0.14 ± 0.01a 3.45 ± 0.11

+Pimobendan 1.9 0 51.52 ± 2.14 5.82 ± 0.01a 3.68 ± 0.13

2.3 9.37 ± 1.03 60.15 ± 3.55a 5.96 ± 0.01a 0.14 ± 0.01a 3.82 ± 0.19a

Data are for Fig. 6. Maximal force was obtained by activating muscle at pCa 4.5 before construction of the force–pCa curve at each SL (passive force was 
measured just before activation at pCa 4.5). Maximal force obtained before sTn reconstitution: 56.06 ± 3.42 and 54.25 ± 2.20 mN/mm2 for vehicle and 
pimobendan-treated group, respectively (P > 0.05 compared with the value obtained after sTn reconstitution). Pimobendan did not significantly change 
maximal force (see Fukuda et al., 2000) with and without sTn reconstitution, and it did not change any parameter in sTn-reconstituted muscles.
aP < 0.05 compared with the corresponding values in the vehicle-treated group without sTn reconstitution.
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experimental analysis with pimobendan (Fig. 6 and  
Fukuda et al., 2000), but rather strongly on the co
operativity of the thin filament on–off switching (Figs. S1 
and S2). Here, it is worthwhile noting that pCa50_actin 
needed to be varied to quantitatively simulate the experi-
mentally obtained relationship of pCa50 versus pCa50 
(Fig. 7 B). This may be due to a coupling between thin 
filament cooperative activation and cross-bridge forma-
tion, and to the ensuing feedback effect that enhances 
Ca2+ binding to TnC (Güth and Potter, 1987; Kurihara 
and Komukai, 1995). Therefore, the inverse relation-
ship between pCa50 and pCa50 (Fig. 4 A) may be an ap-
parent phenomenon resulting from enhanced Ca2+ 
binding to TnC, coupled with acceleration of thin fila-
ment cooperative activation.

However, we admit that the present modeling is not 
suitable to account for the differing magnitudes of 
length-dependent activation in fast skeletal muscle ver-
sus slow skeletal muscle. Indeed, Konhilas et al. (2002a) 
reported that length-dependent activation is less in slow 
skeletal muscle, despite a lesser magnitude of thin fila-
ment cooperative activation. It is therefore likely that 
the difference in the magnitude of length-dependent 
activation between fast skeletal muscle and slow skeletal 
muscle results from factors that do not involve thin fila-
ment cooperative activation, such as isoform variance of 

may decrease active force production by a greater  
magnitude at high Ca2+ concentrations, resulting in an 
underestimation of the steepness of the force–pCa 
curve (as discussed in Fukuda et al., 2005). It should 
also be stressed that the mismatch reflects the limitation 
of the use of t1/2 as an index of thin filament cooperative 
activation; namely, MgADP, Pi, or sTn reconstitution may 
alter the cross-bridge kinetics via a pathway that is not 
coupled with thin filament cooperative activation. 
Clearly, future studies with various techniques are 
needed to clarify this issue. Second, the decrease in the 
intermolecular distance, i.e., da upon the addition of 
MgADP (earlier assumed to represent the lattice spacing 
modulation via cross-bridge formation in fast skeletal mus-
cle; Shimamoto et al., 2007) enhanced length-dependent 
activation (Fig. S6) in contrast to the experimental re-
sult (Fig. 2). This apparent discrepancy may suggest 
that a change in thin filament cooperative activation 
has a greater impact on length-dependent activation, 
masking the effect of a cross-bridge–dependent lattice 
spacing change.

The 3-D graph obtained in the present model calcula-
tion (Fig. 7 B) suggests the role of the thin filaments in 
the regulation of length-dependent activation; namely, the 
magnitude of this phenomenon depends only slightly  
on the Ca2+-binding ability of TnC, as confirmed by our 

Figure 7.  Simulation of active force devel-
opment. (A) Force–pCa curves at SL 1.9 and  
2.3 µm. (Left) Absolute data. (Right) Normalized  
data (normalized at pCa 4.5). Symbols are ex-
perimental data (the same as in Figs. 2 and 3; 
see Table I for absolute data). Error bars are 
not shown for simplicity. And solid lines are 
simulation results (black, control; red, sTn 
reconstitution). The differences between the 
values of the midpoint of the force–pCa curve 
at SL 1.9 and 2.3 µm are 0.24 and 0.14 pCa 
units in control and sTn-reconstituted PLV, 
respectively (see Table I). (B) 3-D graph show-
ing the relationship between nH_actin, pCa50_actin, 
and pCa50 obtained from the model analysis. 
Calculations were conducted at various values 
of nH_actin per unit of 0.5 and pCa50_actin per 
unit of 0.25, and, thereby, the pCa50 values 
obtained from Eq. 6 (refer to Materials and 
methods) are plotted as the continuous mesh 
blue plane. Red points indicate the pairs of 
nH_actin and pCa50_actin that fulfill the linear re-
lationship between pCa50 and pCa50 (as in 
Fig. 4 A).
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thin filament– and thick filament–based proteins. It is 
an area of future research to clarify this issue by using 
various skeletal muscle tissues.

Considering that Ca2+ sensitivity of force varies depend-
ing on the type of heart disease (for review see Ohtsuki 
and Morimoto, 2008), it is likely that thin filament co-
operative activation is altered in disease. The findings 
of the present study suggest that length-dependent acti-
vation is modulated via mutation occurring in the thin 
filaments and/or breakdown of ATP and the ensuing 
elevations in ADP and Pi in the vicinity of cross-bridges. 
Indeed, it has been reported that the Frank-Starling mech-
anism is depressed in skinned left ventricular muscles 
from patients with terminal heart failure (Schwinger et al., 
1994; Brixius et al., 2003). It would be interesting to 
simulate, based on the 3-D state diagram (Fig. 7 B), how 
the Frank-Starling relation is altered by the occurrence 
of a mutation in a regulatory protein and/or the break-
down of ATP in various types of heart disease in various 
animal species, including humans.

In conclusion, thin filament cooperative activation 
plays a central role in the regulation of the Frank-Starling 
mechanism of the heart.
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