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I N T R O D U C T I O N

In the kidney, transepithelial movement of ions and 
their relative reabsorption are guaranteed by the pres-
ence of channels and transporters along the nephron. 
In particular, Henle’s loop is the nephron segment in 
which a large fraction of NaCl and divalent cations are 
reabsorbed, maintaining the body’s salt equilibrium 
and fluid balance. In the thick ascending limb (TAL), 
Cl is mainly taken up through the apical NKCC2 trans-
porter, which works in concert with the Na-K-ATPase 
and the ROMK potassium channel, and is released from 
the basolateral membrane through ClC-Kb/barttin 
channels (Jentsch, 2005; Jentsch et al., 2005).

Human CLC-K channels belong to the CLC family of 
Cl channels and transporters. ClC-Ka and ClC-Kb share 
90% of identity in their primary structure and coassem-
ble in the kidney and inner ear with the  subunit bart-
tin (Uchida et al., 1993; Kieferle et al., 1994; Simon  
et al., 1997; Estévez et al., 2001; Jentsch, 2005; Jentsch  
et al., 2005). ClC-K1 (ClC-Ka) appears to be mainly 
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expressed in the thin ascending limb of Henle’s loop of 
the nephron, whereas ClC-K2 (ClC-Kb) is restricted to 
the basolateral membranes of epithelial cells in the 
TAL, connecting tubule, distal convoluted tubule, and 
intercalated cells. Both isoforms are also localized in ba-
solateral membranes of marginal cells of the stria vascu-
laris and in dark cells of the vestibular organ, in which 
they play a role in the production of the endolymph 
(Rickheit et al., 2008). The role of CLC-K channels is 
stressed by the association of mutations in the genes 
coding for CLC-Ks and barttin to several kidney dis-
eases. Mutations in ClC-Kb and barttin genes are associ-
ated with the renal disease called Bartter syndrome 
(type III and type IV, respectively), which is character-
ized by renal salt wasting due to an impaired NaCl reab-
sorption in the TAL (Simon et al., 1997). Mutations in the 
gene coding for barttin also cause deafness (Birkenhäger 
et al., 2001). Moreover, it has been shown that mice 
lacking the ClC-K1 channel exhibit nephrogenic diabe-
tes insipidus (Matsumura et al., 1999). Yet, no human 
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312 A Ca2+-binding site at the subunit interface of CLC-K channels

in vitro by SP6 RNA polymerase (Applied Biosystems) after linear-
ization with MluI. ClC-Ka and its mutants were coexpressed with 
human barttin Y98A to enhance the expression (Estévez et al., 
2001). The barttin construct was linearized with NotI, and RNA 
was transcribed using T7 RNA polymerase. All cDNA constructs 
were provided by T. Jentsch (Leibniz-Institut für Molekulare Phar-
makologie, Berlin, Germany).

Electrophysiology
The cRNA of each construct was injected in defolliculated Xeno-
pus oocytes. Oocytes were kept at 18°C in Barth’s solution con-
taining (in mM) 84 NaCl, 1 KCl, 2.5 NaHCO3, 0.5 Ca(NO3)2, 0.6 
CaCl2, and 7.5 Tris-HCl, pH 7.4, or in a solution containing (in mM) 
90 NaCl, 10 HEPES, 2 KCl, 1 MgCl2, and 1 CaCl2, pH 7.5. Voltage 
clamp data were acquired 2–4 d after the injection at room tem-
perature using a custom acquisition program (Gepulse) and a 
custom-built amplifier or a TEC-03X amplifier (npi electronic). 
The standard bath solution contained (in mM): 112 NaCl, 10 Ca-
Gluconate2, 1 MgSO4, and 10 HEPES, pH 7.3 (osmolarity: 235 
mOsm). To study the effect of calcium on CLC-K currents, the 
concentration of CaGluconate2 of the standard solution was var-
ied between 0.1 and 50 mM (the 50-mM Ca solution had an osmo-
larity of 313 mOsm). The somewhat elevated osmolarity of these 
solutions did not lead to the unspecific activation of endogenous 
currents in non-injected oocytes. HEPES was replaced by MES 
buffer in solutions having a pH <7. The holding potential was 
chosen close to the resting membrane potential (30 mV). To 
evaluate the currents at different potentials, we used the follow-
ing protocols of stimulation. For Figs. 1 and 2: after a prepulse  
to 140 mV for 200 ms, channels were stimulated with voltages 
ranging from 140 to 80 mV with 20-mV increments for 500 ms. 
Pulses ended with a tail to 60 mV for 200 ms. For all other figures: 
after a prepulse to 100 mV for 100 ms, channels were stimulated 
with voltages ranging from 140 to 80 mV with 20-mV increments 
for 200 ms. Pulses ended with a tail pulse to 60 mV for 100 ms.

To evaluate Ca2+ and pH effects on ClC-Ka wild type (WT) and all 
its mutants, the channels were stimulated with repetitive pulses to 
60 mV for 200 ms applied at 1 Hz, and solutions with different  
pH and/or [Ca2+] were continuously applied until steady state was 
reached. Reversibility was always checked by returning to the stan-
dard solution. To estimate the contribution of endogenous cur-
rents, we applied a solution containing 100 mM NaI, 1 mM MgSO4, 
and 10 mM HEPES, pH 7.3, that specifically blocks currents carried 
by CLC-K, but not endogenous currents (Picollo et al., 2004).

The effect of calcium and pH was quantified by calculating the 
ratio between the mean current at 60 mV in the specific solution 
and in the standard bath solution (10 mM [Ca2+], pH 7.3). Leak 
currents (i.e., currents remaining in iodide) were subtracted.  
Error bars in figures indicate SEM.

Patch clamp experiments
For patch clamp recordings, the vitelline membrane of oocytes was 
mechanically removed during exposure to a hypertonic solution. 
The intracellular solution contained (in mM): 100 N-methyl- 
d-glucamine-Cl (NMDG-Cl), 2 MgCl2, 10 HEPES, and 2 EGTA,  
pH 7.3. The standard extracellular solution contained (in mM):  
90 NMDG-Cl, 10 CaCl2, 1 MgCl2, and 10 HEPES, pH 7.3. For some 
experiments, the pH was changed to 8 (keeping HEPES-buffer) or 
the Ca2+ concentration was changed to 2 or 1.8 mM CaCl2. For the 
0 Cl solution (Fig. 3), Cl was exchanged by glutamate. Pipettes 
were pulled from aluminosilicate glass capillaries (Hilgenberg) and 
had resistances of 1–2 × 106 Ohm in the recording solutions. Cur-
rents were recorded at 50 kHz after filtering at 10 kHz with an eight-
pole Bessel filter. For the recordings shown in Fig. 3, the outside-out 
configuration of the patch clamp technique was used, whereas for 
the noise analysis experiments shown in Fig. S1, the inside-out con-
figuration was used (Hamill et al., 1981; Stühmer, 1998).

disease with mutations only in the gene coding for ClC-Ka 
has been described yet. However, simultaneous loss of 
function of both ClC-Ka and ClC-Kb leads to Bartter 
syndrome (type IV) with deafness, similar to the effect of 
barttin mutations (Schlingmann et al., 2004). This re-
sult supports the idea that ClC-Ka and ClC-Kb are func-
tionally redundant in the inner ear, but not in the kidney.

In previous reports, it has been described that human 
CLC-K channels, like the rodent CLC-K1, are modulated 
by extracellular Ca2+ and protons in the millimolar range, 
and at physiological pH, respectively (Uchida et al., 1995; 
Estévez et al., 2001; Waldegger et al., 2002). In fact, both 
isoforms are enhanced by increasing [Ca2+]ext and blocked 
by increasing concentration of extracellular protons. Mod-
ulation of CLC proteins by pH is very common. This is not 
surprising for those CLC proteins that act as Cl/H+ anti-
porters because H+ is one of the transported substrates 
(Friedrich et al., 1999; Accardi and Miller, 2004; Picollo 
and Pusch, 2005; Zifarelli and Pusch, 2009). However, 
most CLC channels are also strongly pH dependent be-
cause of the protonation/deprotonation of a conserved 
glutamate residue, the “gating glutamate,” that is involved 
in the opening of the channels (Hanke and Miller, 1983; 
Rychkov et al., 1996; Jordt and Jentsch, 1997; Saviane  
et al., 1999; Chen and Chen, 2001; Arreola et al., 2002; 
Dutzler et al., 2003; Traverso et al., 2006; Zifarelli et al., 
2008; Niemeyer et al., 2009; Zifarelli and Pusch, 2010). 
However, in contrast with most CLC channels, in CLC-K 
channels a valine residue substitutes the gating glutamate. 
Hence, their pH dependence cannot be mediated by the 
same mechanism. Recently, for ClC-2 two distinct regula-
tory sites for protons have been identified (Niemeyer 
et al., 2009): protonation of the gating glutamate activates 
ClC-2 in a voltage-dependent manner, whereas proton-
ation of an off-pore histidine residue leads to channel 
block. Conceivably, a similar mechanism might be respon-
sible for the H+-induced block of CLC-K channels.

On the other hand, activation by extracellular Ca2+ is 
unique to CLC-K channels. The concentrations at which 
CLC-Ks are maximally sensitive to Ca2+ and H+ are close to 
the physiological values found in extracellular fluids. 
Therefore, the modulation by these agents is likely of phys-
iological relevance, even though there is no direct evi-
dence for this view.

Here, we performed a detailed biophysical analysis of 
this modulation. Moreover, we performed a mutagenic 
screen and identified a histidine residue (H497) that is re-
sponsible for H+-induced block as well as two residues 
(E261 and D278) that likely form an intersubunit Ca2+-
binding site.

M AT E R I A L S  A N D  M E T H O D S

Molecular biology
Mutations were introduced by recombinant PCR as described 
previously (Accardi and Pusch, 2003). cRNA was transcribed  
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Online supplemental material
In Fig. S1, we show example experiments for nonstationary noise 
analysis done for ClC-Ka at various pH and [Ca2+]ext conditions. In 
Fig. S2, we summarize the results of the effects of [Ca2+]ext on all 
mutants. In Fig. S3, we summarize the results of the effects of 
[pH]ext on all mutants. Figs. S1–S3 are available at http://www 
.jgp.org/cgi/content/full/jgp.201010455/DC1.

R E S U LT S

Effect of extracellular calcium and protons on ClC-Ka and 
ClC-Kb channels
CLC-K currents, measured in the standard solution con-
taining 10 mM Ca2+, pH 7.3, show the following typical 
behavior: ClC-Ka partially deactivates at positive volt-
ages and activates at negative voltages (Estévez et al., 
2001; Picollo et al., 2004) (Fig. 1 A), whereas ClC-Kb ac-
tivates at positive voltages and deactivates at negative 

For noise analysis, 30–100 identical pulses to 100 or 140 mV 
were applied, and the mean response, I, was calculated. The vari-
ance, 2, was calculated from the averaged squared difference of 
consecutive traces. Background variance at 0 mV was subtracted, 
and the variance-mean plot was constructed by binning as de-
scribed by Heinemann and Conti (1992).

The binned variance-mean plot was fitted by 2 = iII2/N, with 
the single-channel current, i, and the number of channels, N, as 
free parameters (Pusch et al., 1994). The single-channel conduc-
tance was calculated assuming a linear i-V relationship.

For the experiments shown in Fig. 3, a rapid solution exchanger 
(RSC-160; Biological Science Instruments) was used. In this in-
strument, three glass capillaries of 0.5-mm diameter are mounted 
on a rod that is rotated by a step motor. Full switching from one 
solution to the other requires 10 ms (see Fig. 3 A, inset c).

Data analysis
Currents measured at different [Ca2+]ext and pH were normalized 
to the steady-state current measured at 60 mV in the standard 
bath solution, i.e., 10 mM Ca2+, pH 7.3. Normalized currents were 
plotted versus [Ca2+]ext and pH.

Figure 1.  Ca2+
ext dependence of ClC-Ka and ClC-Kb.  

(A) Typical currents of ClC-Ka evoked by the 
standard IV-pulse protocol at different Ca2+ con-
centrations as indicated, at pH 7.3. (B) Effect of  
[Ca2+]ext on ClC-Ka (circles; n = 9). Current at 60 mV 
acquired at different conditions was normalized to 
values measured in standard solution (I/I10 mM  
Ca2+, pH 7.3) and plotted versus [Ca2+]ext (used con-
centrations: 0.1, 0.5, 2, 5, 10, 20, 30, and 50 mM). 
The line represents the fit obtained using Eq. 2 as 
described in Results. (C) Superimposed traces mea-
sured at 60 mV at 5 mM [Ca2+]ext (black line) and 
at 20 mM [Ca2+]ext (gray line) measured from the 
same oocyte. Currents were scaled to the steady-state 
current at 60 mV. Horizontal bar, 200 ms. (D) Typi-
cal currents of ClC-Kb measured at different Ca2+ 
concentrations as indicated. (E) Effect of [Ca2+]ext 
(concentrations as in B) on ClC-Kb (squares; n = 5). 
Horizontal bars, 200 ms. Vertical bars, 5 µA.
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strictly essential for opening. As can be seen from the 
traces in Fig. 1 A, the kinetics—and thus the voltage 
dependence—are, to a first approximation unaffected 
by [Ca2+]ext. This is illustrated in more detail in Fig. 1 C, 
where currents recorded from the same oocyte at  
5 mM [Ca2+]ext and at 20 mM [Ca2+]ext measured at  
60 mV are superimposed and normalized to the steady-
state current. ClC-Kb has a qualitatively very similar but 
slightly less pronounced dependence on [Ca2+]ext (Fig. 1, 
D and E).

Next, we investigated the pH sensitivity of ClC-Ka and 
ClC-Kb (Fig. 2). In these experiments, [Ca2+]ext was 
fixed at 10 mM. ClC-Ka–mediated currents decrease at 
acidic pH with an almost complete block at pH 6.0 (Fig. 2, 
A and B). Extracellular pH clearly alters the kinetics 
and the voltage dependence of gating, as demonstrated 
by the superposition of traces at pH 8.0 and at 7.0 mea-
sured at 60 mV (Fig. 2 C). In fact, protons slightly alter 
the kinetics of the current relaxation at positive voltages 

voltages with slower kinetics compared with ClC-Ka 
(Estévez et al., 2001; Picollo et al., 2004) (Fig. 1 D).

In the first set of experiments, we applied solutions 
with different Ca2+ concentrations ranging from 0.1 to 
50 mM Ca2+, keeping the pH fixed at 7.3. ClC-Ka–medi-
ated currents increase with increasing [Ca2+]ext (Estévez 
et al., 2001), without saturation up to 50 mM (Fig. 1 A). 
Such high Ca2+ concentrations did not induce unspe-
cific endogenous or leak currents in non-injected oo-
cytes (not depicted). An important finding from a 
mechanistic point of view is that, at a Ca2+ concentra-
tion of 0.1 mM, ClC-Ka currents are still 20% of the 
currents measured in 10 mM [Ca2+]ext (Fig. 1 B). Pre-
liminary experiments showed that reducing [Ca2+]ext  
to nominally zero did not further reduce currents  
compared with 0.1 mM [Ca2+]ext (not depicted). How-
ever, the development of endogenous currents under 
these conditions precluded a more systematic investi-
gation. These results suggest that extracellular Ca2+ is not 

Figure 2.  pHext dependence of ClC-Ka and ClC-Kb. 
(A) Voltage clamp traces of ClC-Ka measured at dif-
ferent pH as indicated, in 10 mM [Ca2+]ext. (B) Effect 
of pHext on ClC-Ka (circles; n = 7). Normalized cur-
rents were calculated as for Fig. 1. I/I10 mM Ca2+, pH 
7.3, is plotted versus pH. The line represents the fit 
obtained using Eq. 1 as described in Results. (C) Su-
perimposed traces measured at pH 7.0 (black line) 
and pH 8.0 (gray line) measured from the same oo-
cyte. Currents were scaled to the steady-state current  
at 60 mV. Horizontal bar, 200 ms. (D) Traces of ClC-Kb  
measured at different pH as indicated, in 10 mM  
[Ca2+]ext. (E) Effect of pHext on ClC-Kb (squares;  
n = 4). Horizontal bars, 200 ms. Vertical bars, 5 µA.
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“slow,” whereas a direct occluding effect is expected to 
be “fast.” Rapid perfusion is difficult to achieve in whole 
oocyte recordings. Therefore, we conducted outside-
out patch recordings and used a rapid perfusion system 
to change the extracellular pH or Ca2+ concentration.  
A typical experiment is shown in Fig. 3 A, in which the 
current recorded at 60 mV from a patch containing 
many channels is displayed as a function of time. Upon 
reduction of external Ca2+ from 10 to 1.8 mM, currents 
decrease reversibly. To test the speed of the perfusion 
system, a solution without Cl was applied at the end of 
the experiment. The insets in Fig. 3 A (a, b, and c) show 
the solution changes at an expanded time scale, super-
imposed with single-exponential fits (red lines). The 
speed of the solution exchange was on the order of 10 ms 
(Fig. 3 A, inset c), clearly much faster than the relax-
ations observed upon changing the Ca2+ concentration. 
Similarly slow relaxations were observed upon switch-
ing the extracellular pH from 7.3 to 8 (see Fig. 3 B).  
Average time constants are shown in Fig. 3 B for Ca2+ 

and significantly affect the activation at negative volt-
ages. However, we did not study the effect of pH on the 
kinetics of gating in more detail, mainly because of the 
well-known problems of voltage clamp studies in Xeno-
pus oocytes. ClC-Kb shows a similar behavior, but it ap-
pears to be more sensitive to proton block than ClC-Ka 
(Fig. 2, D and E), and for ClC-Kb, the effect of pH does 
not seem to saturate. This may be explained by a shift of 
the apparent pK of the effect toward more alkaline pH. 
Qualitatively, Ca2+ and protons have a similar effect on 
both CLC-K homologues. Therefore, we focused our at-
tention on ClC-Ka because of its higher expression 
compared with ClC-Kb.

An important mechanistic question is whether Ca2+ 
and H+ exert their effect by a direct pore-occluding 
mechanism or if they modulate in an allosteric manner 
the open probability of the channel that is governed by 
one or more gating processes. A crude distinction be-
tween these two possibilities can be based on a kinetic 
analysis: allosteric gating regulation is expected to be 

Figure 3.  Relaxation kinetics upon fast concen
tration jumps in outside-out patches. (A) Example 
recording of a patch held at 60 mV in which 
[Ca2+]ext was switched from 10 to 1.8 mM, and 
then back to 10 mM. Finally, the patch was ex-
posed to a solution without Cl (and without 
Ca2+). The three insets below show the transition 
regions on an expanded time scale (bar, 500 ms), 
superimposed with a single-exponential fit (red 
line). Time constants for the solution exchange 
(inset c) were on the order of 10 ms. (B) Aver-
age time constants (n > 3 patches) for the indi-
cated transitions.
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a value of 8, a condition of maximal stimulation in the 
range of pH values tested (see Fig. 2 A). Interestingly, 
ClC-Ka currents still increase without saturation up to 
50 mM Ca2+ (Fig. 4 A). Also at pH 6.5, a condition at 
which channel activity is very low (see Fig. 2 B), the ef-
fect of Ca2+ was still clearly evident (Fig. 4 B). At this pH, 
measurements at a [Ca2+]ext <2 mM are not reliable due 
to an increase of leak and endogenous currents after a 
long exposure to low pH and low Ca2+. Next, keeping 
[Ca2+]ext fixed at 0.5 mM, the pH dependence was very 
similar to that seen at [Ca2+]ext of 10 mM (Fig. 4 C). 
These results suggest that extracellular Ca2+ and extra-
cellular protons act via independent mechanisms and 
binding sites. This hypothesis was further scrutinized by 
kinetic modeling.

Modeling pH and Ca2+ modulation of ClC-Ka
Acidic pH practically completely blocks CLC-Ka. We 
therefore fitted the pH dependence by a simple Mi-
chaelis-Menten titration curve,

	
p

H
K

u

H

n=

+ [ ]





1

1

,
	  (1)

where pu is the probability of not being blocked by a 
proton, [H] the proton concentration, KH the apparent 
binding constant, and n the Hill coefficient. We define 
pK = log10(KH) for convenience. As shown in Fig. 2 C, 
proton-induced block is voltage dependent. For sim-
plicity, however, we concentrated our analysis on the 
proton block at 60 mV. The solid line in Fig. 2 B is the 
best fit of Eq. 1, with pK = 7.11 and n = 1.61. The Hill co-
efficient is significantly larger than one suggesting that 
more than one proton (most likely two) is necessary to 
block the channel.

Regarding the modeling of the Ca2+-induced potenti-
ation, we have to consider that ClC-Ka channels are par-
tially open even in the absence of Ca2+. Therefore, a 
simple two-state mechanism is inadequate. Instead, we 
are forced to invoke an allosteric model of Ca2+ modula-
tion that incorporates an open non-Ca2+–bound state. 
Conceptually, the simplest allosteric model is composed 
of four states, as shown below.

	 	

(SCHEME 1)

jumps and pH jumps. These kinetic experiments sug-
gest that both Ca2+ and protons exert their effects by an 
allosteric modulation of the channel open probability.

To further exclude a direct effect on ion permeation, 
we performed nonstationary noise analysis to estimate 
the single-channel conductance. Typical experiments 
are shown in Fig. S1. From these experiments, no effect 
of Ca2+ or pH on the single-channel conductance could 
be detected (Table I).

To find out whether Ca2+ and H+ compete for com-
mon binding sites, we performed experiments mixing 
the concentrations of the two cations. First, we applied 
solutions with various [Ca2+]ext, keeping the pH fixed at 

Figure 4.  Ca2+ and pH effects on ClC-Ka at mixed conditions.  
(A and B) Effect of [Ca2+]ext on ClC-Ka measured at pHext 8  
(A, n = 6) and pHext 6.5 (B, n = 4). Currents at 60 mV were normal
ized to values measured in 10 mM [Ca2+]ext and plotted versus 
[Ca2+]ext. (C) Effect of pHext on ClC-Ka in 0.5 mM Ca2+ (n = 3). 
Currents at 60 mV were normalized to values measured at pH 7.3 
and plotted versus pHext. Lines represent the theoretical predic-
tions obtained using Eqs. 1 and 2 as described in Results using the 
same parameters obtained from the fit in the standard conditions 
(i.e., pK = 7.11; KC = 19.6 mM, KO = 1.5 mM, and r0 = 434).
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it is significantly >1. The precise determination of r0 
would imply knowledge about the absolute open proba-
bility, clearly an impossible piece of information to be 
obtained from macroscopic measurements.

To further test if proton-induced block and Ca2+ po-
tentiation are independent processes, we compared the 
experimental results obtained under “mixed condi-
tions” (Fig. 4) with the predictions of the modeling ob-
tained under standard conditions (Figs. 1 and 2). The 
lines in Fig. 4 were calculated using the same parame-
ters obtained from the fits described above (i.e., pK = 
7.11; KC = 19.6 mM, KO = 1.5 mM, and r0 = 434). Within 
the experimental error, these fits provide an adequate 

Here, Ou is the open Ca2+-free state, and OCa is the open 
state bound to Ca2+. Cu and CCa refer similarly to the 
closed states. Ca2+ binding to the open state is governed 
by the dissociation constant KO, whereas Ca2+ binding to 
the closed state is described by the dissociation constant 
KC. r0 is the ratio between the probability of being in 
states Cu and Ou (r0 = p(Cu)/p(Ou)).

For Scheme 1, the open probability is given by the fol-
lowing equation:

	 p

Ca
K

r
Ca
K

r
Ca
K

o

O

O C

=
+ [ ]

+ + [ ] + [ ]
1

1 0 0

. 	  (2)

The solid line in Fig. 1 B is the best fit of Eq. 2, result-
ing in KC = 19.6 mM, KO = 1.5 mM, and r0 = 434. The 
theoretical prediction of this model nicely fits the ex-
perimental data. The value obtained for r0 cannot be 
considered reliable. In fact, the model predictions are 
practically independent from the value of r0, as long as 

Table     I

Single-channel conductance estimated from noise analysis

Condition Conductance (pS) n

10 mM Ca2+, pH 7.3 16.0 ± 1.0 5

2 mM Ca2+, pH 7.3 16.3 ± 0.7 3

10 mM Ca2+, pH 8 16.6 ± 0.5 5

Figure 5.  Location of mutants mapped on the 
structure of ecClC-1. (A) A surface representa-
tion of the bacterial ecClC-1 (Protein Databank 
accession no. 1OTS) viewed from the extracellu-
lar side is shown. The two subunits that compose 
ecClC-1 are colored in gray and light gray, re-
spectively. The residues corresponding to those 
selected for mutation are shown in pink and light 
blue in the two different subunits, respectively. 
The transparent surface also allows a glimpse of 
the internal mutated residues. The residues re-
sponsible for Ca2+ and H+ sensitivity are shown in 
different colors: yellow, E261 (corresponding to 
E235 of ecClC-1); red, D278 (corresponding to 
N250 of ecClC-1); green, H497 (corresponding 
to L421 of ecClC-1); the numbers of residues in-
dicated in the figure correspond to those of ClC-
Ka. (B) A zoom of a selected region is shown in 
cartoon representation. The three residues E235, 
N250, and L421 are highlighted as sticks and col-
ored as in A. A hypothetical Ca2+ ion is shown 
as a light blue sphere between E261 and D278.  
(C) Alignments around the three residues re-
sponsible for Ca2+ and proton sensitivity are 
shown. E261, D278, H497, and the correspond-
ing residues in other CLCs are in bold.
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Substitution of two externally accessible residues 
eliminates the sensitivity to Ca2+

The structure of the bacterial homologue EcClC-1 has 
been determined by x-ray crystallography (Dutzler et al., 
2002). The bacterial EcClC-1 is significantly homolo-
gous to the eukaryotic CLCs (Maduke et al., 2000). In 
particular, they share the same transmembrane topol-
ogy and several conserved regions. For this reason, we 
used the structure of the bacterial transporter as a guide 
to select and mutate all titratable residues of ClC-Ka 
that could be accessible from the extracellular side of 
the pore. In total, we chose and mutated 50 residues 
that are located between helices B and Q (see legend to 
Fig. S2). In general, charged residues (Glu, Asp, Arg, 
Lys, and His) were neutralized. Other titratable residues 
(Cys and Tyr) were changed with non-titratable resi-
dues. In cases where the mutations were not functional, 

description of the data, consistent with the idea that 
Ca2+ and H+ act via independent mechanisms.

Thus, the model allows the following conclusions. 
First, two protons bind to the binding site for protons, 
and one Ca2+ binds to the binding site for Ca2+. Second, 
the analysis reveals that ClC-Ka has an affinity for Ca2+ 
that is 13-fold higher in the open state (KCa

O = 1.5 mM) 
than in the closed state (KCa

C = 19.6 mM), suggesting 
that Ca2+ promotes the open state of the channel. Pro-
ton block occurs with an apparent pK of 7.11. How-
ever, we would like to note that the two-electrode voltage 
clamp measurements present some technical limitations 
such as, for example, problems arising from the series 
resistance and difficulties distinguishing small currents 
(e.g., in low pH) from endogenous currents. Therefore, 
additional evidence to support the conclusions from 
the modeling is desirable.

Figure 6.  Effect of [Ca2+]ext on ClC-Ka WT and 
its mutants E261Q, D278N, and E261Q/D278N. 
(A–D) The mean current, shown in color, at  
60 mV plotted as a function of time. The type of 
solution applied is color coded as indicated in 
the middle inset. Breaks during the experiment  
are indicated with short dashed lines. Insets dis-
play representative current traces evoked by the  
standard IV-pulse protocol in standard solution. 
Horizontal bars, 100 ms; vertical bars, 3 µA.  
(E) Dose–response relationship of the modula-
tion by Ca2+ of ClC-Ka WT (black circles; n = 16) 
and the mutants E261Q (yellow squares; n = 4), 
D278N (red triangles; n = 5), and E261Q/D278N 
(light blue rhombi; n = 5). Currents at 60 mV 
were normalized to values measured in standard 
solution and plotted versus [Ca2+]ext. Data for WT 
are different compared with Fig. 1 because they 
were obtained from different oocytes as control 
measurements in the mutagenic screen. The cur-
rents shown for the mutants D278N and E261Q/
D278N are from oocytes with exceptionally large 
expression. On average, the current expression 
level measured at 60 mV were (in µA ± SD [no. 
of oocytes]): WT (2 d), 2.5 ± 1.4 (7); WT (3 d),  
5.3 ± 1.9 (8); E261Q (1–2 d), 4.3 ± 0.9 (4); D278N 
(>3 d), 1.1 ± 0.9 (8); E261Q/D278N (>3 d), 2.2 ± 
0.9 (7); E261Q/D278N/H497M (>3 d), 0.8 ± 0.3 
(15); not injected, 0.17 ± 0.07 (8).
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and N250 from the other subunit are relatively close to 
each other (10 Å). Thus, based on the experimental 
evidence and the structure of EcClC-1, we conclude that 
E261 and D278 are excellent candidates for forming an 
intersubunit Ca2+-binding site.

Substitution of an external residue removes the sensitivity 
to protons
Another objective of our work was to identify the resi-
dues of ClC-Ka that are responsible for the sensitivity 
to protons. Therefore, we investigated the pH sensi-
tivity of all the mutants prepared (Fig. S3). In partic
ular, we paid attention to the residues involved in 
calcium sensitivity.

E261Q and D278N are still responsive to different pH. 
Nevertheless, at basic pH, both show a behavior differ-
ent from WT. In fact, currents mediated by E261Q only 
slightly increase at pH 8, whereas those mediated by 
D278N even decrease in the same pH range (Fig. 7 B). 
These results might point to an indirect involvement of 
these residues in the binding of protons.

Even though we selected and mutated all external ti-
tratable residues, we were not able to identify mutations 
that abolish the block induced at acidic pH effect. How-
ever, we could not obtain functional expression for sev-
eral mutants of His-497, which corresponds to His-532 
of the ClC-2 channel, where it has been shown to be re-
sponsible for H+-induced block (Niemeyer et al., 2009). 
His-497 is located at the N terminus of helix Q in a re-
gion that is conserved in most CLC proteins (Fig. 5 C). 
In ClC-2, the H532F mutation was specifically shown to 
eliminate H+ block. Unfortunately, the corresponding 
mutation in ClC-Ka (H497F) did not yield currents.  
In ClC-1, mutating the corresponding His to Ala was 
reported to yield normal channel function (Kürz et al., 
1999). However, we could not obtain expression of the 
analogous H497A mutation. Among several other muta-
tions (H497N, H497D, H497E, H497K, H497Y, and 
H497M), only H497M yielded very small currents that 
were, however, barely above background (not depicted). 
H497 corresponds to L421 in EcClC-1 (Fig. 5 C). We 
highlighted L421 in green in a surface representation 
of EcClC-1 (Fig. 5, A and B). Interestingly, H497 is local-
ized relatively close to the amino acids E261 and D278, 
which form the acidic Ca2+-binding site (on the same 
subunit as D278).

The proximity of these three amino acids and their 
lower Ca2+ and H+ sensitivity than WT drove us to prepare 
the triple mutant E261Q/D278N/H497M. Fortunately, 
the triple mutant showed bigger currents than H497M, 
allowing us to investigate its pH sensitivity. The triple mu-
tant E261Q/D278N/H497M completely eliminated H+-
induced current block. In fact, currents did not vary 
significantly between pH 5 and 7.3 (Fig. 7, A and B).  
As expected, the triple mutant was also completely insen-
sitive to [Ca2+]ext (Fig. 7 A).

we tried alternative and more conservative mutations. 
The extensive mutagenic screen is shown in Fig. 5 A, 
where we colored the mutated residues in light blue 
and in pink in the two different subunits. With the ex-
ception of H480 and E490, mutations of all other resi-
dues led to functionally active protein at least for one 
amino acid change. The majority of them displayed Cl 
currents that rapidly deactivate at positive voltages and 
activate at negative voltages, similar to WT currents 
when measured in standard solution (not depicted). 
For each of these mutations, we studied the effect of ex-
tracellular Ca2+ and protons. The results of this screen 
are shown in Figs. S2 and S3, where normalized currents 
of the mutants are plotted versus the calcium concen-
trations and pH, respectively. Although several muta-
tions slightly affected calcium sensitivity (Fig. S2), only 
E261Q and D278N had a drastically reduced calcium 
sensitivity (Fig. 6, B and C).

E261Q loses most of the Ca2+ sensitivity (Fig. 6, B and 
E). In fact, at 1 mM [Ca2+]ext, currents mediated by 
E261Q are >50% of the currents measured in 10 mM 
[Ca2+]ext, and when increasing [Ca2+]ext to 50 mM, the 
currents only slightly increase. For this mutant, the nor-
malized current I([Ca2+]ext)/I(10 mM) varied less than 
twofold between 1 and 50 mM [Ca2+]ext, whereas for WT, 
the same ratio varied by 10-fold (Fig. 6, A and E).

Having identified E261 as being critical for [Ca2+]ext 
sensitivity, we selected and mutated all residues located 
nearby, but none of these mutations were significantly 
different from WT (Fig. S2).

The other mutation, D278N, is even less Ca2+ sensitive 
than E261Q (Fig. 6, C and E). In fact, currents mediated 
by D278N do not vary between 1 and 10 mM [Ca2+]ext, 
and they only slightly increase at 50 mM [Ca2+]ext (Fig. 6, 
C and E). These results lead us to suggest that E261  
and D278 could be part of a binding site for calcium. 
In agreement with this hypothesis, the double mutant 
E261Q/D278N completely abolishes the calcium sensi-
tivity (Fig. 6, D and E).

Residue E261 is conserved in both human CLC-K ho-
mologues and also in the rodent isoforms ClC-K1 and 
ClC-K2, but not in all CLCs. Residue D278 is conserved 
in all human and rodent CLC-Ks and quite conserved in 
other CLCs (Fig. 5 C). Both are located in the loop be-
tween helices I and J (Fig. 5 C). Based on the alignment 
of ClC-Ka with EcClC-1, we tentatively assigned the resi-
due in EcClC-1 corresponding to D278 of ClC-Ka to 
N250 in EcClC-1 (Fig. 5 C). Because of a gap in the bacte-
rial sequence, we could not uniquely align E261 (Fig. 5 C). 
Tentatively, we assigned the bacterial residue E235 as the 
one corresponding to E261 (Fig. 5 C). Keeping in mind 
these limits, we evidenced E235, in yellow, and N250,  
in red, in a surface representation of EcClC-1 (Fig. 5,  
A and B). These residues are quite far from each other 
in the primary sequence. Interestingly, in the 3-D structure 
of EcClC-1, E235 from one subunit of the homodimer 
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out patch clamp recordings led us to conclude that both 
ions modulate CLC-K activity by altering the open prob-
ability of the channel. In fact, the absolute open proba-
bility of ClC-Ka and ClC-Kb in physiological conditions 
is significantly smaller than unity, allowing for a vast 
modulation of CLC-K–mediated membrane conduc-
tance by various ligands, including niflumic acid (NFA) 
(Zifarelli et al., 2010). Applying a two-state Michaelis-
Menten model for H+ block revealed that the binding of 
two H+ is probably needed to induce channel closure, 
with an apparent pK of 7.1. A simple allosteric model 
for Ca2+ modulation was able to reproduce the concen-
tration dependence of the Ca2+ modulation, assuming a 
dissociation constant of 19.6 mM for the closed state 
and 1.5 mM for the open state. The parameters ob-
tained from the fits at standard conditions could also 
reasonably well describe H+-induced block at low [Ca2+] 
and Ca2+ modulation at more acidic and more alkaline 
pH, consistent with the idea that Ca2+ and H+ act via 
separate binding sites.

Next, using the structure of a bacterial CLC protein 
as a guide, we were able to identify the putative binding 
sites for both ions. Regarding the H+-binding site, we 
were aided by recent results obtained for the ClC-2 
channel (Niemeyer et al., 2009). ClC-2 is regulated by 
external pH in a biphasic manner: slightly acidic pH 
values activate the channel, whereas strong acidic con-
ditions block it (Jordt and Jentsch, 1997; Arreola et al., 
2002; Niemeyer et al., 2009). Niemeyer et al. (2009) 
showed that the potentiation of ClC-2 by external pro-
tons is mediated by the protonation of the “gating glu-
tamate” residue that is highly conserved in most CLC 
proteins. However, in CLC-K channels, this glutamate is 
exchanged by a not-titratable valine residue. In contrast, 
the H+-blocking site appears to be similar to the block-
ing site identified on the ClC-2 channel (Niemeyer  
et al., 2009). In ClC-2, protonation of His-532 appears 
to be responsible for H+-induced block, in that the H532F 
mutation was not blocked at acidic pH (Niemeyer et al., 
2009). Unfortunately, most mutations of the corre-
sponding His-497 residue in ClC-Ka resulted in non-
functional channels. However, we could obtain reasonable 
currents of the triple mutant E261Q/D278N/H497M 
that were insensitive to pH in the range of 5 and 8, 
whereas the E261Q/D278N mutation was fully blocked 
at pH 5. Based on these results, we cannot completely 
rule out a certain interdependence of the pH and the 
Ca2+ effects because we could assert the importance of 
the His-497 residue for H+ block only in the context  
of a Ca2+-insensitive construct (i.e., E261Q/D278N). 
Nevertheless, these results also suggest that in ClC-K 
channels, protonation of this histidine residue at the 
beginning of helix Q is responsible for pH-induced 
block. As in ClC-2 (Arreola et al., 2002; Niemeyer et al., 
2009), H+ block displays a functional stoichiometry of 
two; i.e., it appears that two H+ are necessary for closing 

D I S C U S S I O N

Here, we performed for the first time a detailed analysis 
of the modulation of CLC-K channels by extracellular 
Ca2+ and protons. Both human homologues, ClC-Ka 
and ClC-Kb, are enhanced by increasing the extracellu-
lar Ca2+ concentration and are blocked by increasing 
the extracellular proton concentration. As shown previ-
ously (Estévez et al., 2001), ClC-Kb appears to be slightly 
more sensitive to pH compared with ClC-Ka. However, 
we focused on ClC-Ka because of its higher expression 
compared with ClC-Kb. The relatively slow relaxation 
kinetics upon stepwise changes of Ca2+ or pH in outside-

Figure 7.  Effect of [H+]ext on ClC-Ka WT and its mutants E261Q, 
D278N, E261Q/D278N, and E261Q/D278N/H497M. (A) The 
current at 60 mV, shown in color, of the triple mutant E261Q/
D278N/H497M as a function of time (color code as in Fig. 6). 
Inset in A shows representative current traces of the mutant in 
standard solution. Horizontal bars, 100 ms; vertical bars, 1 µA. 
Capacitive transients have been blanked for clarity. (B) Dose–re-
sponse relationship of the modulation by protons of ClC-Ka WT 
(black circles; n = 14) and the mutants E261Q (yellow squares; 
n = 4), D278N (red triangles; n = 5), E261Q/D278N (light blue 
rhombi; n = 5), and E261Q/D278N/E261Q (green hexagons;  
n = 5). Currents at 60 mV were normalized to values measured in 
standard solution and plotted versus pH. Data for WT are differ-
ent compared with Fig. 2 because they were obtained from differ-
ent oocytes as control measurements in the mutagenic screen.
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fully excluded. In fact, in another recent report, the 
mutation R351W was suggested to abolish the Ca2+ and 
H+ sensitivity of ClC-Kb (Yu et al., 2010). However, in 
our hands, the similar mutation R351A in ClC-Ka was 
identical to WT (Figs. S2 and S3). Furthermore, the cur-
rents of the R351W mutant reported by Yu et al. (2010) 
were barely above background, casting serious doubts 
on the significance of this result.

Regarding the mechanism of the regulation of ClC-K 
channels by Ca2+ (and H+), three major questions have to 
be addressed in the future. First, what is the precise struc-
ture of the binding site? Second, what is the functional 
and structural nature of the conformational changes in-
duced by Ca2+ and/or H+ binding? Lastly, what is the re-
lationship of the modulation of CLC-K channels by 
Ca2+/H+ and the potentiation by NFA (Liantonio et al., 
2006, 2008)? Regarding the latter point, we have previ-
ously identified a region on ClC-Ka where mutations 
strongly affect NFA sensitivity (Zifarelli et al., 2010). This 
region is distinct from the Ca2+-binding site identified 
here, and the less Ca2+-sensitive mutants E261Q and 
D278 do not affect the NFA sensitivity (Zifarelli et al., 
2010). Nevertheless, it is not known whether Ca2+ (and 
H+) affects the same gating processes as does NFA.

A further important question is whether the regula-
tion by Ca2+ and pH is of any physiological relevance. 
The normal plasma Ca2+ concentration ranges from 
2.25 to 2.65 mM, 50% of which is in ionized form 
(i.e., the free concentration is 1.2–1.3 mM) (Vargas-
Poussou et al., 2002). Several mechanisms regulate 
Ca2+ homeostasis. Bone, intestine, and kidney are the 
organs that determine the plasma Ca2+ level. Disorders 
in Ca2+ balance due to several diseases or pathological 
conditions are highly frequent (Houillier et al., 2006). 
Ca2+ is reabsorbed in the kidney, particularly in the 
proximal tubule (70%) and in the TAL through 
paracellular pathways (20%) (Frick and Bushinsky, 
2003). The driving force for the paracellular flux of 
Ca2+ in the TAL is given by a transepithelial voltage gra-
dient that is created by the basolateral secretion of Cl 
and the apical secretion of K+ (Jeck et al., 2005). An 
impairment of Cl transport leads to an abnormal Ca2+ 
absorption, implicating that Ca2+ reabsorption and 
CLC-K function are interrelated. Because CLC-Ks are 
modulated in the physiological range of Ca2+, and the 
interstitial Ca2+ level may vary in a wide range of condi-
tions, we can speculate that this modulation is of physi-
ological relevance. A critical test if Ca2+ regulation of 
CLC-K channels is physiologically relevant could be 
the analysis of animals that express Ca2+-insensitive 
CLC-K variants. In this respect, the single E261Q muta-
tion has properties that are most favorable for a knock-
in strategy because its overall properties are rather 
similar to the WT. In contrast, the D278N mutant and 
the E261Q/D278N double mutant show rather drasti-
cally reduced current levels.

the channel, further supporting the assumption of a 
similar mechanism of pH-induced block in the two 
channels. It has been speculated that H+ block acts on 
the “common gate” of the double-barreled channel. 
However, in the absence of single-channel data, such 
conclusions are difficult to draw conclusively. It will be 
interesting to find out if protonation of the correspond-
ing histidine residue in other CLC channels, like ClC-0 
or ClC-1, also affects channel function. Regulation by 
extracellular Ca2+ appears to be unique to CLC-K chan-
nels. Based on an exhaustive mutagenic screen, we 
could identify the most likely Ca2+-binding site. It is 
formed by two acidic residues (E261 and D278), both 
localized in the loop connecting helices I and J. This 
loop connects the two halves of one pseudosymmetric 
CLC monomer (Dutzler et al., 2002); i.e., helix I is the 
last helix of the first half, whereas helix J is the first helix 
of the second half, which is inserted oppositely into the 
membrane with respect to the first half. Sequence con-
servation in the I-J loop is relatively poor among dis-
tantly related CLCs, and the Escherichia coli sequence is 
considerably shorter than that of most eukaryotic CLCs, 
resulting in a certain ambiguity of assigning the resi-
dues of the E. coli EcClC-1 that correspond to E261 and 
D278 of ClC-Ka. Based on the alignment shown in Fig. 5, 
we identified E261-ClC-Ka with E235-ecClC-1 and D278-
ClC-Ka with N250-ecClC-1. Interestingly, these two resi-
dues of one subunit of ecClC-1 are far from each other, 
but E235-ecClC-1 of one subunit and N250-ecClC-1 of 
the neighboring subunit are within 10 Å from each 
other. This distance is clearly too large to form a cation-
binding site. However, because the I-J loop of ClC-K 
channels is considerably longer than that of ecClC-1, we 
speculate that in this channel, the two residues identi-
fied here, E261 and D278, form a millimolar affinity 
Ca2+-binding site between the two subunits. Conse-
quently, two symmetrically located Ca2+-binding sites are 
present on each channel. The modeling of the func-
tional data indicated that occupation of a single binding 
site is sufficient to promote channel activation. However, 
we believe that this issue deserves further detailed inves-
tigation, using, for example, heteromeric constructs in 
which only one of the subunits is manipulated.

Whereas D278 is rather conserved among the eukary-
otic channel CLCs, E261 is not conserved in ClC-0, ClC-1, 
and ClC-5. Thus, it is not surprising that these CLCs are 
Ca2+ insensitive. It may be interesting to find out if Ca2+ 
sensitivity can be engineered into other CLC channels 
or transporters.

Recently, it was described that a mutation in the  
C-terminal cytosolic region of ClC-Kb (R538P) abol-
ished its Ca2+ sensitivity, whereas the same mutation was 
without effect in ClC-Ka (Martinez and Maduke, 2008). 
This effect is likely caused indirectly by affecting the gat-
ing of ClC-Kb. Furthermore, ClC-Kb–mediated currents 
are rather small, such that unspecific effects cannot be 
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