Distorting the sarcomere
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One of the goals of cardiovascular science is to create a
mathematical model of the heart that can predict ven-
tricular function in healthy and diseased states, and that
can be used to help improve treatment options for pa-
tients with heart disease. To be clinically useful, the
model will have to include structural information about
the shapes of the chambers and the action of the valves,
and about how the electrical activity spreads from the
sino-atrial node to the ventricular cells. It will also have
to incorporate information about the contractile prop-
erties of the myocardial cells in different regions of the
heart. In this issue, Ford et al. present a mathematical
model that could provide a simpler and better way of
predicting how force varies within real ventricular cells
during the cardiac cycle.

Mathematical modeling of striated muscle was
dominated in the latter half of the 20th century by a
technique developed by A.F. Huxley (1957). In this
approach, the mechanical properties of the muscle
are attributed to a single population of myosin heads,
each of which independently undergoes cyclic interac-
tions with binding sites on actin filaments. If a myosin
head is attached, it is assumed to behave as a Hookean
spring so that the force produced by the muscle at any
instant can be calculated simply by summing the forces
due to the individual bound cross-bridges (the prod-
uct of a spring constant and the cross-bridge extension
in each case). Predicting the mechanical behavior of
the muscle during a perturbation thus reduces to cal-
culating how the cross-bridge population distribu-
tions (the proportion of cross-bridges attached with
each range of spring lengths) evolve after the im-
posed movement. In Huxley’s original formulation,
this can be done simply by integrating a single partial
differential equation.

This general approach has been tremendously suc-
cessful, and many authors have used the technique
to simulate the behavior of different types of skeletal
and cardiac muscle. It has become common to incor-
porate multiple bound states into the actin—-myosin
cycle, and models of this type can explain many fea-
tures of experimental data including, for example, the
double hyperbolic nature of the force—velocity curve
(Mansson, 2010) and the effect of phosphate on iso-
metric tension (Pate and Cooke, 1989). The main
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drawback of these more recent models is that they are
quite complex. Mansson’s recent publication, for in-
stance, describes simulations performed with 17 free
parameters and an attachment rate function that de-
pends on the velocity of interfilamentary movement.
Although simulations of this type can potentially re-
produce the behavior of real muscle cells extremely
accurately, it is not always clear that the parameters
defining the model responses are uniquely defined.
Calculations with other parameter values might repro-
duce the experimental data almost as well. The mathe-
matical complexity of these “bottom up” models means
that they will also be difficult, although certainly not
impossible, to integrate into larger multi-scaled simu-
lation systems.

If mathematical models based on cross-bridge distri-
butions lie at the “complex” end of the modeling con-
tinuum, the system described in this issue by Ford et al.
lies toward the “simpler” end. Instead of calculating
muscle force as the sum of the forces produced by each
of the bound cross-bridges, their model predicts force
from the product of the number of bound cross-bridges
and the mean length of the cross-bridge springs. Al-
though this approach sounds quite similar to the origi-
nal Huxley scheme, the mathematics underlying this
“distortion” approach (originally developed by Thorson
and White, 1983) is much simpler, and Ford et al.’s
model has only five free parameters. Two of these pa-
rameters, the recruitment rate constant and the distor-
tion rate constant, describe, respectively, how quickly
the number of attached cross-bridges and the mean
length of the cross-bridge springs return to their steady-
state values after a perturbation. The next two parame-
ters describe how the steady-state number of attached
cross-bridges varies as a function of muscle length, and
the mean length of the cross-bridge springs at steady-
state. The final parameter, which is unique to this work,
defines the magnitude of a nonlinear effect through
which changing the mean length of the cross-bridge
springs alters the number of cross-bridges that will at-
tach subsequent to the perturbation.
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Ford et al. show that their simple model can repro-
duce the family of force transients that are measured
when samples of chemically permeabilized rat cardiac
muscle are subjected to sudden lengthening or short-
ening movements. (This type of experiment is often
used to measure stretch activation and has attracted
considerable attention in the last few years; for exam-
ple, Stelzer et al., 2006.) The simulations fit the experi-
mental data impressively well, and the authors use an
interesting, cogently presented argument to show that
a nonlinear interaction between cross-bridge strain
and cross-bridge cycling is required to explain the
asymmetry of the tension responses to lengthening
and shortening movements. Another important obser-
vation is that changing only two of the five parameters
from their “control” values allows the model to repro-
duce the mechanical properties of rat cardiac muscle
in which the wild-type troponin T molecules have
been replaced by a protein kinase C phosphorylation
mimetic containing S199E and T204E mutations. Spe-
cifically, the research suggests that phosphorylating
cardiac troponin T increases the rate of cross-bridge
detachment and augments the nonlinear interaction
between strain and cross-bridge cycling. This is a con-
vincing example of how it may be possible to use this
distortion model in future work to produce new in-
sights into interactions between biochemical modifi-
cations and contractile function, such as helping to
understand how changes in the isoform content and
posttranslational status of sarcomeric proteins influ-
ence force development.

Ford et al. make it clear that their primary goal was
not to produce the closest possible fit between the
experimental data and the simulations, but rather to
minimize the qualitative ratio between the quality of
the fit and the number of assumptions that their
model made. In essence, this approach is analogous
to using F-tests to determine whether a conventional
curve fit is over-parameterized (Motulsky and Ransnas,
1987). To attain this goal, Ford et al. appear to have
eliminated all parameters that might distract from
the main object of the work. For example, the model
does not contain any passive structural components
(such as titin or collagen filaments) and thus would
not predict any measurable force in the absence of cy-
cling cross-bridges. Passive forces probably augment
active forces in real muscles, and they could have been
added into the model framework quite easily. Pre-
sumably, they were omitted because the authors did
not believe that they would make a statistically useful
contribution to the simulated records. Similarly, the
model is designed to fit force records that have been
normalized to the steady-state value of isometric force.
This again reduces the number of parameters neces-
sary for the simulations but, once more, at the ex-
pense of a potential loss of flexibility. For example, it
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might not be easy to use the model to distinguish be-
tween two types of cardiac muscle that developed dif-
ferent maximal isometric forces but that exhibited
similar stretch activation behaviors. The model also
omits any features describing how contractile force
varies with the activating Ca®" concentration. This
type of mechanism would probably have to be added
into the model before it could be integrated into sim-
ulations of working hearts.

Some may therefore argue that Ford et al. have, on
this occasion, applied Occam’s razor a little too ruth-
lessly. The small number of parameters means that the
model may only be able to fit a small subset of the ex-
perimental data that can be measured in mechanical
experiments. On the other hand, there is no reason to
think that the distortion approach will not be able to
reproduce data such as force-velocity curves and ten-
sion recovery measurements when the simulations are
inevitably tried. It is also true that the current model
does a tremendous job of reproducing an intriguing
set of mechanical data based on a very small number of
plausible and easily understood assumptions. This is an
obvious strength.

Another potential weakness is that most of the pa-
rameters in the model are phenomenological and not
readily associated with specific biochemical and/or
structural transitions. This could make it difficult to
integrate computational results obtained by simulat-
ing different types of muscle with experimental data
obtained using other techniques (for example, mea-
surements of single molecules performed using laser
tweezers). Again, however, the strengths of Ford et al.’s
model heavily outweigh the weaknesses of their ap-
proach. To most muscle biologists, for instance, the
prediction that a specific mutation of troponin I in-
creases the average rate of cross-bridge detachment
is probably just as useful as the hypothesis that the
mutation increases the strain dependence of a spe-
cific transition from an identified strongly bound bio-
chemical state.

There is much to admire about Ford et al.’s work, not
least the authors’ use of information theory to compare
models. Their careful description of many of the non-
linear interactions that they investigated and that did
not improve the fit to the data are also worthy of credit.
(This information will surely prevent much wasted ef-
fort by other parties in the future.) In their conclusion,
Ford et al. recommend their model as an “easily appli-
cable tool for routine use in studies of cardiac muscle.”
Only time will tell whether the field follows this sugges-
tion, but it is, at the very least, worthy of very serious
consideration. In the meantime, Ford et al.’s simple,
nonlinear distortion model may, with a simple modifica-
tion to include Ca*" dependence, be the best contractile
system yet to integrate into multi-scale models of work-
ing hearts.
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