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Introduction
Voltage-gated L-type Ca2+ channels are expressed in the 
surface membrane of neurons and muscle cells (Catterall, 
2000). There, they regulate multiple processes includ-
ing excitability, contraction, gene expression, and mem-
ory storage. L-type Ca2+ channels are heteromeric 
complexes comprising a pore-forming 1 subunit and 
accessory , 2, and  subunits. The specific set of pore-
forming and accessory subunits that form functional  
L-type Ca2+ channels varies between cell types. Of the four 
1 subunits identified to date (Cav1.1–4), Cav1.2 is the 
principal pore-forming 1 subunit isoform expressed  
in neurons and atrial, ventricular, and smooth muscle. 
However, the specific set of accessory subunits (2, , 
and ) that associate with Cav1.2 varies in neurons and 
cardiac and smooth muscle.

The biophysical properties of L-type Cav1.2 channels 
have been extensively examined using electrophysiologi-
cal approaches (for review see Catterall, 2000). These 
studies have revealed that Cav1.2 channels are activated 
by membrane depolarization to potentials >45 mV, un-
dergo voltage- and Ca2+-dependent inactivation, and are 
sensitive to dihydropyridines. Despite these advances, 
examination of the spatial organization of functional  
L-type Ca2+ channels in neurons and muscle has been elu-
sive. The reason for that is that conventional patch clamp 
techniques have limitations in providing information 
about the spatial organization of functional channels. 
For example, in the whole cell configuration, the activity 
of specific ionic channels is averaged over the entire sur-
face membrane, providing limited information on possi-
ble regional variations in channel function. Recording 
single-channel activity solves the spatial-averaging issue, 
but only partially because the experimenter can sample 
only a small portion of the cell surface membrane in 
each trial. In a typical smooth muscle cell with a surface 
area of ≈1,000 µm2, a 1–3-µm2 cell-attached patch would 
record currents from only 0.1–0.3% of the entire sarco-
lemma per trial.
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Recent advances in imaging technology have helped 
circumvent these limitations by allowing investigators to 
image relatively small Ca2+ signals resulting from Ca2+ 
influx via Ca2+-permeable channels with high speed 
(>100 Hz) and spatial resolution over relatively large  
areas (>100 µm2) of the cell membrane (Zou et al., 
2002; Demuro and Parker, 2005; Navedo et al., 2005). 
Implementation of these “optical clamping” approaches 
has revealed an intriguing feature of voltage-gated Ca2+ 
channels: their activity is heterogeneous along the sur-
face membrane of ventricular myocytes, smooth muscle 
as well as HELA and tsA-201 cells expressing Cav1.2 
(Navedo et al., 2005, 2010a; Tour et al., 2007; McCarron 
et al., 2009). Here, we discuss these studies and their 
implications and propose a model for local control of 
Cav1.2 channel activity in neurons and cardiac and 
smooth muscle.

A model for subcellular variations in L-type Ca2+  
channel activity
Three mechanistic models could explain subcellular 
variations in Cav1.2 channel function. In model 1, het-
erogeneous Ca2+ channel activity results from subcel-
lular variations in the molecular composition of L-type 
Ca2+ channels within a cell. In model 2, the molecular 
composition of all L-type Ca2+ channels is identical, 
but their expression is restricted to a relatively small 
number of regions within the surface membrane.  
In model 3, L-type Ca2+ channels are broadly distrib-
uted throughout the cell. However, subcellular varia-
tions in Ca2+ sparklet activity results from regional 
variations in the activity of specific signaling events 
(e.g., relative activities of kinases and opposing phos-
phatases) that culminate in local variations in the open 
probability of Cav1.2 channels.

Let us evaluate model 1 first. Many studies using patch 
clamp electrophysiology suggest that the average ampli-
tude, kinetics, voltage dependence, and pharmacological 
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144 Calcium sparklets

subcellular Cav1.2 channels are broadly distributed 
throughout the cell, but the activity of a subset of these 
channels is regulated by specific signaling events result-
ing in local variations in their activity.

Mechanisms for AKAP79/150-dependent regional 
variations in Cav1.2 channel activity
The mechanism by which AKAP79/150 induces high  
local Cav1.2 channel activity likely involves its conven-
tional role in targeting PKA, PKC, and calcineurin to 
specific regions of the surface membrane of neurons 
and myocytes. In response to an increase in cAMP, the 
activation of AKAP79/150-targeted PKA near a subset of 
L-type Ca2+ channels would increase channel activity and 
hence Ca2+ influx. Likewise, an increase in diacylglycerol 
or [Ca2+]i could activate PKC.

A recent study suggests a mechanism for local, Ca2+- 
dependent activation of AKAP79/150-associated PKC 
(Faux and Scott, 1997). In this mechanism, Ca2+ entering 
the cell binds to calmodulin. The resulting Ca2+–calmodulin 
complex binds to AKAP79/150, releasing PKC from the 
AKAP150 complex and allowing this kinase to phosphory-
late nearby L-type Ca2+ channels. An interesting aspect  
of this model is that because PKC is tethered to spe
cific sites of the cell membrane via its interaction with 
AKAP79/150, a global increase in [Ca2+]i is not required 
to induce the translocation of this kinase to the mem-
brane and thus phosphorylation of Cav1.2 channels.

As noted above, high activity Ca2+ entry sites result from 
frequent openings of single L-type Ca2+ channels after 
PKA or PKC activation. Many lines of evidence suggest 
that large amplitude, local [Ca2+]i elevations could arise 
from random overlapping openings of adjacent L-type 
Ca2+ channels with high open probabilities. First, L-type 
Ca2+ channel function can be simulated using Markov 
models, which is consistent with the hypothesis that  
the gating of these channels is largely independent  
(Tanskanen et al., 2005). Second, the amplitude histo-
gram of “Ca2+ sparklets”—a local [Ca2+]i signal produced 
by Ca2+ influx via Cav1.2 channels (Wang et al., 2001)—
has multiple peaks of decreasing amplitude. This sug-
gests that “multiquantal Ca2+ elevations are likely 
produced by random overlapping openings of adjacent 
L-type Ca2+ channels with high open probabilities”  
(Navedo et al., 2005), as the probability of multiple inde-
pendently gating channels opening simultaneously de-
creases when the number of channels involved increases.

However, it seems that not all Cav1.2 channels gate in-
dependently. A recent study suggested that small clusters 
of Cav1.2 channels could undergo coordinated openings 
and closings (i.e., “coupled gating”) (Navedo et al., 
2010a). Activation of PKC increases the probability of 
coupled gating between Cav1.2 channels. AKAP150 is re-
quired for coupled gating between Cav1.2 channels; in 
its absence, Cav1.2 channel gating is exclusively stochas-
tic even after the activation of PKC.

properties of L-type Ca2+ channel currents are similar 
within a specific cell type (Catterall, 2000). Thus, sub-
cellular variations in the molecular composition of  
L-type Ca2+ channels are unlikely culprits for hetero
geneous Ca2+ influx activity within a cell. Model 1 should 
therefore be rejected.

To test the validity of model 2, we reviewed several stud-
ies using immunofluorescence approaches to determine 
the spatial distribution of L-type Ca2+ channels in neurons 
and cardiac and smooth muscle (Pratt et al., 2002; Moore 
et al., 2004; Navedo et al., 2005; Di Biase et al., 2008;  
Asghari et al., 2009). These studies suggested that Cav1.2 
channels formed small clusters that were broadly distrib-
uted throughout the surface membrane of hippocampal 
neurons and cardiac and smooth muscle. This is consis-
tent with model 3, but not with model 2 above. If there 
are L-type Ca2+ channels all over neurons and cardiac and 
smooth muscle cells and each channel within each cluster 
has a similar molecular composition, what causes some of 
them to open more frequently than others?

Recent work by our group provides insight into this 
conundrum. We found that PKA and PKC activity con-
tributed to heterogeneous L-type Ca2+ channel activity  
in cardiac and smooth muscle (Navedo et al., 2006, 
2010a,b). The actions of these kinases on L-type Ca2+ 
channels are opposed by the Ca2+-sensitive phosphatase 
calcineurin (also known as protein phosphatase 2B). 
However, what is the mechanism by which PKA, PKC, 
and calcineurin produce regional variations in Ca2+ in-
flux via L-type Ca2+ channels?

Work on protein A kinase–anchoring proteins (AKAPs) 
provides a potential answer to this question. One AKAP 
deserves particular attention: AKAP79 (the human or-
thologue of rodent AKAP150) because it binds to PKA, 
PKC, calcineurin, and Cav1.2 channels and is expressed 
in neurons and muscle (Coghlan et al., 1995; Oliveria  
et al., 2007; Navedo et al., 2008). Five important observa-
tions suggest that local targeting of PKA and PKC by 
AKAP79/150 to specific regions of the surface mem-
brane allows these kinases and phosphates to regulate 
the phosphorylation state of nearby Cav1.2 channels, 
thereby modulating their open probability.

First, AKAP150 and PKC colocalize to specific foci at 
or near the sarcolemma of arterial myocytes. Second, 
loss of AKAP150 prevents PKC targeting to the sarco-
lemma of arterial myocytes. It also abolishes high local 
Cav1.2 channel activity (Navedo et al., 2008). Third, 
AKAP is required for PKA-dependent modulation of  
L-type Ca2+ channels in smooth muscle (Zhong et al., 
1999). Fourth, calcineurin plays a critical role in the reg-
ulation of Cav1.2 channels by opposing the actions of 
PKC and presumably PKA (Navedo et al., 2006). Fifth, 
only a subpopulation of L-type Ca2+ channels interacts 
with AKAP150 and the proteins associated with it in 
smooth muscle (Navedo et al., 2008). Collectively, these 
observations are consistent with model 3 above in which 
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was promoted by activation of a protein kinase, PKA 
(Hymel et al., 1988).

AKAP79/150-associated L-type Ca2+ channels in 
excitation–contraction (EC) coupling and excitation–
transcription (ET) coupling
In Fig. 1, we show a cartoon describing the potential role 
of AKAP150-associated L-type Ca2+ channels in EC and 
ET coupling. EC coupling is the process by which an ac-
tion potential triggers an increase in [Ca2+]i that activates 
contraction in muscle. During ET coupling, changes in 
the resting membrane potential or the frequency or wave
form of the action potential in neurons and muscle are 
coupled to changes in gene expression.

First, we will focus on EC coupling in ventricular myo-
cytes (Fig. 1). In these cells, sarcolemmal Cav1.2 chan-
nels and RYRs in nearby junctional sarcoplasmic 
reticulum form a functional unit called a “couplon” 
(Franzini-Armstrong et al., 1999). During an action po-
tential, Ca2+ influx via Cav1.2 activates small clusters of 
RYRs via the mechanism of Ca2+-induced Ca2+ release. 
The [Ca2+]i signal resulting from the concerted opening 
of RYRs is called a “Ca2+ spark” (Cheng et al., 1993). Acti-
vation of multiple couplons during an action potential 
results in a cell-wide increase in [Ca2+]i that activates con-
traction in ventricular myocytes. The probability of Ca2+ 

In those regions of the cells where Cav1.2 channels 
and AKAP150 coexist, Cav1.2 channels could switch be-
tween independent and coupled gating modes. Further-
more, the number of channels opening and closing 
simultaneously varies with time and between sites within 
a cell (Navedo et al., 2010a). This coupling mechanism is 
fundamentally different from that of RYRs, in which tet-
ramers of tightly coupled channels undergo stable open-
ings under physiological conditions (Marx et al., 1998). 
Although the mechanisms underlying coupled gating be-
tween Cav1.2 are unclear, FRET analysis suggests the pos-
sibility that coupled gating between Cav1.2 channels may 
involve a rearrangement of calmodulin in the C terminal 
of these channels and transient interactions between  
a variable number of adjacent Cav1.2 channels via their 
C termini. Two recent reports suggesting dimerization of 
entire channels as well as a fragment of the C terminal of 
Cav1.2 channels in vitro give credence to this hypothesis 
(Wang et al., 2004; Fallon et al., 2009).

Coupled gating does not seem to be a unique feature 
of Cav1.2 channels. L-type Ca2+ channels (presumably 
Cav1.1) from skeletal muscle fibers have also been shown 
to undergo coupled gating in planar lipid bilayers 
(Hymel et al., 1988). Like Cav1.2 channels, coupled gat-
ing between skeletal muscle L-type Ca2+ channels was 
transient, involved a variable number of channels, and 

Figure 1.  Cartoon of the proposed mechanisms by which AKAP150-associated Cav1.2 channels modulate EC coupling and ET coupling. 
See text for details.
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In cardiac myocytes, NFAT modulates the expression of 
Kv4.2, Kv4.3, and Cav1.2 channels (Gong et al., 2006; Qi 
et al., 2008; Xiao et al., 2008; Rossow et al., 2009) (Fig. 1). 
An interesting implication of this model is that AKAP79/ 
150-associated Cav1.2 channels can be viewed as NFAT 
transcriptional control units. In this model, the level of 
NFAT activity is graded, at least in part, by the number of 
units activated.

Conclusions
To conclude, we propose a general model for inequalities 
in L-type Ca2+ channel activity within a cell. In this new 
model, the molecular composition of L-type Ca2+ chan-
nels is similar within each cell, endowing each channel a 
similar capacity for Ca2+ influx. In this context, regional 
variations in L-type Ca2+ channel activity are not the result 
of variations in their molecular composition or massive 
clustering. Instead, they are due to the association of a 
subpopulation of these channels with AKAP79/150 (or 
any other scaffolding protein) and associated proteins in 
specific regions along the surface membrane of neurons 
and cardiac and arterial myocytes. Together, L-type Ca2+ 
channels, calcineurin, PKA, PKC, and AKAP150 form  
a signaling module that regulates local Ca2+ influx and 
NFAT-dependent gene expression in excitable cells.
This Perspectives series includes articles by Gordon, 
Parker and Smith, Xie et al., Prosser et al., and Hill- 
Eubanks et al.
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